Supporting Information

Al-alkyl Borate (AAB) Salts Cocatalysts for Olefin Polymerization: Exploration of N-donor Ligand Variations

Gaia Urciuoli,^{a,b,c} Francesco Zaccaria,^{a,c,*} Cristiano Zuccaccia,^{b,c,*} Roberta Cipullo,^{a,c,*} Peter H. M. Budzelaar,^a Leonardo Tensi,^d Antonio Vittoria,^a Christian Ehm,^{a,c} Alceo Macchioni,^{b,c} Vincenzo Busico^{a,c}

^a Department of Chemical Sciences, Federico II University of Naples, via Cinthia, 80126 Napoli, Italy;
 ^b Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy;
 ^c DPI, P.O. Box 902, 5600 AX Eindhoven, the Netherlands;

^d Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123 Perugia, Italy.

Table of Contents

1. Additional details on the synthesis and characterization of AI_L, AIHAI_L and relevant byproducts	2
1.1 Characterization details for AI_L and AIHAI_L	2
1.2 NMR spectra of AI_L and AIHAI_L	5
1.3 Additional information on the observed side reactions	28
1.3.1 Synthesis and reactivity of Al_Cyclo1	28
1.3.2 Side reactions observed with DMA-2,4,6-Me	37
1.3.3 Synthesis and reactivity of Al_tri_DEA	40
1.3.4 Side reactions observed with DIPA	44
1.3.5 Side reactions observed with TEA	46
1.3.6 Synthesis and characterization of DMA-Ph	47
1.3.5 Addendum: comparison between ¹ H NMR spectra of AIHAI_DMA and AIHAI_DMA-Ph	48
1.4 Crystallographic details	49
1.5 Estimation of K _{eq}	54
2. Additional details on polymerization experiments	55
2.1 Full polymerization procedure	55
2.1 Additional polymerization results	56
3. Additional details on computational study	57
3.1 Final Energies, Enthalpy and Entropy corrections	57
3.2 QSAR model data	58
4 Performances	62

1. Additional details on the synthesis and characterization of Al_L, AlHAl_L and relevant byproducts

1.1 Characterization details for Al_L and AlHAl_L

Al_DMA-Ph. ¹H NMR (400 MHz, benzene-*d*₆): 7.34 (d, 4H, ³*J* = 7.4 Hz, H3), 7.28 (d, 4H, ³*J* = 8.6 Hz, H2), 7.23 (d, 4H, ³*J* = 7.4 Hz, H4), 7.16 (m, 2H, H5), 6.63 (d, 4H, ³*J* = 8.6 Hz, H1), 2.02 (s, 12H, N-CH₃), 1.56 (m, 2H, Al-CH₂C*H*(CH₃)₂), 0.97 (d, 12H, ³*J* = 6.4 Hz, Al-CH₂CH(CH₃)₂), 0.07 (d, 4H, ³*J* = 6.8 Hz, Al-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, benzene-*d*₆): 143.6 (aromatic N-C), 141.6 (aromatic C), 138.4 (aromatic C), 129.2 (C4), 128.6 (C5), 128.0 (C2), 126.6 (C3), 120.7 (C1), 46.9 (N-CH₃), 27.8 (Al-CH₂CH(CH₃)₂), 25.8 (Al-CH₂CH(CH₃)₂), 20.6 (Al-CH₂CH(CH₃)₂) ppm.

AlHAI_DMA-Ph. ¹H NMR (400 MHz, benzene-*d*₆): 7.41 (d, 4H, ³*J* = 7.6 Hz, H3), 7.39 (d, 4H, ³*J* = 8.8 Hz, H2), 7.25 (dd, 4H, ³*J* = 7.6 Hz, H4), 7.17 (m, 2H, H5), 6.86 (d, 4H, ³*J* = 8.8 Hz, H1), 2.89 (bs, 1H, Al-*H*-Al), 2.43 (s, 12H, N-CH₃), 1.62 (m, 4H, Al-CH₂CH(CH₃)₂), 0.89 (d, 12H, ³*J* = 6.6 Hz, Al-CH₂CH(CH₃)₂), 0.84 (d, 12H, ³*J* = 6.6 Hz, Al-CH₂CH(CH₃)₂), 0.09 (d, 8H, ³*J* = 7.0 Hz, Al-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, benzene-*d*₆): 143.2 (aromatic N-C), 141.7 (aromatic C), 138.4 (aromatic C), 129.2 (C4), 128.6 (C2), 128.6 (C5), 126.9 (C3), 120.4 (C1), 46.9 (N-CH₃), 27.7 (Al-CH₂CH(CH₃)₂), 27.6 (Al-CH₂CH(CH₃)₂), 25.6 (Al-CH₂CH(CH₃)₂), 21.8 (Al-CH₂CH(CH₃)₂) ppm.

AI_DMA-CI. ¹H NMR (400 MHz, chlorobenzene- d_5): 7.06 (d, 4H, ³J = 8.8 Hz, aromatic *m*-H), 6.60 (d, 4H, ³J = 8.8 Hz, aromatic *o*-H), 2.27 (s, 12H, N-CH₃), 1.62 (m, 2H, AI-CH₂CH(CH₃)₂), 0.94 (d, 12H, ³J = 6.4 Hz, AI-CH₂CH(CH₃)₂), 0.14 (d, 4H, ³J = 6.8 Hz, AI-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, chlorobenzene- d_5): 143.4 (aromatic N-C), 135.1 (aromatic *p*-C), 130.2 (aromatic *m*-C), 121.7 (aromatic *o*-C), 47.5 (N-CH₃), 27.9 (AI-CH₂CH(CH₃)₂), 26.1 (AI-CH₂CH(CH₃)₂), 20.8 (AI-CH₂CH(CH₃)₂) ppm.

AlHAI_DMA-Cl. ¹H NMR (400 MHz, chlorobenzene-*d*₅): 7.18 (d, 4H, ³*J* = 9.0 Hz, aromatic *m*-H), 6.87 (d, 4H, ³*J* = 9.0 Hz, aromatic *o*-H), 2.86 (bs, 1H, Al-*H*-Al), 2.62 (s, 12H, N-CH₃), 1.59 (m, 4H, Al-CH₂CH(CH₃)₂), 0.86 (d, 12H, ³*J* = 6.4 Hz, Al-CH₂CH(CH₃)₂), 0.83 (d, 12H, ³*J* = 6.4 Hz, Al-CH₂CH(CH₃)₂), 0.07 (d, 4H, ³*J* = 7.0 Hz, Al-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, chlorobenzene-*d*₅): 143.2 (aromatic N-C), 134.9 (aromatic *p*-C), 130.5 (aromatic *m*-C), 121.6 (aromatic *o*-C), 47.3 (N-CH₃), 27.8 (Al-CH₂CH(CH₃)₂), 25.7 (Al-CH₂CH(CH₃)₂), 21.9 (Al-CH₂CH(CH₃)₂) ppm.

AI_DMCA. ¹H NMR (400 MHz, chlorobenzene-*d*₅): 2.53 (t, 2H, ³*J* = 11.0 Hz, H1), 2.09 (s, 12H, N-CH₃), 1.67 (m, 2H, Al-CH₂C*H*(CH₃)₂), 1.66 (m, 4H, H3), 1.65 (m, 4H, H2), 1.47 (bd, 2H, ²*J* = 12.7 Hz, H4), 0.98 (m, 4H, H3), 0.98 (m, 4H, H2), 0.96 (d, 12H, ³*J* = 6.4 Hz, Al-CH₂CH(CH₃)₂), 0.88 (m, 2H, H4), 0.00 (d, 4H, ³*J* = 6.4 Hz, Al-

CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, chlorobenzene-*d*₅): 67.4 (C1), 41.4 (N-CH₃), 28.1 (Al-CH₂CH(CH₃)₂), 27.0 (H2), 25.8 (Al-CH₂CH(CH₃)₂), 25.5 (H3), 25.0 (H4), 22.4 (Al-CH₂CH(CH₃)₂) ppm.

