Supporting Information

A defect pyrochlore-like acentric cubic lead titanium-tellurate crystal

exhibiting strong second harmonic generation activity and an extended

transparent window

Tinghui Zhang,^a Lili Li,^c Jing Chai,^a Haitao Zhou, ^{*,b} Ning Ye,^a Zhanggui Hu,^a Yicheng Wu^a and Conggang Li^{*,a,c}

^aTianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.

^bGuangxi Key Laboratory of Superhard Material, China Nonferrous Metal (Guilin) Geology and Mining Co., Ltd., Guilin, Guangxi 541004, China.

^cState Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China.

*Corresponding author: E-mail address: cgli@email.tjut.edu.cn; zhouht@aliyun.com

1. Flexibility Index (F) of Computational Methods.

2. Table S1. Crystallographic data and structural refinement for Pb₄Ti₃TeO₁₃.

3. Table S2. Selected bond lengths (Å) and angles (deg.) for $Pb_4Ti_3TeO_{13}$.

4. **Table S3.** Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) as well as atomic occupancy factors for Pb₄Ti₃TeO₁₃. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor, and the bond valence sum for each atom in asymmetric unit.

5. Table S4. Anisotropic displacement parameters ($Å^2 \times 10^3$) for Pb₄Ti₃TeO₁₃.

6. Table S5. The calculated "flexibility index" F of Pb₄Ti₃TeO₁₃ and Li₂ZrTeO₆.

7. Fig. S1 PXRD curves of the initial and melted $Pb_4Ti_3TeO_{13}$ compound compared with the corresponding calculated data.

8. Fig. S2 EDS of $Pb_4Ti_3TeO_{13}$ (a) Atomic ratio of various elements. (b) Surface

morphology. (c-f) Ti, Te, Pb, and O mapping results, respectively.

9. Fig. S3 SHG intensity comparation of PTTO with the AgGaS₂ reference at 2 μ m.

1. Flexibility Index (F) of Computational Methods.

F associated with the bonding electrons can be defined as the follows:

$$F = \frac{\exp\left[\left(R_0 - R_a\right) / B\right]}{\left(\sqrt{C_a} + \sqrt{C_b}\right)^2 / R_a^2}$$

the numerator represents the bond valence electron charge, while the denominator denotes the binding force between the bond electron and the nucleus. The term R_a represents the average bond length of the target group. R_0 denotes the standard bond length when an atom contributes precisely one unit of valence to the central atom of the group. The value of *B* is an empirical constant, typically 0.37 Å. The C_a (and C_b) of Ti, O and Zr are 4, 6 and 4, respectively.

empirical formula	Pb ₄ Ti ₃ TeO ₁₃				
formula weight	654.04				
Crystal system	Cubic				
Space group	$F\overline{4}3m$				
<i>a</i> (Å)	10.3488(2)				
<i>b</i> (Å)	10.3488(2)				
<i>c</i> (Å)	10.3488(2)				
Volume (Å ³)	1108.33(6)				
Ζ	8				
density (g/cm ³)	7.839				
F (000)	2200				
R (int)	0.05				
completeness	100.0 %				
GOF on (F^2)	1.177				
final <i>R</i> indices $[F_o^2 > 2\sigma(F_o^2)]^a$	$R_1 = 0.0190, wR_2 = 0.0496$				
R indices (all data)	$R_1 = 0.0191, wR_2 = 0.0501$				
Flack factor	0.20(5)				
CCDC number	2374242				
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} ; wR_{2} = \left[\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2} \right]^{1/2}$					

 Table S1 Crystallographic data and structural refinement for $Pb_4Ti_3TeO_{13}$.

Table S2 Selected bond lengths (Å) and angles (deg.) for $Pb_4Ti_3TeO_{13}$.

