Critical metals recovery from the spent lithium-ion batteries'

leaching solution using electrodialysis technologies: strategies and

challenges

Tianshu Zhang¹, Yijun Qian^{1*}, Changyong Zhang², Tao Qian³ and Chenglin Yan^{1,4,*}

1. College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 215006, Suzhou, China

2. CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China

3. College of Chemistry and Chemical Engineering, Nantong University, Seyuan 9, Nantong 226019, China

4. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China

*Corresponding authors. E-mails: yjqian@suda.edu.cn, c.yan@suda.edu.cn.

Methode	Target metals	Solution composition	Solvent liquid	pН	
Electrodialysis	Li, Ni, Co, Mn	$C_{Li}=1.00\times10^{-2} \text{ M},$ $C_{Ni}=C_{Co}=C_{Mn}=3.33\times10^{-3} \text{ M}$	EDTA	2	Sta
				3	Sta
			_	1.5	St
Solvent extraction	Li, Ni, Co	$\begin{array}{c} C_{Li}\!\!=\!\!2.8 \text{ g } L^{-1}\!, C_{Ni}\!\!=\!\!0.5 \text{g } L^{-1}\!, \\ C_{Co}\!\!=\!\!14.4 \text{ g } L^{-1} \end{array}$	Cyanex 272+TOA	~7	The The
Solvent extraction	Li, Co, Mn	$C_{Li}=C_{Co}=C_{Mn}=4\times 10^{-3} M$	Cyanex272+PC-88A	4.95	The order
Solvent extraction	Li, Ni, Co	$\begin{split} & C_{Fe}{=}3.6 \text{ g } L^{-1}, \ & C_{Cu}{=}1.8 \text{ g } L^{-1}, \\ & C_{Mn}{=}1.8 \text{ g } L^{-1}, \ & C_{Ni}{=}0.5 \text{ g } L^{-1}, \\ & C_{Co}{=}20.6 \text{ g } L^{-1}, \ & C_{Li}{=}2.5 \text{ g } L^{-1}. \end{split}$	P507	3.5	Reco Reco
Precipitation	Li, Ni, Co, Mn	100% of Li, Ni, Co, and Al in NCA material are leached out.	For Co: NaClO	3	The
			For Ni: NaOH	11	still j
Precipitation	Li, Ni, Co, Mn	LCO, LMO, and LCNM were mixed and leached according to the weight ratio of 1:1:1.	For Mn: KMnO ₄	2	The Mn, (97.43
			For Ni: dimethylglyoxime	9	
			For Co: NaOH	11	
			For Li: saturated Na ₂ CO ₃	_	

Table S1. The performance data of several separation methods in the recovery of leaching solution from spent lithium-ion batteries

Method	Advantage	Disadvantage
	Selective ion removal	• Dependence on electric energy
Electrodialysis	• Low consumption of chemicals	Membrane fouling
	Scalable Environmentally friendly	High initial cost
		Complicated process
	• Low cost	• High reagent consumption
Precipitation	• Low energy consumption	• Hard to precipitate only one ion
		Generation of solid waste
	High selectivity and recovery	• High price of solvent
Solvent extraction	• Low energy consumption	Consumption of organic solvents
	• Scalable	• Generation of toxic waste liquid

Table S2. Advantages and disadvantages of the treatment of leaching solutions methods