AlHAI_DMCA. ¹H NMR (400 MHz, chlorobenzene-*d*₅): 2.87 (s, 1H, Al-*H*-Al), 2.56 (t, 2H, ³*J* = 11.2 Hz, H1), 2.18 (s, 12H, N-CH₃), 1.80 (m, 4H, Al-CH₂CH(CH₃)₂), 1.69 (bm, 4H, H3), 1.65 (bm, 4H, H2), 1.48 (bd, 2H, ²*J* = 13.0 Hz, H4), 1.06 (m, 4H, H3), 1.04 (m, 4H, H2), 1.01 (d, 12H, ³*J* = 6.4 Hz, Al-CH₂CH(CH₃)₂), 1.00 (d, 12H, ³*J* = 6.4 Hz, Al-CH₂CH(CH₃)₂), 0.90 (m, 2H, H4), 0.20 (dd, 4H, ³*J* = 7.0 Hz, ²*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ⁴*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ⁴*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz, Al-CH₂CH(CH₃)₂), 0.18 (dd, 4H, ³*J* = 7.0 Hz, ³*J* = 14.7 Hz,

AI_DMHA. ¹H NMR (400 MHz, benzene-*d*₆): 2.35 (t, 4H, ³*J* = 8.4 Hz, H1), 1.85 (s, 12H, N-CH₃), 1.59 (m, 2H, Al-CH₂CH(CH₃)₂), 1.4-1.2 (m, 48H, H3-H14)), 1.31 (m, 4H, H15), 1.13 (m, 4H, H2), 0.97 (d, 12H, ³*J* = 6.4 Hz, Al-CH₂CH(CH₃)₂), 0.93 (t, 6H, ³*J* = 7.0 Hz, H16), -0.13 (d, 4H, ³*J* = 6.9 Hz, Al-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, benzene-*d*₆): 58.5 (C1), 43.3 (N-CH₃), 32-29 (C3-C14)), 27.7 (Al-CH₂CH(CH₃)₂), 25.8 (Al-CH₂CH(CH₃)₂), 22.8 (C15), 19.9 (C2), 19.3 (Al-CH₂CH(CH₃)₂), 13.9 (C16) ppm.

AIHAI_DMHA.¹H NMR (400 MHz, benzene-*d*₆): 2.63 (bs, 1H, AI-*H*-AI), 2.36 (t, 4H, ³*J* = 8.4 Hz, H1), 1.99 (s, 12H, N-CH₃), 1.80 (m, 4H, AI-CH₂CH(CH₃)₂), 1.4 - 1.2 (m, 48H, H3-H14), 1.32 (m, 4H, H15), 1.24 (m, 4H, H2), 0.97 (d, 24H, ³*J* = 6.5 Hz, AI-CH₂CH(CH₃)₂), 0.93 (t, 6H, ³*J* = 6.8 Hz, H16), 0.17 (dd, 4H, ³*J* = 7.0 Hz, ²*J* = 14.6 Hz, AI-CH₂CH(CH₃)₂), 0.12 (dd, 4H, ³*J* = 7.0 Hz, ²*J* = 14.6 Hz, AI-CH₂CH(CH₃)₂), 0.12 (dd, 4H, ³*J* = 7.0 Hz, ²*J* = 14.6 Hz, AI-CH₂CH(CH₃)₂), 0.12 (dd, 4H, ³*J* = 7.0 Hz, ²*J* = 14.6 Hz, AI-CH₂CH(CH₃)₂), 0.12 (dd, 4H, ³*J* = 7.0 Hz, ²*J* = 14.6 Hz, AI-CH₂CH(CH₃)₂), ppm. ¹³C NMR (100 MHz, benzene-*d*₆): 59.1 (C1), 43.9 (N-CH₃), 32-29 (C3-C14), 27.6 (AI-CH₂CH(CH₃)₂), 25.7 (AI-CH₂CH(CH₃)₂), 22.8 (C15), 22.0 (C2), 21.3 (AI-CH₂CH(CH₃)₂), 13.9 (C16) ppm.

Al_Py-2,6-Me. ¹H NMR (400 MHz, benzene- d_6): 6.96 (t, 2H, ³J = 7.8 Hz, aromatic *p*-H), 6.39 (d, 4H, ³J = 7.8 Hz, aromatic *m*-H), 1.85 (s, 12H, Ar-CH₃) 1.25 (m, 2H, Al-CH₂CH(CH₃)₂), 0.78 (d, 12H, ³J = 6.6 Hz, Al-CH₂CH(CH₃)₂), 0.26 (d, 4H, ³J = 6.4 Hz, Al-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, benzene- d_6): 157.4 (aromatic *o*-C), 142.5 (aromatic *p*-C), 125.9 (aromatic *m*-C), 29.0 (Al-CH₂CH(CH₃)₂), 27.4 (Al-CH₂CH(CH₃)₂), 25.6 (Al-CH₂CH(CH₃)₂), 23.0 (Ar-CH₃) ppm.

Al_Py-3,5-Me. ¹H NMR (400 MHz, benzene-*d*₆): 7.70 (bs, 4H, aromatic *o*-H), 6.74 (bs, 2H, aromatic *p*-H), 1.81 (m, 2H, Al-CH₂CH(CH₃)₂), 1.68 (s, 12H, Ar-CH₃), 0.93 (d, 12H, ³*J* = 6.6 Hz, Al-CH₂CH(CH₃)₂), 0.46 (d, 4H, ³*J* = 7.2 Hz, Al-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, benzene-*d*₆): 144.9 (aromatic *m*-C), 143.2 (aromatic *o*-C), 137.5 (aromatic *p*-C), 27.6 (Al-CH₂CH(CH₃)₂), 25.7 (Al-CH₂CH(CH₃)₂), 19.4 (Al-CH₂CH(CH₃)₂), 17.1 (Ar-CH₃) ppm.

Al_Py-3,5-F. ¹H NMR (400 MHz, benzene- d_6): 7.46 (d, 4H, ⁴J = 1.8 Hz, aromatic *o*-H), 6.30 (tt, 2H, ³J_{HF} = 7.8 Hz, ⁴J_{HH} = 1.8 Hz, aromatic *p*-H), 1.60 (m, 2H, Al-CH₂CH(CH₃)₂), 0.78 (d, 12H, ³J = 6.6 Hz, Al-CH₂CH(CH₃)₂), 0.09 (d,

4H, ${}^{3}J$ = 7.3 Hz, Al-CH₂CH(CH₃)₂) ppm. 13 C NMR (100 MHz, benzene- d_6): 160.6 (${}^{1}J_{CF}$ = 265 Hz, aromatic *m*-C), 132.0 (${}^{2}J_{CF}$ = 24.2 Hz, aromatic *o*-C), 119.5 (${}^{2}J_{CF}$ = 23.4 Hz, aromatic *p*-C), 27.4 (Al-CH₂CH(CH₃)₂), 25.2 (Al-CH₂CH(CH₃)₂), 18.5 (Al-CH₂CH(CH₃)₂) ppm. 19 F NMR (400 MHz, benzene- d_6): -110.4 (aromatic *m*-F) ppm.

*Al_Py-4-NMe*₂. ¹H NMR (400 MHz, benzene- d_6): 7.46 (d, 4H, aromatic *m*-H), 5.82 (d, 4H, aromatic *o*-H), 2.11 (s, 12H, N-CH₃), 1.95 (m, 2H, Al-CH₂CH(CH₃)₂), 1.07 (d, 12H, ³J = 6.6 Hz, Al-CH₂CH(CH₃)₂), 0.46 (d, 4H, ³J = 7.0 Hz, Al-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, benzene- d_6): 155.4 (aromatic *p*-C), 144.5 (aromatic *m*-C), 106.9 (aromatic *o*-C), 37.8 (N-CH₃), 27.9 (Al-CH₂CH(CH₃)₂), 26.0 (Al-CH₂CH(CH₃)₂), 19.8 (Al-CH₂CH(CH₃)₂) ppm.

Al_QUI. ¹H NMR (400 MHz, benzene-*d*₆): 8.38 (d, 2H, ³*J* = 5.0 Hz, H1), 7.65 (m, 4H, H3 and H7), 7.21 (d, 2H, ³*J* = 8.2 Hz, H4), 7.04 (dd, 2H, ³*J* = 7.2 Hz, H6), 6.97 (m, 2H, H5), 6.81 (dd, 2H, ³*J* = 8.2 Hz, ³*J* = 5.0 Hz, H2), 1.45 (m, 2H, AI-CH₂CH(CH₃)₂), 0.81 (d, 12H, ³*J* = 6.6 Hz, AI-CH₂CH(CH₃)₂), 0.64 (d, 4H, ³*J* = 7.0 Hz, AI-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, benzene-*d*₆): 149.7 (C1), 145.0 (aromatic N-C) 144.9 (C3), 142.7 (aromatic C), 133.3 (C6), 130.1 (C4), 129.0 (C5), 121.5 (C7), 121.2 (C2), 27.5 (AI-CH₂CH(CH₃)₂), 25.7 (AI-CH₂CH(CH₃)₂), 23.5 (AI-CH₂CH(CH₃)₂) ppm.