Pb(1)-O(1)	2.283(2)	Ti(1)-O(2)#10	1.948(5)
Pb(1)-O(3)#1	2.631(5)	Ti(1)-O(2)#11	1.948(5)
Pb(1)-O(3)#2	2.631(5)	Ti(1)-O(2)#12	1.948(5)
Pb(1)-O(3)#3	2.631(5)	Ti(1)-O(3)#13	1.961(4)
Pb(1)-O(2)#4	2.644(6)	Ti(1)-O(3)#14	1.961(4)
Pb(1)-O(2)#5	2.644(6)	Ti(1)-O(3)	1.961(4)
Pb(1)-O(2)#6	2.644(6)	Te(1)-O(3)#13	1.961(4)
Te(1)-O(2)#10	1.948(5)	Te(1)-O(3)#14	1.961(4)
Te(1)-O(2)#11	1.948(5)	Te(1)-O(3)	1.961(4)
Te(1)-O(2)#12	1.948(5)	O(2)#11-Te(1)-O(3)#13	179.0(4)
O(1)-Pb(1)-O(3)#1	80.15(13)	O(2)#12-Te(1)-O(3)#13	88.41(18)
O(1)-Pb(1)-O(3)#2	80.15(13)	O(2)#10-Te(1)-O(3)#14	88.41(18)
O(3)#1-Pb(1)-O(3)#2	117.14(7)	O(2)#11-Te(1)-O(3)#14	88.41(18)
O(1)-Pb(1)-O(3)#3	80.15(13)	O(2)#12-Te(1)-O(3)#14	179.0(4)
O(3)#1-Pb(1)-O(3)#3	117.14(7)	O(3)#13-Te(1)-O(3)#14	92.3(4)
O(3)#2-Pb(1)-O(3)#3	117.14(7)	O(2)#10-Te(1)-O(3)	179.0(4)
O(1)-Pb(1)-O(2)#4	97.48(12)	O(2)#11-Te(1)-O(3)	88.41(18)
O(3)#1-Pb(1)-O(2)#4	62.21(4)	O(2)#12-Te(1)-O(3)	88.41(18)
O(3)#2-Pb(1)-O(2)#4	62.21(4)	O(3)#13-Te(1)-O(3)	92.3(4)
O(3)#3-Pb(1)-O(2)#4	177.6(2)	O(3)#14-Te(1)-O(3)	92.3(4)
O(1)-Pb(1)-O(2)#5	97.48(12)	O(2)#10-Ti(1)-O(2)#11	90.9(3)
O(3)#1-Pb(1)-O(2)#5	62.21(4)	O(2)#10-Ti(1)-O(2)#12	90.9(3)
O(3)#2-Pb(1)-O(2)#5	177.6(2)	O(2)#11-Ti(1)-O(2)#12	90.9(3)
O(3)#3-Pb(1)-O(2)#5	62.21(4)	O(2)#10-Ti(1)-O(3)#13	88.41(18)
O(2)#4-Pb(1)-O(2)#5	118.33(5)	O(2)#11-Ti(1)-O(3)#13	179.0(4)
O(1)-Pb(1)-O(2)#6	97.48(12)	O(2)#12-Ti(1)-O(3)#13	88.41(18)
O(3)#1-Pb(1)-O(2)#6	177.6(2)	O(2)#10-Ti(1)-O(3)#14	88.41(18)
O(3)#2-Pb(1)-O(2)#6	62.21(4)	O(2)#11-Ti(1)-O(3)#14	88.41(18)

O(3)#3-Pb(1)-O(2)#6	62.21(4)	O(2)#12-Ti(1)-O(3)#14	179.0(4)
O(2)#4-Pb(1)-O(2)#6	118.33(5)	O(3)#13-Ti(1)-O(3)#14	92.3(4)
O(2)#5-Pb(1)-O(2)#6	118.33(5)	O(2)#10-Ti(1)-O(3)	179.0(4)
O(2)#10-Te(1)-O(2)#11	90.9(3)	O(2)#11-Ti(1)-O(3)	88.41(18)
O(2)#10-Te(1)-O(2)#12	90.9(3)	O(2)#12-Ti(1)-O(3)	88.41(18)
O(2)#11-Te(1)-O(2)#12	90.9(3)	O(3)#13-Ti(1)-O(3)	92.3(4)
O(2)#10-Te(1)-O(3)#13	88.41(18)	O(3)#14-Ti(1)-O(3)	92.3(4)

