Nitrogen-Doped carbon coated zinc selenide nanoparticles derived from metal−organic framework as high-rate and long-life anode materials for half/full sodium-ion batteries

Yunxiu Wang,^a Yilin Wang,^b Zenghui Cai,^a Zhijiang Yu,^a Hao Dong,^d Yifan Zhang,^a Yanli Zhou,^a Xintao Zhang,^a Yanjun Zhai^{*c}, Fuyi Jiang^{*a} and Caifu Dong^{*a}

^a School of Environmental and Material Engineering, Yantai University, Yantai 264005, China.

^b Trier College of Sustainable Technology, Yantai University, Yantai 264005, China.

^c School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

^d Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, China.

*Corresponding author. E-mail: Yanjun Zhai, zhaiyanjun@lcu.edu.cn; Fuyi Jiang, fyjiang@ytu.edu.cn; Caifu Dong, dongcf@ytu.edu.cn

Keywords: Metal-organic frameworks, ZnSe@NC, sodium ion batteries, anode, long cycle life

Content

Figure captions:

Table S1. Crystal data of compound ZnL.

Fig. S1. TGA curve of the ZnL.

Fig. S2. (a) FESEM image of ZnL. (b) SEM image of ZnL and the corresponding elemental mappings of Zn, N, C and O elements (as labeled). (c) FEEM of ZnL after ball-milling. (d) FT-IR spectra of ZnL before and after ball-milling.

Fig. S3. Nitrogen adsorption–desorption isotherm (a) and the corresponding pore size distribution curve (b) of $ZnSe@NC$.

Fig. S4. High resolution XPS spectrum of (a) Zn, (b) Se.

Fig. S5. (a) Nyquist plot of ZnSe@NC at different mass of the active material. (b) The plot of Z' versus $\omega^{-1/2}$ of ZnSe@NC electrode at different mass of the active material.

Table S2. Electrochemical performance comparisons of the ZnSe $@C$ electrode with those of the previously reported ZnSe for SIBs.

Fig. S6. The equivalent circuit for different number of cycles at open-circuit voltage, $20th$, $50th$.

Fig. S7. (a) GITT curves of ZnSe@NC for the 20th cycles. A single GITT titration curve during the charging process of $ZnSe@NC$ for the 4th (b) and 20th (c) cycles.

Fig. S8. The plot of voltage vs. root of pulse time $(\tau_{1/2})$ for $\text{ZnSe}(a)$ NC electrodes at different cycles (a) $4th$ cycle (b) $20th$ cycle.

Fig. S9. The reaction impedance during (a) discharge and (b) charge processes.

Fig. S10. (a) FESEM image of NVP/rGO. XRD patterns (b) and cycling performance (c) of NVP@rGO at 0.3 A g^{-1} .

Compound	л. ZnL
Chemical formula	$C_{24}H_{17}N_3O_{13}Zn$
Formula weight	620
Crystal system	monoclinic
Space group	P 1 21/n 1
a[A]	9.0360(9)
b[A]	8.2692(8)
c[A]	11.6421(11)
a/b	1.0927
b/c	0.7103
c/a	1.2881
β \lceil °	100.926(2)
Volume $[A^3]$	854.13(14)
Z, Calculated density $[Mg/m^3]$	4

Table S1. Crystal data of compound ZnL.

Fig. S1. TGA curve of the ZnL.

Fig. S2. (a) FESEM image of ZnL. (b) SEM image of ZnL and the corresponding elemental mappings of Zn, N, C and O elements (as labeled). (c) FEEM of ZnL after ball-milling. (d) FT-IR spectra of ZnL before and after ball-milling.

Fig. S3. Nitrogen adsorption–desorption isotherm (a) and the corresponding pore size distribution curve (b) of ZnSe@NC.

Fig. S4. High resolution XPS spectrum of (a) Zn, (b) Se.

Fig. S5. (a) Nyquist plot of ZnSe@NC at different mass of the active material. (b) The plot of Z' versus $\omega^{-1/2}$ of ZnSe@NC electrode at different mass of the active material.

Electrode	Current	Capacity	Cycle	Initial	Ref/year
	$(A g^{-1})$	$(mA h g^{-1})$	number	Coulombic	
				efficiency	
Zn Se-rGO	0.1	259.5	50	73.48%	1/2018
ZnSe/HNC	0.5	251.1	500	60.6%	2/2020
Zn Se-rGO	0.1	276.6	100	71.1%	3/2021
$\text{ZnSe}(\widehat{a})C$	0.1	284.7	60	71.7%	4/2022
ZnSe@NC/rGO	0.1	365.6	50	45.3%	5/2022
ZnSe@NC NFs	0.1	336.8	150	66.3%	6/2023
ZnSe@CNFs	0.1	241.3	200	69.5%	7/2024
Zn Se-rGO	0.5	323.27	160	71.6%	8/2024
ZnSe@NC	0.3	470.8	100	81.82%	Ourwork
$\mathbf{ZnSe}\mathcal{QNC}$	4	317.6	500	73.37%	Ourwork

Table S2. Electrochemical performance comparisons of the ZnSe@NC electrode with those of the previously reported ZnSe for SIBs.