1.2 NMR spectra of Al_L and AlHAl_L

Figure S1. a) ¹H and b) ¹³C NMR spectra (benzene- d_6 , 298K) of **Al_DMA-Ph**.

Figure S2. a) ¹H and b) ¹³C NMR spectra (benzene- d_6 , 298K) of **AIHAI_DMA-Ph**. * = residual **AI_DMA-Ph**.

Figure S3. ¹H NOESY NMR spectrum (benzene- d_6 , 298K) of AlHAI_DMA-Ph.

Figure S4. a) ¹H and b) ¹³C NMR spectra (chlorobenzene- d_5 , 298K) of **Al_DMA-Cl**.

Figure S5. a) ¹H and b) ¹³C NMR spectra (chlorobenzene- d_5 , 298K) of **AIHAI_DMA-CI**. * = residual **AI_DMA-CI**. Cl.

Figure S6. ¹H NOESY NMR spectrum (chlorobenzene-*d*₅, 298K) of AlHAI_DMA-CI.

Figure S7. a) ¹H and b) ¹³C NMR spectra (chlorobenzene- d_5 , 298K) of Al_DMCA.

Figure S8. a) ¹H and b) ¹³C NMR spectra (chlorobenzene- d_5 , 298K) of AlHAI_DMCA.

Figure S9. ¹H NOESY NMR spectrum (chlorobenzene- d_6 , 298K) of AlHAI_DMCA.

Figure S10. a) ¹H and b) ¹³C NMR spectra (benzene- d_6 , 298K) of **Al_DMHA**.

Figure S11. a) ¹H and b) ¹³C NMR spectra (benzene- d_6 , 298K) of **AIHAI_DMHA**. * = residual **AI_DMHA**; # = residual DIBAL-H.

Figure S12. Comparison of ¹H NMR spectra (benzene- d_6 , 298K) of **AIHAI_DMHA** at increasing reaction time. * = residual **AI_DMHA**; # = residual DIBAL-H.

Figure S13. ¹H NOESY spectrum (benzene-*d*₆, 298K) of AIHAI_DMHA.

Figure S14. a) ¹H and b) ¹³C NMR spectra (benzene- d_6 , 298K) of **Al_Py-2,6-Me**, and c) ¹H NMR spectrum of a **Al_Py-2,6-Me**/DiBAL-H mixture resulting in no detectable amounts of **AlHAl_Py-2,6-Me**. * = DIBALH; # = pyridinium borate.

Figure S15. ¹H NOESY NMR spectrum (benzene- d_6 , 298K) of Al_Py-2,6-Me.

Figure S16. a) ¹H and b) ¹³C NMR spectra (benzene- d_6 , 298K) of **Al_Py-3,5-Me**, and c) ¹H NMR spectrum of a **Al_Py-3,5-Me**/DiBAL-H mixture resulting in no detectable amounts of **AlHAl_Py-3,5-Me**. * = DIBALH.

Figure S17. ¹H NOESY NMR spectrum (benzene- d_6 , 298K) of Al_Py-3,5-Me.

Figure S18. a) ¹H and b) ¹³C NMR spectra (benzene-*d*₆, 298K) of **Al_Py-3,5-F**, and c) ¹H NMR spectrum of a **Al_Py-3,5-F**/DiBAL-H mixture resulting in no detectable amounts of **AlHAl_Py-3,5-F**. * = DIBALH.

Figure S19. ¹H NOESY NMR spectrum (benzene-*d*₆, 298K) of **AI_Py-3,5-F**.

Figure S20. a) ¹H and b) ¹³C NMR spectra (benzene- d_6 , 298K) of **Al_Py-4-NMe**₂, and c) ¹H NMR spectrum of a **Al_Py-4-NMe**₂/DiBAL-H mixture resulting in no detectable amounts of **AlHAl_Py-4-NMe**₂. * = DIBALH.

Figure S21. ¹H NOESY NMR spectrum (benzene-*d*₆, 298K) of **Al_Py-4-NMe**₂.

Figure S22. a) ¹H and b) ¹³C NMR spectra (benzene- d_6 , 298K) of **Al_QUI**, and c) ¹H NMR spectrum of a **Al_QUI**/DiBAL-H mixture resulting in no detectable amounts of **AlHAI_QUI**. * = DIBALH.

Figure S23. ¹H NOESY NMR spectrum (benzene- d_6 , 298K) of Al_QUI.

1.3 Additional information on the observed side reactions

1.3.1 Synthesis and reactivity of Al_Cyclo1

Al_Cyclo1. Solid TTB (166 mg, 0.18 mmol) was added in small aliquots to a preformed and stirred solution of TIBAL (45 μ L, 0.18 mmol) and **DMA-2-Me** (52 μ L, 0.36 mmol) in toluene (1 mL). The resulting mixture was vigorously stirred for 72 h at room temperature. Upon stopping the stirring, a colorless oil precipitated. Pentane (6 mL) was added to facilitate precipitation of ionic byproducts. The supernatant was then removed, and the oil further extracted with pentane (2 x 6 mL). All the pentane fractions were then combined and dried under vacuum to obtain a white solid containing **Al_cyclo1** (61% yield) and Ph₃CH byproduct. Alternative synthetic procedure using **DMA-2-Me**, BuLi and DIBAL-CI have been reported in literature (see Figure S27).^{1,2}

¹H NMR (400 MHz, benzene- d_6): 7.29 (bd, 1H, ³J = 7.4 Hz, H1), 6.97 (ddd, 1H, ³J = 7.4 Hz, ³J = 7.4 Hz, ⁴J = 1.2 Hz, H3), 6.86 (ddd, 1H, ³J = 7.4 Hz, ³J = 7.8 Hz, ⁴J = 1.2 Hz, H2), 6.56 (bd, 1H, ³J = 7.8 Hz, H4), 2.09 (s, 6H, N-CH₃), 1.98 (m, 2H, AI-CH₂CH(CH₃)₂), 1.52 (bs, 2H, Ar-CH₂-AI), 1.16 (d, 6H, ³J = 6.4 Hz, AI-CH₂CH(CH₃)₂), 1.15 (d, 6H, ³J = 6.4 Hz, AI-CH₂CH(CH₃)₂), 0.19 (dd, 2H, ²J = 13.8 Hz, ³J = 7.2 Hz, AI-CH₂CH(CH₃)₂), 0.06 (dd, 2H, ²J = 13.8 Hz, ³J = 6.8 Hz, AI-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, benzene- d_6): 148.7 (C-N), 142.3 (C-CH₂-), 132.3 (C1), 127.2 (C3), 124.3 (C2), 117.2 (C4), 46.0 (N-CH₃), 28.3 (AI-CH₂CH(CH₃)₂), 26.6 (AI-CH₂CH(CH₃)₂), 21.0 (AI-CH₂CH(CH₃)₂) ppm.

In another solvent. ¹H NMR (400 MHz, chlorobenzene- d_5): 7.25 (bd, 1H, ³J = 7.6 Hz, H1), 6.99 (m, 1H, H3), 6.92 (m, 1H, H2), 6.81 (bd, 1H, ³J = 7.4 Hz, H4), 2.37 (s, 6H, N-CH₃), 1.86 (m, 2H, Al-CH₂CH(CH₃)₂), 1.41 (bs, 2H, Ar-CH₂-Al), 1.02 (d, 6H, ³J = 7.4 Hz, Al-CH₂CH(CH₃)₂), 1.01 (d, 6H, ³J = 7.4 Hz, Al-CH₂CH(CH₃)₂), 0.08 (dd, 2H, ²J = 13.8 Hz, ³J = 7.2 Hz, Al-CH₂CH(CH₃)₂), -0.04 (dd, 2H, ²J = 13.8 Hz, ³J = 7.0 Hz, Al-CH₂CH(CH₃)₂) ppm.

Al_Cyclo1_DMA-2-Me. Solid TTB (30 mg, 32 µmol) was added in small aliquots to a preformed and stirred solution of DMA-2-Me (5 µL, 35 µmol) and Al_cyclo1 (9.6 mg, 35 µmol) in toluene (1 mL). The resulting mixture was vigorously stirred for a few minutes at room temperature. Upon stopping the stirring, a colorless oil precipitated. Pentane (3 mL) was added to facilitate precipitation of ionic products. The supernatant was then removed, and the oil further washed with pentane (3 mL) and benzene- d_6 (150 µL). After the last washing, the residue was dried under vacuum to obtain Al_Cyclo1_DMA-2-Me as a white solid (22 mg, 69% yield).

