Co-nucleated Co doped SnO₂/SnS₂ heterostructures to facilitate diffusion towards high-performance alkali ion storage

Kunyu Hao, Ruixiao Zhang, Mingyue Chen, Yu Lu, Pengcheng Qi, Gaofu Liu,

Yanxin Wang, Hao Wu, Yiwen Tang*

Institute of Nano-Science and Technology, College of Physical Science and Technology,

Central China Normal University, Wuhan, 430079, China

*Corresponding author: Tel: +86-27-67867947; Fax: +86-27-67861185; e-mail:

ywtang@ccnu.edu.cn

1. Supporting figures

Figure S1. Refined XRD results of Co_{1/3}-SnS₂/SnO₂ samples.

Figure S2. XRD patterns of Co_{1/3}-SnS₂/SnO₂, Co_{1/3}-SnS₂/SnO₂(p) and blank carbon cloth.

- s	Elements	Wt%	Wt% Sigma	Atom %
- Sn	0	9.79	0.20	33.46
	S	19.66	0.10	33.52
	Co	1.10	0.17	1.03
	Sn	69.45	0.22	31.99
<u> </u>	Total	100.0		100.0
O Co Sn Co				
0 - <mark></mark>))		 ' ' ' 15	ויוי keV

Figure S3. Content of each element in the $Co_{1/3}$ -SnS₂/SnO₂ material.

Figure S4. SEM images of (a-b) $Co_{1/3}$ -SnS₂/SnO₂(p); (c-d) $Co_{1/3}$ -SnS₂/SnO₂;(e-f) SnS₂/SnO₂; (g-h) $Co_{1/3}$ -SnS₂; (i-j) $Co_{1/3}$ -SnO₂.

Figure S5. SEM images of (a) $Co_{1/2}$ -SnS₂/SnO₂; (b) $Co_{1/3}$ -SnS₂/SnO₂; (c) $Co_{1/4}$ -SnS₂/SnO₂; (d) $Co_{1/5}$ -SnS₂/SnO₂.

Figure S6. The cycling performance of LIBs using the different $Co_{1/x}$ -SnS₂/SnO₂ anodes obtained at different ratio of the Co²⁺.

Figure S7. The cycling performance of LIBs using the $Co_{1/3}$ - SnS_2/SnO_2 , $Co_{1/3}$ - $SnS_2/SnO_2(p)$ and CC as anodes.

Figure S8. XRD patterns of the comparison samples (SnS₂/SnO₂, Co_{1/3}-SnO₂ and Co_{1/3}-SnS₂)

Table S1.	Comparison of the performance of this material in lithium-ion batteries
with SnS ₂ a	and SnO_2 materials reported in other studies.

Sample	Capacity $(mAh g^{-1})$	Capacity retention	Ref.
SnS ₂ @RGO	1800 (0.1 A g^{-1})	52.3 % (100 cycle)	[19]
$C@SnS_2$	1200 (0.1 A g^{-1})	55 % (100 cycle)	[29]
SnS ₂ -CNT-CC	1500 (0.645 A g^{-1})	83 % (100 cycle)	[32]
$SnS_2/SnO_2/C$	$1050 \ (0.1 \text{ A g}^{-1})$	67.8 % (100 cycle)	[33]
SnO ₂ @N-CNF	754 (1 A g^{-1})	100 % (300 cycle)	[34]
$SnO_2@SnS_2$	962 (0.1 A g^{-1})	56.9 % (100 cycle)	[35]
$Co_{1/3}$ - SnS_2/SnO_2	1518 (0.33 A g^{-1})	81 % (100 cycle)	This work

Figure S9. (a) The CV curves at different rate of the LIBs using the Co_{1/3}-SnS₂/SnO₂ anodes; (b) Plots of log(i) against log(v) at various peak currents.

Figure S10. The EIS curves of LIBs with (a) $Co_{1/3}$ -SnS₂/SnO₂, SnS₂/SnO₂, Co_{1/3}-SnO₂ and Co_{1/3}-SnS₂ as anodes; (b) $Co_{1/3}$ -SnS₂/SnO₂, $Co_{1/3}$ -SnS₂/SnO₂(p) and blank carbon cloth as anodes;

Sample	$R_s(\Omega)$	$R_{ct} (\Omega)$
$Co_{1/3}$ - SnS_2	13.22	170.2
$Co_{1/3}$ - SnO_2	10.38	156.8
SnS_2/SnO_2	4.672	75.72
CC	10.44	73.57
$Co_{1/3}$ - $SnS_2/SnO_2(p)$	12.57	121.3
$Co_{1/3}$ - SnS_2/SnO_2	6.242	46.8

Table S2. Fitted EIS data and dynamic parameters of different materials in LIBs.

Figure S11. (a) SEM image and (b) EDS of $Co_{1/3}$ -SnS₂/SnO₂ anode removed in LIB after 50 cycles at 300 mA g⁻¹.

Figure S12. LEDs light up with LIBs using $Co_{1/3}$ -SnS₂/SnO₂ anodes

Figure S13. The cycling performance of SIBs using the $Co_{1/3}$ -SnS₂/SnO₂ anodes at a current density of 1110 mA g⁻¹.

Figure S14. (a) SEM image and (b) EDS of anode removed in SIB after 70 cycles at 300 mA g^{-1} .

Figure S15. The EIS curves of SIBs with $Co_{1/3}$ -SnS₂/SnO₂, $Co_{1/3}$ -SnS₂ and $Co_{1/3}$ -SnO₂ as anodes;

Table S3. Fitted EIS data and dynamic parameters of different materials in SIBs.

Sample	$R_{s}\left(\Omega ight)$	$R_{ct} (\Omega)$
$Co_{1/3}$ - SnS_2	6.649	562.4
Co _{1/3} -SnO ₂	5.968	734.5
$Co_{1/3}$ - SnS_2/SnO_2	3.975	434.7

2. Calculation of ion diffusion coefficient (D_{Li} and D_{Na})

The GITT data was obtained at the 2nd cycle on a LAND constant current charging and discharging system. The ion diffusion coefficient reflecting the dynamic behavior of the electrodes can be calculated based on the following equation:

$$D = \frac{4}{\pi\tau} \left(\frac{m_B v_m}{M_B S}\right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2 (\tau \ll \frac{L^2}{D})$$
(S1)

Where D is the ion diffusion coefficient (cm² s⁻¹), τ is the constant current pulse time (s), m_B is the quality of the active material (g), v_m is the molar volume of active material (cm³ mol⁻¹), M_B is relative molecular mass (g mol⁻¹) of active material, respectively, S is the area where the electrode is in contact with the electrolyte (cm²), ΔE_S represents the steady-state voltage change by the current pulse and ΔE_{τ} is the potential change (V) during the constant current pulse.