Fig. S6. The equivalent circuit for different number of cycles at open-circuit voltage, $20th$, $50th$.

Table S3. EIS fitting results of ZnSe@NC at open-circuit voltage, 20 cycles, 50 cycles

Samples	\mathbf{R}_{s}	R_{ct}
Fresh	3.92	2.045
$Cycle-20$	3.665	6.641
$Cycle-50$	4.337	5.643

for SIBs.

Fig. S7. (a) GITT curves of ZnSe@NC for the 20th cycles. A single GITT titration curve during the charging process of $ZnSe@NC$ for the 4th (b) and 20th (c) cycles.

The GITT test was performed in a voltage range of 0.01−3 V. Prior to GITT measurement, the assembled cells were charged/discharged at 0.2 A g^{-1} for 3 cycles to activate the battery. During the GITT test in the 4th cycle, the cell was charged or discharged at 20 mA g^{-1} for 30 min, then followed by a 60 min open circuit step to allow relaxation back to equilibrium, the procedure was repeated until the charge (or discharge) voltage reached 3.0 V (0.01 V).

Fig. S8. The plot of voltage vs. root of pulse time $(\tau_{1/2})$ for $ZnSe@NC$ electrodes at different cycles (a) $4th$ cycle (b) $20th$ cycle.

Fig. S9. The reaction impedance during (a) discharge and (b) charge processes.

Fig. S10. (a) FESEM image of NVP/rGO. XRD patterns (b) and cycling performance

(c) of NVP@rGO at 0.3 A g^{-1} .

References

- 1 X. Cao, A. J. Li, Y. Yang, and J. T. Chen, ZnSe Nanoparticles Dispersed in Reduced Graphene Oxides with Enhanced Electrochemical Properties in Lithium/Sodium Ion Batteries, *RSC Adv*., 2018, **8**, 25734-25744.
- 2 M. Jia, Y. H. Jin, C. C. Zhao, P. Z. Zhao, and M. Q. Jia, ZnSe nanoparticles decorated with hollow N-doped carbon nanocubes for high-performance anode material of sodium ion batteries, *J Alloys Compd*., 2020, **831**, 154749.
- 3 M. Jia, Y. H. Jin, C. C. Zhao, Q. Q. Chang, P. Z. Zhao, H. Wang, and M. Q. Jia, ZnSe with nanostructure embedded in graphene nanosheets with elevated electrochemical performance for anode material of sodium ion battery, *J Alloys Compd*., 2021,**854**, 157318.
- 4 J. Yuan, J. C. Zhao, T. M. Lu, L. J. Zhang, J. L. Xu, and D. R. Chu, ZnSe@C coreshell microspheres as potential anode material for sodium ion batteries, *Colloids Surf A Physicochem Eng Asp.*, 2022, **641**, 128549.
- 5 L. T. Zhang, H. G. Zhao, L. M. Dai, F. L. Yao, Y. Huang, W. K. Xue, J. W. Zhu, and J. W. Sun, Rational designed hierarchical dual carbon protected ZnSe anode for advanced sodium-ion hybrid capacitors, *J Energy Storage*, 2022, **52**, 104970.
- 6. D. Huang, D. X. Wu, J. X. Zhu, J. Y. Xie, J. P. Wu, and J. J. Liang, One-dimensional ZnSe@N-doped carbon nanofibers with simple electrospinning route for superior Na/K-ion storage, *Chin. Chem. Lett.*, 2023, **34**, 107416.
- 7. B. Y. Liu, L Wang, W. Q. Liu, E. Z. Ren, Z. Y. Wang, Q. Zhang, J. X. Chen, and Y. P. Zeng, In-situ rooting ZnSe nanoparticles in N-doped carbon nanofibers for sodium ion batteries with ultra-long cycle life, *Mater. Lett.*, 2024, **371**, 136931.
- 8 Y. Jin, H. Seong, J. H. Moon, G. Kim, H. Yoo, T. Jung, S. K. Kim, S. Y. Cho, and J. Choi, Synthesized nanosphere ZnSe and reduced graphene oxide as anode materials for sodium-ion batteries: Analysis on phase transition and storage mechanism, *App. Surf. Sci.*, 2024, **670**, 160606.