¹H NMR (400 MHz, chlorobenzene- d_5): 7.04 (m, 1H, H11), 7.04 (m, 1H, H9), 7.02 (m, 1H, H2), 6.99 (m, 2H, H3 and C-H10), 6.94 (m, 1H, H4), 6.78 (d, 1H, ${}^{3}J$ = 7.8 Hz, H1), 6.75 (d, 1H, ${}^{3}J$ = 7.8 Hz, H12), 2.48 (bs, 3H, N-CH₃ (6)), 2.42 (bs, 3H, N-CH₃ (7)), 2.37 (bs, 3H, N-CH₃ (14)), 2.23 (bs, 3H, N-CH₃ (13)), 2.14 (s, 3H, Ar-CH₃ (5)), 1.40 (d, 1H, ${}^{2}J$ = 17.0 Hz, Ar-CH₂(8)-Al), 1.25 (m, 1H, Al-CH₂CH(CH₃)₂), 1.20 (d, 1H, ${}^{2}J$ = 17.0 Hz, Ar-CH₂(8)-Al), 0.73 (d, 3H, ${}^{3}J$ = 6.4 Hz, Al-CH₂CH(CH₃)₂), 0.69 (d, 3H, ${}^{3}J$ = 6.6 Hz, Al-CH₂CH(CH₃)₂), -0.02 (dd, 1H, ${}^{2}J$ = 14.8 Hz, ${}^{3}J$ =

5.6 Hz, Al-CH₂CH(CH₃)₂), -0.19 (dd, 1H, ²*J* = 14.8 Hz, ³*J* = 5.6 Hz, Al-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, chlorobenzene-*d*₅): 145.8 (aromatic N-C), 143.7 (aromatic N-C), 135.9 (aromatic *C*-CH₂-Al), 135.6 (C4), 132.3 (C9), 130.3 (aromatic *C*-CH₃), 129.3 (C2 and C11), 128.6 (C3), 128.0 (C10), 120.7 (C1), 116.9 (C12), 48.0 (C14), 47.6 (C7), 47.2 (C6), 46.3 (C13), 27.5 (Al-CH₂CH(CH₃)₂), 26.9 (Al-CH₂CH(CH₃)₂), 25.9 (Al-CH₂CH(CH₃)₂), 22.3 (C5), 18.6 (Al-CH₂CH(CH₃)₂), 12.0 (Ar-CH₂-Al) ppm.

Figure S24. a) ¹H and b) ¹³C NMR spectra (benzene- d_6 , 298K) of Al_Cyclo1. * = residual Ph₃CH.

Figure S25. ¹H NOESY NMR spectrum (benzene- d_6 , 298K) of Al_Cyclo1.

Figure S26. ¹H, ¹³C HSQC NMR spectra (benzene- d_6 , 298K) of Al_Cyclo1.

Figure S27. Comparison of ¹H NMR spectra (benzene- d_6 , 298 K) of **AI_Cyclo1** obtained from a) the selfdecomposition of **AI_DMA-2-Me** and b) independently from the reaction of **DMA-2-Me** with BuLi and DIBAL-Cl. [#] = residual heptane from synthesis

Scheme S1. Ionization of **AI_Cyclo1** in the a) absence and b) presence of an equivalent of **DMA-2-Me**.

Figure S28. a) ¹H and b) ¹³C NMR spectra (chlorobenzene-*d*₅, 298K) of **Al_Cyclo1_DMA-2-Me**.

Figure S29. ¹H NOESY NMR spectrum (chlorobenzene-*d*₅, 298K) of **Al_Cyclo1_DMA-2-Me**.

Figure S30. a) ¹H and b) ¹H,¹³C HSQC NMR spectra (chlorobenzene- d_5 , 298K) of the reaction mixture of **Al_Cyclo1_DMA-2-Me** and DIBAL-H.

1.3.2 Side reactions observed with DMA-2,4,6-Me

Upon reacting **DMA-2,4,6-Me** (2 equiv.) with TIBAL (1 equiv.) and TTB (0.9 equiv.; Scheme 2d) in benzene- d_6 , a complex mixture of neutral and ionic products is formed. The neutral products remain in solution (Figure S31), while the ionic ones precipitate as a yellow-green oil. The latter were separated and dissolved in chlorobenzene- d_5 (Figure S32).

Al_Cyclo2. ¹H NMR (400 MHz, benzene-*d*₆): 7.03 (s, 1H, H1), 6.42 (bs, 1H, H3), 2.30 (s, 6H, N-CH₃), 2.06 (m, 1H, Al-CH₂C*H*(CH₃)₂), 2.04 (s, 3H, H2), 1.89 (s, 3H, H4), 1.57 (bs, 2H, Ar-CH₂-Al), 1.21 (d, 6H, ³*J* = 6.6 Hz, Al-CH₂CH(CH₃)₂), 1.19 (d, 6H, ³*J* = 6.6 Hz, Al-CH₂CH(CH₃)₂), 0.24 (dd, 1H, ²*J* = 13.8 Hz, ³*J* = 7.0 Hz, Al-CH₂CH(CH₃)₂), 0.13 (dd, 1H, ²*J* = 13.8 Hz, ³*J* = 7.0 Hz, Al-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, benzene-*d*₆): 143.7 (aromatic *C*-CH₂-), 143.1 (aromatic N-C), 136.5 (aromatic *C*-CH₃(2)), 131.3 (C1), 129.8 (C3), 129.6 (aromatic *C*-CH₃(4)), 45.1 (N-CH₃), 28.5 (Al-CH₂CH(CH₃)₂), 26.9 (Al-CH₂CH(CH₃)₂), 21.6 (Al-CH₂CH(CH₃)₂) ppm.

Al_tri_DMA-2,4,6-Me. ¹H NMR (400 MHz, chlorobenzene-*d*₅): 6.57 (bs, 2H, aromatic *m*-H), 2.59 (s, 6H, N-CH₃), 2.27 (bs, 6H, *o*-CH₃), 2.00 (s, 3H, *p*-CH₃), 1.71 (m, 2H, Al-CH₂CH(CH₃)₂), 0.85 (d, 12H, ³*J* = 6.5 Hz, Al-CH₂CH(CH₃)₂), 0.22 (d, 4H, ³*J* = 7.4 Hz, Al-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, chlorobenzene-*d*₅): 140.9 (aromatic *p*-C), 138.6 (aromatic C-N), 130.6 (aromatic *m*-C), 45.5 (N-CH₃), 27.4 (Al-CH₂CH(CH₃)₂), 20.0 (*p*-CH₃), 25.2 (Al-CH₂CH(CH₃)₂), 21.0 (Al-CH₂CH(CH₃)₂), 19.5 (*o*-CH₃) ppm.

Protonated DMA-2,4,6-Me borate salt. ¹H NMR (400 MHz, chlorobenzene-*d*₅): 6.52 (bs, 1H, aromatic *m*-H), 6.48 (bs, 1H, aromatic *m*-H), 2.52 (s, 6H, N-CH₃), 2.00 (s, 3H, *p*-CH₃), 1.86 (bs, 6H, *o*-CH₃) ppm. ¹³C NMR (100 MHz, chlorobenzene-*d*₅): 141.8 (aromatic *p*-C), 134.5 (aromatic N-C), 134.4 (aromatic *m*-C), 131.2 (aromatic *m*-C), 128.1 (aromatic *o*-C), 44.9 (N-CH₃), 20.0 (*p*-CH₃), 18.9 (*o*-CH₃) ppm.

Figure S31. a) ¹H and b) ¹H NOESY NMR spectra (benzene- d_5 , 298K) of the neutral products formed in the reaction of **DMA-2,4,6-Me** (2 equiv.) with TIBAL (1 equiv.) and TTB (0.9 equiv.). * = *iso*-butene; # = Ph₃CH.

Figure S31. a) ¹H and b) ¹H NOESY NMR spectra (chlorobenzene- d_5 , 298K) of the ionic products formed in the reaction of **DMA-2,4,6-Me** (2 equiv.) with TIBAL (1 equiv.) and TTB (0.9 equiv.).

