Multistage construction of Gd-Doped g-C₃N₄/Mo₁₅S₁₉ Composites

Enabled Both N₂ activation and multiple electron transfer for

Enhanced Photocatalytic Nitrogen Reduction Reaction

Xiaoyu Jiang,^{a,b} Boran Tao,^c Hongda Li^{a,b,*}

^a School of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi
435002, China

^b Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China

^c Tianmu Lake Institute of Advanced Energy Storage Technologies Co., Ltd., Liyang

213300, China

Corresponding author: Hongda Li, hdli@ustc.edu.cn

Fig. S1. SEM images of (a) C_3N_4 , (b) GdC_3N_4 , (c) $GdC_3N_4/Mo_{15}S_{19}$, and (d) $C_3N_4/Mo_{15}S_{19}$

Fig. S2. (a) Photocatalytic NRR of 0.2% GdC₃N₄, 0.5% GdC₃N₄, 1.0% GdC₃N₄ under visible light irradiation; (b) Photocatalytic NRR of GdC₃N₄/5% Mo₁₅S₁₉, GdC₃N₄/10% Mo₁₅S₁₉, GdC₃N₄/20% Mo₁₅S₁₉ under visible light irradiation

Fig. S3. (a) SEM images and (b) XRD patterns of GdC₃N₄/Mo₁₅S₁₉ samples before and after the reaction (four cycles).

Fig. S4. (a) UV–vis diffuse reflectance spectra (DRS) of g-C₃N₄, GdC₃N₄, GdC₃N₄/Mo₁₅S₁₉, and C₃N₄/Mo₁₅S₁₉. (b) Band gap values of g-C₃N₄, GdC₃N₄, GdC₃N₄/Mo₁₅S₁₉, and C₃N₄/Mo₁₅S₁₉. The bandgap calculation formula is given by: (αhv)^{1/2}=A(hv–Eg), in which A, h, v, α, and Eg represent the proportionality constant, Planck's constant, absorption coefficient, light frequency, and bandgap energy, respectively.

Fig. S5. Gibbs free energy profiles of the distal mechanism for the NRR process on the $g-C_3N_4$, GdC₃N₄, GdC₃N₄/Mo₁₅S₁₉, and C₃N₄/Mo₁₅S₁₉ catalysts.

Samples	g-C ₃ N ₄	GdC ₃ N ₄	GdC ₃ N ₄ /Mo ₁₅ S ₁₉	C ₃ N ₄ /Mo ₁₅ S ₁₉
Surface areas (m ² g ⁻¹)	16.16	17.25	42.13	42.30
C Mass%	72.11	71.66	64.58	65.03
N Mass%	27.89	27.86	25.13	25.44
Gd Mass%	/	0.48	0.42	/
Mo Mass%	/	/	6.92	6.72
S Mass%	/	/	2.95	2.81
Real Gd (wt.%, Gd/C ₃ N ₄)	/	0.48	0.47	/
Real Mo/S (at.%)	/	/	15.00:19.18	15.00:18.81
Real Mo ₁₅ S ₁₉ (wt.%)	/	/	9.87	9.53

 Table S1. Element concentrations by Energy dispersive spectrometer (EDS), BET specific surface

areas of g-C₃N₄, GdC₃N₄, GdC₃N₄/Mo₁₅S₁₉ and C₃N₄/Mo₁₅S₁₉.

Site	Adsorption Energy (eV)
Мо	-0.92
Gd	-0.87
Ν	-0.75
С	-0.69
S	-0.63

Table S2. The adsorption energies of N_2 on Mo, S, N, C, and Gd sites

Catalwata	Saavanaan	Light Source	NH ₃ generation rate	Def	
Catalysis	Scavenger	Light Source	µmol g ⁻¹ h ⁻¹	Kel.	
S-doped Bi ₂ MoO ₆	None	300 W Xe lamp, λ>420 nm	122.14	S1	
5% Cu/InVO ₄	None	300 W Xe lamp	195.11	S2	
BiVO ₄ /VS-MoS ₂	None	300 W Xe lamp	132.8	S3	
IL-TiO _{2-x}	Methanol	300 W Xe lamp	22.7	S4	
MoS ₂ /In-Bi ₂ MoO ₆	None	300 W Xe lamp	90	S5	
BiOBr/g-C ₃ N ₄	None	300 W Xe lamp	164.69	S6	
Ru ₁ /TiO ₂ -Vo	None	300 W Xe lamp	18.9	S7	
$Gd-Bi_2MoO_6$	None	300 W Xe lamp, λ>420 nm	300.15	S8	
CdS/WO ₃	None	300 W Xe lamp	35.8	S9	
Ni ₂ P-BP	Methanol	300 W Xe lamp, λ>420 nm	6.14	S10	
$GdC_3N_4\!/Mo_{15}S_{19}$	None	300 W Xe lamp, λ>420 nm	407.51	This work	