Symmetry transformations used to generate equivalent atoms:

#1 -y-1/2,z-5/2,-x+2 #2 z-5/2,-x,-y+3/2 #3 -x,-y-1/2,z-1/2 #4 -y-1,z-2,-x+2 #5 -x,-y-1,z #6 z-2,-x,-y+1 #7 -x-1/2,-y-1/2,z #8 x,-y-1/2,-z+7/2 #9 -x-1/2,y,-z+7/2 #10 y+1/2,z-2,x+3/2 #11 z-3/2,-x,-y+3/2 #12 -x+1/2,-y-1/2,z #13 -y,z-2,-x+2 #14 z-2,-x,-y+2 #15 x,-y-1,-z+3 #16 -x-1,y,-z+3 #17 -x-1,-y-1,z #18 x+1/2,-y-1,-z+7/2 #19 x,-y,-z+4 #20 -x,-y-1/2,z+1/2 #21 -x,y+1/2,-z+7/2

Table S3 Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) as well as atomic occupancy factors for Pb₄Ti₃TeO₁₃. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor, and the bond valence sum for each atom in asymmetric unit.

	X	У	Z	U(eq)	BVS	OCC
Pb(1)	-3726(1)	-3726(1)	16274(1)	19(1)	2.079	1
Te(1)	1250(3)	-1250(3)	18750(3)	6(1)	1 112	0.25
Ti(1)	1250(3)	-1250(3)	18750(3)	6(1)	4.442	0.75
O (1)	-5000	-5000	15000	17(4)	2.519	1
O(2)	2500	-4397(7)	17500	8(1)	1.87	1
O(3)	1932(7)	0	20000	7(1)	1.84	1

Table S4 Anisotropic displacement parameters ($Å^2 \times 10^3$) for Pb₄Ti₃TeO₁₃.

	U^{11}	U^{22}	U^{33}	U^{23}	<i>U</i> ¹³	U^{12}
Pb(1)	19(1)	19(1)	19(1)	-3(1)	-3(1)	-3(1)
Te(1)	6(1)	6(1)	6(1)	0(1)	0(1)	0(1)
Ti(1)	6(1)	6(1)	6(1)	0(1)	0(1)	0(1)
O(1)	17(4)	17(4)	17(4)	0	0	0
O(2)	8(1)	7(2)	8(1)	0	-1(1)	0
O(3)	7(2)	7(1)	7(1)	0(1)	0	0

Table S5 The calculated "flexibility index" F of Pb₄Ti₃TeO₁₃ and Li₂ZrTeO₆.

			-				
	M-O	M-O	ern[(R - R)/R]	C_a	C_b	$\frac{\left(\sqrt{C_a} + \sqrt{C_b}\right)^2}{\left(\sqrt{C_a} + \sqrt{C_b}\right)^2}$	F
	(R_{θ})	(R_a)	$exp[(K_0 \ K_a)/D]$	(M)	(0)	R_a^2	1
PTTO	1.815	1.955	0.686	4	6	5.182	0.132
	(T1-O) 1 937						
Li_2ZrTeO_6 (2	(Zr-O)	2.090	0.661	4	6	4.532	0.146

Fig. S1 PXRD curves of the initial and melted $Pb_4Ti_3TeO_{13}$ compound compared with the corresponding calculated data.

Fig. S2 EDS of $Pb_4Ti_3TeO_{13}$ (a) Atomic ratio of various elements, (b) Surface morphology, (c-f) Ti, Te, Pb and O mapping results, respectively.

Fig. S3 SHG intensity comparation of $Pb_4Ti_3TeO_{13}$ with the AgGaS₂ reference at 2 μ m.