1.3.3 Synthesis and reactivity of Al_tri_DEA

Al_tri_DEA. Solid TTB (114 mg, 124 μ mol) was added in small aliquots to a preformed and stirred solution of TIBAL (46.8 μ L, 185 μ mol) and **DEA** (39.7 μ L, 247 μ mol) in toluene (1.5 mL). The resulting mixture was vigorously stirred for a few minutes at room temperature. Upon stopping the stirring, a colorless oil precipitated. Pentane (6 mL) was added to facilitate precipitation of ionic products. The supernatant was then removed, and the oil further washed with pentane (2 x 6 mL). After the last washing, the residue was dried under vacuum to obtain **Al_tri_DEA** as a white solid (121 mg, 87% yield).

¹H NMR (400 MHz, chlorobenzene- d_5): 7.26 (m, 4H, aromatic *m*-H), 7.17 (m, 2H, aromatic *p*-H), 6.82 (m, 4H, aromatic *o*-H), 2.99 (bd, 4H, ³*J* = 6.4 Hz, N-CH₂CH₃), 1.57 (m, 2H, Al-CH₂CH(CH₃)₂), 0.78 (bt, 6H, ³*J* = 6.4 Hz, N-CH₂CH₃), 0.72 (d, 12H, ³*J* = 6.5 Hz, Al-CH₂CH(CH₃)₂), 0.19 (d, 4H, ³*J* = 7.3 Hz, Al-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, chlorobenzene- d_5): 138.0 (aromatic N-C), 133.3 (aromatic *m*-C), 130.8 (aromatic *p*-C), 119.4 (aromatic *o*-*C*), 46.6 (N-CH₂CH₃), 27.4 (Al-CH₂CH(CH₃)₂), 25.0 (Al-CH₂CH(CH₃)₂), 22.2 (Al-CH₂CH(CH₃)₂), 9.03 (N-CH₂CH₃) ppm.

Figure S32. a) ¹H and b) ¹³C NMR spectra (chlorobenzene-*d*₅, 298K) of **Al_tri_DEA**.

Figure S33. ¹H NOESY NMR spectrum (chlorobenzene-*d*₅, 298K) of **Al_tri_DEA**.

Scheme S2. Self-decomposition of Al_tri_DEA in solution.

Figure S34. a) ¹H and b) ¹⁹F NMR spectra (benzene- d_6 , 298K) of **Al_tri_DEA** decomposition products (see also Scheme S2).

1.3.4 Side reactions observed with DIPA

Upon reacting **DIPA** (2 equiv.) with TIBAL (1 equiv.) and TTB (0.9 equiv.; Scheme 2d) in benzene- d_6 , a complex mixture of neutral and ionic products is formed. The neutral products (Ph₃CH and other minor species) remain in solution, while the ionic ones precipitate as a yellow-green oil. The latter were separated and dissolved in chlorobenzene- d_5 (Figure S35).

Al_tri_DIPA. ¹H NMR (400 MHz, chlorobenzene-*d*₅): 7.22 (bm, 3H, aromatic *m*,*p*-H), 6.69 (bm, 2H, aromatic *o*-H), 3.55 (h, 2H, ³*J* = 6.8, N-C*H*(CH₃)₂), 1.70 (m, 2H, Al-CH₂C*H*(CH₃)₂), 0.93 (bm, 12H, N-CH(CH₃)₂), 0.82 (d, 12H, ³*J* = 6.6 Hz, Al-CH₂CH(CH₃)₂), 0.25 (d, 4H, ³*J* = 7.6 Hz, Al-CH₂CH(CH₃)₂) ppm.

In another solvent. ¹H NMR (400 MHz, dichlorobenzene- d_4): 7.40 (m, 3H, aromatic *m*,*p*-H), 6.87 (d, 2H, ³*J* = 8.0 Hz, aromatic *o*-H), 3.76 (bs, 2H, N-C*H*(CH₃)₂), 1.77 (m, 2H, Al-CH₂C*H*(CH₃)₂), 1.09 (d, 12H, ³*J* = 6.2 Hz, N-CH(CH₃)₂), 0.85 (d, 12H, ³*J* = 6.6 Hz, Al-CH₂CH(CH₃)₂), 0.36 (d, 4H, ³*J* = 7.6 Hz, Al-CH₂CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, dichlorobenzene- d_4): 131 (aromatic *m*,*p*-C), 122.0 (aromatic *o*-C), 56.2 (N-C*H*(CH₃)₂), 27.4 (Al-CH₂CH(CH₃)₂), 25.6 (Al-CH₂CH(CH₃)₂), 25.4 (Al-CH₂CH(CH₃)₂), 20.6 (N-CH(CH₃)₂) ppm.

Protonated DIPA borate salt. ¹H NMR (400 MHz, chlorobenzene- d_5): 7.21 (m, 3H, aromatic *m*,*p*-H), 6.49 (bd, 2H, ³J = 7.0 Hz, aromatic *o*-H), 4.92 (bm, 1H, N-H⁺), 3.33 (m, 2H, N-CH(CH₃)₂), 0.71 (d, 6H, ³J = 6.4 Hz, N-CH(CH₃)₂), 0.60 (d, 6H, ³J = 6.6 Hz, N-CH(CH₃)₂) ppm.

In another solvent. ¹H NMR (400 MHz, dichlorobenzene- d_4): 7.25 (m, 3H, aromatic *m*,*p*-H), 6.70 (d, 2H, ³*J* = 7.6 Hz, aromatic *o*-H), 3.61 (m, 2H, N-CH(CH₃)₂), 0.91 (d, 6H, ³*J* = 6.4 Hz, N-CH(CH₃)₂), 0.82 (d, 6H, ³*J* = 6.4 Hz, N-CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, dichlorobenzene- d_4): 131.5 (aromatic N-C), 131 (aromatic m,*p*-*C*), 122.8 (aromatic *o*-C), 58.6 (N-CH(CH₃)₂), 19.0 (N-CH(CH₃)₂), 16.8 (N-CH(CH₃)₂) ppm.

Figure S35. a) ¹H and b) ¹H NOESY NMR spectra (chlorobenzene- d_5 , 298K) of the ionic products formed in the reaction of **DIPA** (2 equiv.) with TIBAL (1 equiv.) and TTB (0.9 equiv.).

1.3.5 Side reactions observed with TEA

Figure S36. a) ¹H and b) ¹H NOESY NMR spectra (chlorobenzene- d_5 , 298K) of the ionic products formed in the reaction of **TEA** (2 equiv.) with TIBAL (1 equiv.) and TTB (0.9 equiv.).

1.3.6 Synthesis and characterization of DMA-Ph

DMA-Ph. Inspired by literature procedures,³ methyliodide (1.18 mL, 19.0 mmol) was added dropwise to a stirred solution of K₂CO₃ (2.63 g, 19.0 mmol) and 4-aminobiphenyl (1.53 g, 9.0 mmol) in 25 mL of ethanol. The resulting mixture was vigorously stirred for 18h under reflux at 85°C. Subsequently, the mixture was cooled down to room temperature, filtered and extracted three times with H₂O. The organic layer was dried over sodium sulfate, filtered and concentrated under vacuum to obtain an orange solid, which was purified through column chromatography on silica gel using chloroform as eluent. The desired eluted fractions were combined and all the volatiles were removed under vacuum to afford the product as a pale orange solid (904 mg; 51% isolated yield).

¹H NMR (400 MHz, chloroform-*d*): 7.60 (dd, 2H, ³*J* = 8.2 Hz, H3), 7.53 (d, 2H, ³*J* = 8.8 Hz, H2), 7.42 (m, 2H, H4), 7.27 (t, 1H, ³*J* = 7.2 Hz, H5), 6.82 (d, 2H, ³*J* = 8.8 Hz, H1), 3.03 (s, 6H, N-CH₃) ppm. ¹³C NMR (100 MHz, chloroform-*d*): 150.1 (aromatic N-C), 141.1 (aromatic *C*-C), 128.7 (aromatic *C*-C), 128.6 (C4), 127.4 (C2), 126.0 (C3)), 125.8 (C5), 112.6 (C1), 40.4 (N-CH₃) ppm. See Figure S2 for nomenclature.

1.3.5 Addendum: comparison between $^1\mathrm{H}$ NMR spectra of <code>AlHAl_DMA</code> and <code>AlHAl_DMA-Ph</code>

Figure S37. Comparison between ¹NMR spectra (benzene- d_6 , 298K) of a) AlHAI_DMA and b) AlHAI_DMA-Ph.