 Table S3. Photocatalytic nitrogen fixation performance of different catalysts under various

reaction conditions.

References

S1 Z. Liu, M. Luo, Y. Cao, L. Meng, Y. Yang and X. Li, Tuning the electronic properties of Bi₂MoO₆ by S-doping to boost efficient photocatalytic nitrogen fixation reactions. *J. Catal.* 2024, 430, 115347.

S2 S. Yao, J. Lin, K. Yi, W. Liu, and M. Wang, Cu-modified $InVO_4$ photocatalysts for enhanced N₂ fixation using chemical reagents and electroplating sludge as the Cu source. *Chem. Commun.* 2024, **60**, 1790.

S3 H. Luo, Z. Liu, M. Zhang, Y. Mu and M. Zhang, Construction of a BiVO₄/VS-MoS₂ S-scheme heterojunction for efficient photocatalytic nitrogen fixation. *Nanoscale Adv.*, 2024, **6**, 1781.

S4 X. Gong, B. Chong, M. Xia, H. Li, H. Ou, and G. Yang, Fluorinated phosphonium ionic liquid boosts the N_2 -adsorbing ability of TiO₂ for efficient photocatalytic NH₃ synthesis. *Catal. Sci. Technol.* 2024, **14**, 343.

S5 T. Ma, R. Li, Y. C. Huang, Y. Lu, L. Guo, M. Niu, X. Huang, R. A. Soomro, J. Ren, Q. Wang,
B. Xu, C. Yang, F. Fu and D. Wang, Interfacial Chemical-Bonded MoS₂/In-Bi₂MoO₆
Heterostructure for Enhanced Photocatalytic Nitrogen-to-Ammonia Conversion. *ACS Catal.* 2024, 14(8), 6292-6304.

S6 L. Zhang, M. Jiang, H. Tian, S. Liu, X. Zhou, H. Liu, S. Gan, S. Che, Z. Chen, Y. Li, T. Wang,
G. Wang and C. Wang, Oxygen and Nitrogen Vacancies in a BiOBr/g-C₃N₄ Heterojunction for
Sustainable Solar Ammonia Fertilizer Synthesis. *ACS Sus. Chem. Eng.* 2024, 12(5), 2028-2040.

S7 G. Ren, M. Shi, S. Liu, Z. Li, Z. Zhang and X. Meng, Molecular-level insight into photocatalytic reduction of N₂ over Ruthenium single atom modified TiO₂ by electronic Metal-support interaction. *Chem. Eng. J.* 2023, **454**, 140158.

S8 H. Li, H. Zhao, C. Li, B. Li, B. Tao, S. Gu, G. Wang and H. Chang, Redox regulation of photocatalytic nitrogen reduction reaction by gadolinium doping in two-dimensional bismuth molybdate nanosheets. *Appl. Surf. Sci.* 2022, **600**, 154105.

S9 P. Xia, X. Pan, S. Jiang, J. Yu, B. He, P. M. Ismail, W. Bai, J. Yang, L. Yang, H. Zhang, M. Cheng, H. Li, Q. Zhang, C. Xiao and Y. Xie, Designing a Redox Heterojunction for Photocatalytic "Overall Nitrogen Fixation" under Mild Conditions. *Adv. Mater.* 2022, 34, 2200563.

S10 Z.-K. Shen, Y. Jin, X. Zhang, J. Wu, H. Wang, and Z. Huang, Identifying the role of interface

chemical bonds in activating charge transfer for enhanced photocatalytic nitrogen fixation of Ni₂Pblack phosphorus photocatalysts. *Appl. Catal. B: Environ.* 2021, **295**, 120274.