Co-nucleated Co doped SnO2/SnS² heterostructures to facilitate diffusion towards high-performance alkali ion storage

Kunyu Hao, Ruixiao Zhang, Mingyue Chen, Yu Lu, Pengcheng Qi, Gaofu Liu,

Yanxin Wang, Hao Wu, Yiwen Tang*

Institute of Nano-Science and Technology, College of Physical Science and Technology,

Central China Normal University, Wuhan, 430079, China

*Corresponding author: Tel: +86-27-67867947; Fax: +86-27-67861185; e-mail:

ywtang@ccnu.edu.cn

1. Supporting figures

Figure S1. Refined XRD results of Co_{1/3}-SnS₂/SnO₂ samples.

Figure S2. XRD patterns of $Co_{1/3}$ -SnS₂/SnO₂, $Co_{1/3}$ -SnS₂/SnO₂(p) and blank carbon cloth.

$20 -$			Elements	Wt%	Wt% Sigma	Atom %
- cps/eV - $10 -$ - ۰ ż	Sn		\mathbf{o}	9.79	0.20	33.46
			S	19.66	0.10	33.52
			Co	1.10	0.17	1.03
			Sn	69.45	0.22	31.99
			Total	100.0		100.0
٠ Co l ٠ ٠ $\overline{}$	Sn Co					
$0 -$ $\mathbf 0$		10			15	1 1 keV

Figure S3. Content of each element in the $Co_{1/3}-SnS₂/SnO₂$ material.

Figure S4. SEM images of (a-b) $Co_{1/3}$ -SnS₂/SnO₂(p); (c-d) $Co_{1/3}$ -SnS₂/SnO₂;(e-f) SnS_2/SnO_2 ; (g-h) $Co_{1/3}$ -SnS₂; (i-j) $Co_{1/3}$ -SnO₂.

Figure S5. SEM images of (a) $Co_{1/2}$ -SnS₂/SnO₂; (b) $Co_{1/3}$ -SnS₂/SnO₂; (c) $Co_{1/4}$ -SnS₂/SnO₂; (d) $Co_{1/5}$ -SnS₂/SnO₂.

Figure S6. The cycling performance of LIBs using the different $Co_{1/x}$ -SnS₂/SnO₂ anodes obtained at different ratio of the Co^{2+} .

Figure S7. The cycling performance of LIBs using the $Co_{1/3}$ -SnS₂/SnO₂, $Co_{1/3}$ - $SnS_2/SnO_2(p)$ and CC as anodes.

Figure S8. XRD patterns of the comparison samples $(SnS_2/SnO_2, Co_{1/3}-SnO_2$ and $Co_{1/3}-SnS₂$)

Figure S9. (a) The CV curves at different rate of the LIBs using the Co_{1/3}-SnS₂/SnO₂ anodes; (b) Plots of log(i) against log(v) at various peak currents.

Figure S10. The EIS curves of LIBs with (a) $Co_{1/3}-SnS₂/SnO₂$, $SnS₂/SnO₂$, $Co_{1/3}-$ SnO₂ and Co_{1/3}-SnS₂ as anodes; (b) Co_{1/3}-SnS₂/SnO₂, Co_{1/3}-SnS₂/SnO₂(p) and blank carbon cloth as anodes;

Sample	R_s (Ω)	$R_{ct}(\Omega)$
$Co1/3-SnS2$	13.22	170.2
$Co_{1/3}$ -SnO ₂	10.38	156.8
SnS_2/SnO_2	4.672	75.72
_{CC}	10.44	73.57
$Co_{1/3}$ -SnS ₂ /SnO ₂ (p)	12.57	121.3
$Co1/3-SnS2/SnO2$	6.242	46.8

Table S2. Fitted EIS data and dynamic parameters of different materials in LIBs.

Figure S11. (a) SEM image and (b) EDS of Co_{1/3}-SnS₂/SnO₂ anode removed in LIB after 50 cycles at 300 mA g^{-1} .

Figure S12. LEDs light up with LIBs using Co_{1/3}-SnS₂/SnO₂ anodes

Figure S13. The cycling performance of SIBs using the Co_{1/3}-SnS₂/SnO₂ anodes at a current density of $1110 \text{ mA } g^{-1}$.

Figure S14. (a) SEM image and (b) EDS of anode removed in SIB after 70 cycles at $300 \text{ mA } \text{g}^{-1}$.

Figure S15. The EIS curves of SIBs with $Co_{1/3}$ -SnS₂/SnO₂, $Co_{1/3}$ -SnS₂ and $Co_{1/3}$ - $SnO₂$ as anodes;

Table S3. Fitted EIS data and dynamic parameters of different materials in SIBs.

Sample	R_s (Ω)	$R_{ct}(\Omega)$
$Co_{1/3}$ -SnS ₂	6.649	562.4
$Co_{1/3}$ -SnO ₂	5.968	734.5
$Co1/3$ -SnS ₂ /SnO ₂	3.975	434.7

2.Calculation of ion diffusion coefficient (DLi and DNa)

The GITT data was obtained at the 2nd cycle on a LAND constant current charging and discharging system. The ion diffusion coefficient reflecting the dynamic behavior of the electrodes can be calculated based on the following equation:

$$
D = \frac{4}{\pi \tau} \left(\frac{m_B v_m}{M_B S}\right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2 (\tau \ll \frac{L^2}{D})
$$
(S1)

Where D is the ion diffusion coefficient (cm² s⁻¹), τ is the constant current pulse time (s), m_B is the quality of the active material (g), v_m is the molar volume of active material (cm³ mol⁻¹), M_{B} is relative molecular mass (g mol⁻¹) of active material, respectively, S is the area where the electrode is in contact with the electrolyte (cm²), ΔE_S represents the steady-state voltage change by the current pulse and ΔE_τ is the potential change (V) during the constant current pulse.