1.4 Crystallographic details

Complex	AI_DMA						
CCDC n.	2372889						
Elemental formula	C ₄₈ H ₄₀ AI B F ₂₀ N ₂						
Formula weight	1062.61						
Crystal system	Triclinic						
Space group	P-1						
Unit cell d	imensions:						
a = (Å)	12.6860(6)						
b =	12.8057(6)						
C =	16.3034(9)						
$\alpha = (^{\circ})$	66.945(2)						
β =	69.445(2)						
γ =	85.521(2)						
Volume (ų)	2276.4(2)						
Z, Calculated density (g/cm ³)	2, 1.550						
F(000)	1080						
Absorption coefficient (mm ⁻¹)	0.165						
Temperature (K)	150.(2)						
Crystal colour, shape	Clear colourless, prism						
Crystal size (mm)	0.200 x 0.100 x 0.080						
On the diff	ractometer:						
Theta range for data collection	2.6067 to 28.2565						
Limiting indices	-16<=h<=16, -14<=k<=17, -21<=l<=21						
Completeness	99.4%						
Max. and min. transmission	0.7457 and 0.6879						
Refins collected (not incl. absences)	40474						
No. of unique reflns, R(int) for equivs	11256, 0.0375						
No. of 'observed' reflns ($I > 2\sigma_I$)	8862						
Refine	ement:						
Data/restraints/parameters	11256/0/667						
Goodness-of-fit on F ²	1.025						
Final R indices ('obsd' data)	0.0395, 0.0874						
Final R indices (all data)	0.0587, 0.0983						
Reflns weighted: 1/w = ^a	[\s^2^(Fo^2^)+(0.0357P)^2^+1.2327P]						
Largest diff. peak and hole (e. Å ⁻³)	0.484 and -0.332						

Table S1. Crystal data and structure refinement for Al_DMA.

^awhere P=(Fo^2^+2Fc^2^)/3

Complex	AI_DMA-CI					
CCDC n.	2372892					
Elemental formula	C ₅₁ H ₃₈ Al B Cl ₂ F ₂₁ N ₂					
Formula weight	1186.52					
Crystal system	Monoclinic					
Space group	P2(1)/n					
Unit cell d	imensions:					
a = (Å)	15.1327(8)					
b =	19.0563(11)					
C =	20.0028(12)					
α = (°)	90					
β =	110.397(2)					
γ =	90					
Volume (ų)	5406.6(5)					
Z, Calculated density (g/cm ³)	4, 1.458					
F(000)	2396					
Absorption coefficient (mm ⁻¹)	0.246					
Temperature (K)	120.(2)					
Crystal colour, shape	Clear colourless, plate					
Crystal size (mm)	0.400 x 0.140 x 0.140					
On the diff	ractometer:					
Theta range for data collection	2.5752 to 28.0428					
Limiting indices	-20<=h<=17, -24<=k<=25, -26<=l<=25					
Completeness	99.5%					
Max. and min. transmission	0.7457 and 0.6660					
RefIns collected (not incl. absences)	42890					
No. of unique reflns, R(int) for equivs	13416, 0.0344					
No. of 'observed' reflns ($I > 2\sigma_I$)	9891					
Refine	ment:					
Data/restraints/parameters	13416/450/820					
Goodness-of-fit on F ²	1.129					
Final R indices ('obsd' data)	0.0706, 0.1870					
Final R indices (all data)	0.0934, 0.1976					
Reflns weighted: 1/w = a	\s^2^(Fo^2^)+(0.0686P)^2^+9.5321P					
Largest diff. peak and hole (e. Å ⁻³)	0.768 and -0.437					

 Table S2. Crystal data and structure refinement for Al_DMA-Cl.

^awhere P=(Fo^2^+2Fc^2^)/3

Complex	Al_tri_DEA						
CCDC n.	2372891						
Elemental formula	C ₄₂ H ₃₃ AI B F ₂₀ N						
Formula weight	969.48						
Crystal system	Monoclinic						
Space group	P2(1)/c						
Unit cell d	imensions:						
a = (Å)	13.9977(3)						
b =	18.7908(4)						
c =	17.0814(4)						
α = (°)	90						
β =	112.5680(10)						
γ =	90						
Volume (ų)	4148.84(16)						
Z, Calculated density (g/cm ³)	4, 1.552						
F(000)	1960						
Absorption coefficient (mm ⁻¹)	0.172						
Temperature (K)	150.(2)						
Crystal colour, shape	Clear colourless, prism						
Crystal size (mm)	0.100 x 0.100 x 0.040						
On the diff	ractometer:						
Theta range for data collection	2.4553 to 28.2669						
Limiting indices	-18<=h<=18, -24<=k<=25, -22<=l<=22						
Completeness	99.2%						
Max. and min. transmission	0.7457 and 0.6609						
RefIns collected (not incl. absences)	36584						
No. of unique reflns, R(int) for equivs	10226, 0.0239						
No. of 'observed' reflns ($I > 2\sigma_I$)	8322						
Refine	ement:						
Data/restraints/parameters	10226/0/592						
Goodness-of-fit on F ²	1.031						
Final R indices ('obsd' data)	0.0377, 0.0902						
Final R indices (all data)	0.0492, 0.0975						
Reflns weighted: 1/w = ª	\s^2^(Fo^2^)+(0.0367P)^2^+2.1017P						
Largest diff. peak and hole (e. Å ⁻³)	0.309 and -0.319						

Table S3. Crystal data and structure refinement for Al_tri_DEA.

Complex	Al_Py-3,5-Me						
CCDC n.	2372890						
Elemental formula	C ₅₂ H ₄₁ Al B Cl F ₂₀ N ₂						
Formula weight	1147.11						
Crystal system	Monoclinic						
Space group	P2(1)/n						
Unit cell d	imensions:						
a = (Å)	9.0723(9)						
b =	18.0700(18)						
c =	31.168(3)						
α = (°)	90						
β =	96.700(3)						
γ =	90						
Volume (ų)	5074.7(9)						
Z, Calculated density (g/cm ³)	4, 1.501						
F(000)	2328						
Absorption coefficient (mm ⁻¹)	0.205						
Temperature (K)	145.(2)						
Crystal colour, shape	Clear intense grey, plate						
Crystal size (mm)	0.320 x 0.300 x 0.100						
On the diff	ractometer:						
Theta range for data collection	2.4292 to 28.2355						
Limiting indices	-12<=h<=12, -24<=k<=22, -40<=l<=41						
Completeness	99.8%						
Max. and min. transmission	0.98 and 0.91						
RefIns collected (not incl. absences)	122848						
No. of unique reflns, R(int) for equivs	12533, 0.0600						
No. of 'observed' reflns ($I > 2\sigma_I$)	9512						
Refine	ement:						
Data/restraints/parameters	12533/179/786						
Goodness-of-fit on F ²	1.093						
Final R indices ('obsd' data)	0.0536, 0.1070						
Final R indices (all data)	0.0797, 0.1238						
RefIns weighted: 1/w = a	[\s^2^(Fo^2^)+(0.0317P)^2^+5.4476P]						
Largest diff. peak and hole (e. Å ⁻³)	0.438 and -0.685						

Table S4. Crystal data and structure refinement for Al_Py-3,5-Me.

^awhere P=(Fo^2^+2Fc^2^)/3

Complex	AI_QUI					
CCDC n.	2372888					
Elemental formula	C ₅₀ H ₃₂ Al B F ₂₀ N ₂					
Formula weight	1078.56					
Crystal system	Monoclinic					
Space group	P2(1)/n					
Unit cell d	imensions:					
a = (Å)	9.5866(16)					
b =	26.774(6)					
c =	18.128(5)					
α = (°)	90					
β =	94.417(8)					
γ =	90					
Volume (ų)	4639.1(17)					
Z, Calculated density (g/cm ³)	4, 1.544					
F(000)	2176.0					
Absorption coefficient (mm ⁻¹)	0.164					
Temperature (K)	150.(2)					
Crystal colour, shape	Colourless, plate					
Crystal size (mm)	0.200 x 0.200 x 0.100					
On the diffi	ractometer:					
Theta range for data collection	2.7668 to 19.5483					
Limiting indices	-12<=h<=9, -35<=k<=35, -24<=l<=24					
Completeness	99.4%					
Max. and min. transmission	0.98 and 0.92					
RefIns collected (not incl. absences)	50221					
No. of unique reflns, R(int) for equivs	11632, 0.0908					
No. of 'observed' reflns ($I > 2\sigma_I$)	6286					
Refine	ement:					
Data/restraints/parameters	11632/69/674					
Goodness-of-fit on F ²	1.036					
Final R indices ('obsd' data)	0.0580, 0.1108					
Final R indices (all data)	0.1310, 0.1426					
RefIns weighted: 1/w = a	[\s^2^(Fo^2^)+(0.0448P)^2^+3.3646P]					
Largest diff. peak and hole (e. Å ⁻³)	0.588 and -0.520					

Table S5. Crystal data and structure refinement for AI_QUI.

^awhere P=(Fo^2^+2Fc^2^)/3

1.5 Estimation of K_{eq}

The K_{eq} for the reaction depicted in Eq. 1 (Manuscript) was estimated by quantitative ¹H NMR spectroscopy, using a 50 mM external standard solution of 2,6-di-*tert*-butyl-4-methylphenol and the *intscl* routine of the Topspin 3.6 software suite. The diagnostic N-Me signals of **Al_L** and **AlHAl_L**, and Al-CH₂ signals of DIBAL-H dimer and trimer were used to estimate the concentration of reagents and products.

 $K_{eq} = \frac{[AlHAl_L] \times [(AliBu_2H)_2]}{[Al_L] \times [(AliBu_2H)_3]}$

Concentrations are reported in Table S6, while K_{eq} are reported in Table 1 (Manuscript).

Entry	L	Solvent	[AlHAl-L] (mM)	[Al-L] (mM)	[(Al <i>i</i> Bu₂H)₃] (mM)	[(Al <i>i</i> Bu₂H)₂] (mM)
1	DMA	Toluene			(ref. 4)	
2	DMA	Chlorobenzene	33	1.7	3.8	2.5
3	DMA-C ₁₆	Toluene			(ref. 5)	
4	DMA-Ph	Toluene	2.5	0.4	0.2	0.4
5	DMA-Cl	Chlorobenzene	3.2	0.7	0.2	0.5
6	DMHA	Toluene	9.6	0.7	2.3	2.3

Table S6. Concentrations of reactants and products of Eq. 1.ª

^a estimated by quantitative ¹H NMR at 298 K.

2. Additional details on polymerization experiments

2.1 Full polymerization procedure

Prior to the execution of a polymerization library, the PPR modules undergo 'bake-and-purge' cycles overnight (8 h at 90-140°C with intermittent dry N_2 flow), to remove any contaminants and left-overs from previous experiments. After cooling to glovebox temperature, the module stir tops are taken off, and the 48 cells are fitted with disposable 10 mL glass inserts (pre-weighed in a Mettler-Toledo Bohdan Balance Automator) and polyether ether ketone (PEEK) stir paddles. The stir tops are then set back in place, and N_2 in the reactors is replaced with ethene (ambient pressure).

The cells are then loaded with the appropriate amounts of toluene and 1-hexene (1.8 v/v%). The system is then thermostated at the reaction temperature and brought to 65 psi of pressure with ethene. At this point, the catalyst injection sequence is started; aliquots of (a) a toluene 'chaser', (b) a toluene solution of catalyst, (c) a toluene spacer, (d) a toluene solution of the proper activator, and (e) a toluene 'buffer', all separated by nitrogen gaps, are uploaded into the needle and subsequently injected into the cell of destination in reverse order, thus starting the reaction. This is left to proceed under stirring (800 rpm) at constant temperature and pressure with feed of ethene on demand for 10 minutes and quenched by over-pressurizing the cell with 50 psi (3.4 bar) of dry air (preferred over other possible catalyst quenchers because in case of cell or quench line leakage oxygen is promptly detected by the dedicated glove-box sensor). Conversion of 1-hexene was kept below 15% to ensure a constant comonomer concentration. All experiments were performed at least in duplicate.

Once all cells have been quenched, the modules are cooled down to glovebox temperature and vented, the stir-tops are removed, and the glass inserts containing the reaction phases are taken out and transferred to a centrifugal evaporator (Genevac EZ-2 Plus or Martin Christ RVC 2-33 CDplus), where all volatiles are removed, and the polymers are thoroughly dried overnight. Reaction yields are double-checked against on-line monomer conversion measurements by robotically weighing the dry polymers while still in the reaction vials, subtracting the pre-recorded tare. Polymer aliquots are then sent to the characterizations.

All polymers were characterized by means of high-temperature gel permeation chromatography (GPC) and ¹³C NMR spectroscopy. GPC curves were recorded with a Freeslate Rapid GPC setup, equipped with a set of two mixed-bed Agilent PLgel 10 μ m columns and a Polymer Char IR4 detector. Calibration was performed with the universal method, using 10 monodisperse polystyrene samples (M_n between 1.3 and 3,700 kDa).

Quantitative ¹³C NMR spectra were recorded using a Bruker Avance III 400 spectrometer equipped with a high-temperature cryoprobe for 5 mm OD tubes, on 45 mg mL⁻¹ polymer solutions in tetrachloroethane-*d*₂ (with BHT added as a stabilizer, [BHT] = 0.4 mg mL⁻¹). Acquisition conditions were: 45° pulse; acquisition time, 2.7 s; relaxation delay, 5.0 s; 2 K transients. Broad-band proton decoupling was achieved with a modified WALTZ16 sequence (BI_WALTZ16_32 by Bruker).

2.1 Additional polymerization results

Entry	n _{zr} (nmol)	Cocatalyst	n _{aihai} (nmol)	B/Zr	Al/Zr	R_{p} (kg _{PE} · mmol _{Cat} ⁻¹ · h ⁻¹)	<i>M</i> n (kDa) ^d	<i>M</i> _w (kDa) ^d	PDI ^d
1	1.5	TiBA/AB	-	2	3333	_ b	-	-	-
2	10	TiBA/AB	-	2	500	124	87	218	2.5
3	1.5	AIHAI_DMA	75	50	100	268	92	218	2.4
4	1.5	Alhal_dma	100	67	133	313	80	202	2.5
5	1.5	Alhal_dma	150	100	200	462	80	188	2.3
6	1.5	Alhal_dma	250	167	333	485	82	192	2.3
7	1.5	Alhal_dma	325	217	433	469	85	202	2.4
8	2.5	AIHAI_DMA	75	30	60	>>0 °	-	-	-
9	2.5	AIHAI_DMA	250	100	200	>>0 c	-	-	-

Table S7. Preliminary screening of polymerization conditions with AIHAI_DMA and TIBA/AB.ª

^a Experimental conditions: ethylene/1-hexene copolymerization in toluene (6 mL), $T = 60^{\circ}$ C, $p_{C2} = 4.5$ bar (65 psi), t = 10 min, [H]_{feed} = 1.8 v/v%; ^b not active, t = 120 min; ^c exceedingly active, uncontrolled kinetics; ^d determined by GPC. Results are average of at least triplicates.

Figure S38. Relative productivities with respect to that with **AlHAI_DMA** obtained with **Cat-Zr** in combination with the various AAB cocatalysts at B/Zr = 167 (compare with Figure 5). 15% experimental uncertainty is assumed on R_p .

3. Additional details on computational study

3.1 Final Energies, Enthalpy and Entropy corrections

Chrusting		TPS	Sh/DZ		M06-2X(PCM)/TZ
Structure	Energy	ZPECorr	EnthalpyCorr	GibbsCorr	Energy
Al_DMA:	-1290.58625	0.59293	0.62601	0.53039	-1290.34613
AI_DMA-C ₃	-1526.51152	0.76095	0.80300	0.68511	-1526.19735
Al_DMA-Ph	-1752.78024	0.75351	0.79623	0.67689	-1752.42678
AI_DMA-CI	-2209.81920	0.57366	0.60915	0.50712	-2209.56069
AI_DEA	-1447.85223	0.70627	0.74481	0.63836	-1447.56767
AI_DMCA	-1297.83266	0.73194	0.76757	0.66823	-1297.57302
AI_DMPA	-1064.32981	0.60042	0.63302	0.53923	-1064.12737
Al_Py-2,6-Me	-1212.01133	0.53279	0.56442	0.47107	-1211.77953
Al_Py-3,5-Me	-1212.03612	0.53166	0.56460	0.46366	-1211.79169
Al_Py-3,5-F	-1451.66682	0.38983	0.41864	0.32755	-1451.50918
Al_Py-NMe ₂	-1322.74422	0.56834	0.60283	0.49937	-1322.49096
Al_QUI	-1362.07568	0.51652	0.54704	0.45420	-1361.80773

Table S8. Final Energies, Enthalpy and Entropy corrections in Hartree.

3.2 QSAR model data

								Des	criptors						
				determined from ALL									determined from free N-donor		
Activator	R _p	relative R_{p}	CAIC	NAIN	e-(Al)	$V_{\rm bur}$	WBI AI-C (average)	WBIAI-C (lowest)	WBIAI-N (average)	WBIAI-N (lowest)	AI-N	q (N, e-)	EN-LPIBO	EHOMO	
DEA	422	91	124.26	107.37	0.97006	57.4	0.83683	0.83664	0.42685	0.42672	2.17	-0.20052	-0.28052	-0.17177	
DMA	462	100	127.2	105.37	0.96623	55.6	0.83825	0.83822	0.44042	0.44005	2.134	-0.19138	-0.28654	-0.17586	
DMA-CI	466	101	127.47	105.39	0.96662	55.5	0.83965	0.83954	0.43806	0.4379	2.137	-0.18896	-0.29466	-0.18154	
Py35Me_corr	12	3	126.48	95.2	0.99596	41.4	0.82662	0.82658	0.48148	0.48135	2.045	-0.27343	-0.3397	-0.22928	
Py26Me	3	1	125.31	102.38	0.92155	54.7	0.82407	0.81687	0.49593	0.49357	2.111	-0.31802	-0.33653	-0.22863	
Py35F_corr	224	48	129.19	93.98	0.99743	41.0	0.83897	0.83884	0.45894	0.45886	2.068	-0.2468	-0.3672	-0.2589	
QUI	95	21	129.04	106.17	0.97142	47.4	0.8172	0.81719	0.49243	0.49238	2.059	-0.28378	-0.35124	-0.23784	
DMA-C16 (propyl)	401	87	126.81	105.30	0.96418	55.6	0.8367	0.8363	0.45517	0.45485	2.13	-0.19322	-0.28538	-0.17158	
DMAPh	367	79	126.84	105.44	0.97087	55.6	0.83577	0.83569	0.44135	0.43977	2.13	-0.18602	-0.29143	-0.17361	
Py4NMe2	1	1	131.88	96.89	0.97895	41.4	0.81424	0.8113	0.5027	0.50059	2.023	-0.31961	-0.33265	-0.22203	
DMHA(propyl)	267	58	129.51	107.20	0.96418	53.7	0.8367	0.8363	0.45517	0.45485	2.114	-0.25463	-0.27125	-0.18376	
DMCA	533	116	119.72	106.69	0.93939	57.5	0.83498	0.83474	0.46404	0.46352	2.14	-0.26228	-0.27415	-0.18368	
Single Descriptor Correlations		SDC (EXP)	0.11	0.37	0	0.5	0.71	0.74	0.89	0.88	0.68	0.92	0.6	0.62	
		SDC (DFT)	0.27	0.4	0.03	0.54	0.66	0.69	0.72	0.72	0.69	0.66	0.55	0.61	

Table S9. Descriptor values determined from Al_L and free donor and single descriptor correlations.

Table S10. QSAR model and regression statistics.

Woder (Regative prections are set to zero)												
Activator	Rp	WBIAI-C (lowest)	Vbur	Predicted	SUMMARYOUT	IPUT						
DEA	422	0.83664	57.4	424								
DMA	462	0.83822	55.6	420	gression Statist	ics	ANC	NA				
DMA-CI	466	0.83954	55.5	435	MultipleR	0.9173481		df	SS	MS	F	Significance F
Py35Me_corr	12	0.82658	41.4	88	RSquare	0.8415276	Regr	ression 2	367808.9	183904.5	23.89610743	0.000251068
Py26Me	3	0.81687	54.7	143	Adjusted RSqu	0.8063115	Resi	dual 9	69264	7696.001		
Py35F_corr	224	0.83884	41.0	236	Standard Error	87.726852	Tota	l 1 [.]	437072.9			
QUI	95	0.81719	47.4	51	Observations	12						
DMA-C16 (propyl)	401	0.8363	55.6	396								
DMAPh	367	0.83569	55.6	389					Coefficients	tandard Errc	t Stat	P-value
Py4NMe2	1	0.8113	41.4	0				Intercept	-10738.8	2381.812	-4.50864901	0.00147056
DMHA(propyl)	267	0.8363	53.7	371				XVariable	1 12439.65	2988.248	4.16285733	0.002437341
DMCA	533	0.83474	57.5	402				XVariable	2 13.15986	4.523246	2.909384305	0.017328607

.. .

Figure S39. Experimental and predicted R_p correlation.

Table S11. Descriptor cross-correlations.

	Important cross correlations													
	CAIC	NAIN	e-(A)	Vbur	WBI AI-C (average)	WBI AI-C (lowest)	WBIAI-N (average)	WBIAI-N (lowest)	Al-N	e- (N)	EN-LPIBO	EHOMO		
CAIC	-	0.16	0.29	0.36	0.12	0.1	0.08	0.08	0.39	0.03	0.19	0.15		
NAIN		-	0.32	0.79	0.1	0.1	0.23	0.23	0.59	0.21	0.59	0.57		
e−(Al)			-	0.48	0	0.02	0.01	0.01	0.24	0.03	0.14	0.09		
V _{bur}				-	0.28	0.22	0.38	0.37	0.88	0.31	0.68	0.69		
WBI AI-C (average)					-	0.97	0.8	0.8	0.55	0.66	0.33	0.31		
WBIAI-C (lowest)						-	0.84	0.83	0.47	0.72	0.32	0.31		
WBIAI-N (average)							-	0.9991	0.64	0.86	0.44	0.51		
WBIAI-N (lowest)								-	0.65	0.86	0.45	0.52		
AI-N									-	0.49	0.63	0.65		
e⊢(N)										-	0.35	0.51		
EN-LPIBO											-	0.93		
EHOMO												-		

Table S12. Descriptor contributions to the QSAR model.

Model Contributions								
					Contributions			
Activator	Rp	WBIAI-C (lowest)	$V_{\rm bur}$	Predicted	WBIAI-C (lowest)	$V_{\rm bur}$		
DEA	422	0.83664	57.4	424	-331.245	755.3759853		
	100		== 0	100		704 0000000		
DMA	462	0.83822	55.6	420	-311.59	731.6882366		
DMA-CI	466	0.83954	55.5	435	-295.17	730.3722505		
Py35Me_corr	12	0.82658	41.4	88	-456.388	544.8182193		
Py26Me	3	0.81687	54.7	143	-577.177	719.8443623		
Py35F_corr	224	0.83884	41.0	236	-303.878	539.5542752		
QUI	95	0.81719	47.4	51	-573.196	623.7773816		
DMA-C16 (propyl)	401	0.8363	55.6	396	-335.474	731.6882366		
DMAPh	367	0.83569	55.6	389	-343.063	731.6882366		
Py4NMe2	1	0.8113	41.4	-102	-646.466	544.8182193		
DMHA(propyl)	267	0.8363	53.7	371	-335.474	706.6845019		
DMCA	533	0.83474	57.5	402	-354.88	756.6919713		
				MIN	-646.466	539.5542752		
				MAX	-295.17	756.6919713		
				Span	351.2958	217.1376961		
				weight	0.62	0.38		

Al-iBu bond WBI as a reflection of electron donation ability of the N-donor

There is a relative good correlation (R2 = 0.72) between the WBI for the bond and the IBO charge on the free donor. Unlike a descriptor determined from the free donor, the WBI determined from the A_L structure also reflects steric contraints present in the A_L structure. A-C bonds are intrisincally highly covalend (WBI A-C in AiBu2H 0.84, Pauling EN C2.55, Al 1.61) and even more so in aluminum cations (AiBu2+ A-C WBI 0.90). Areduction of the WBI shows increased ionic contributions. Electron donation to aluminum stabilizes the contributing A-dication.

Figure S40. Wiberg bond index for the Al-C bond. Electronic and steric origins.

Figure S41. Topographic steric maps of donor steric bulk around Al_L.

4. References

- 1 H. T. Al-Masri, J. Organomet. Chem., 2020, 905, 121021.
- 2 J. T. B. H. Jastrzebski, G. Van Koten, M. F. Lappert, P. C. Blake and D. R. Hankey, in *Inorganic Syntheses*, 1989, pp. 150–155.
- 3 K. Kinashi, K.-P. Lee, S. Matsumoto, K. Ishida and Y. Ueda, *Dye. Pigment.*, 2012, **92**, 783–788.
- 4 F. Zaccaria, C. Zuccaccia, R. Cipullo, P. H. M. Budzelaar, A. Vittoria, A. Macchioni, V. Busico and C. Ehm, *ACS Catal.*, 2021, **11**, 4464–4475.
- 5 G. Urciuoli, F. Zaccaria, C. Zuccaccia, R. Cipullo, P. H. M. Budzelaar, A. Vittoria, C. Ehm, A. Macchioni and V. Busico, *Polymers*, 2023, **15**, 1378.