Supplementary Information

Scalable complete conversion of MgCo₂O₄ by

mechanochemistry for high-performance supercapacitors

Zhiyuan Liu^{†,‡}, Qixuan Xiang^{†,‡}, Hao Zhang^{†,‡}, Xianglong Zhang^{†,‡}, Huijun Tan^{†,‡*}, Yaping Zhao^{†,‡*}

[†]School of Chemistry and Chemical Engineering, Frontiers Science Center for

Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

[†]Inner Mongolia Research Institute, Shanghai Jiao Tong University, Inner Mongolia 010052, People's Republic of China

*Corresponding authors: Dr. Huijun Tan, Prof. Yaping Zhao Email: sophie93@sjtu.edu.cn (H. Tan),ypzhao@situ.edu.cn (Y.Zhao)

S1 The peaks detected in XRD and their corresponding phases

The diffraction peaks at 20 of 19.1°, 31.4°, 37.0°, 38.7°, 44.9°, 55.8°, 59.4°, 65.3° and 77.34° correspond to the (111), (220), (311), (222), (400), (442), (511), (440), and (533) planes of standard MgCo₂O₄ (JCPDS No. 81-0667), respectively¹. The peaks at 18.6°, 38.0°, 50.9°, and 58.6° correspond to the (001), (101), (102), and (110) of Mg(OH)₂ (ICDD No. 01-074-2220), respectively². Two different MgO phases were detected. The MgO phase at 43.0° corresponds to the cubic structure with lattice constants *a* of 0.422 nm (ICDD No. 01-087-0653)³ and another MgO peak at 48.4° corresponds to a cubic structure with lattice constants *a* of 0.384 nm (JCPDS card No 96-901-3242)⁴. The XRD peak at 20 of 35.7 corresponds to the (311) plane of Fe₃O₄ (ICDD No. 01-075-0449)⁵, which should be attributed to the contamination from the milling vessel.

Figures

Fig. S1 The photographs of slurry in the milling vessel after ball milling for experiments in group $\eta.$

Fig. S2 The photographs of slurry in milling vessel after ball milling for experiments in group BPR.

Tables

Ball diameter (mm)	Weight ratio (%)		
15	10		
12	15		
10	21.5		
8.5	27.1		
5	13.2		
3	13.2		

Table S1 The ratio of milling balls: Diameter and wt% of grinding ZrO_2 balls used.

Numbering of particle	Sample name				
	T-1	T-2	T-3	T-4	T-5
1	124.1	103.0	114.1	192.6	81.4
2	149.1	86.9	238.0	95.7	154.3
3	143.0	80.9	177.5	76.6	84.1
4	198.4	132.2	102.2	136.7	121.6
5	175.9	135.9	179.9	94.1	96.6
6	107.5	149.3	100.1	197.6	85.0
7	186.7	312.1	112.0	77.1	102.2
8	122.1	143.3	112.2	125.4	128.5
9	237.2	149.1	103.0	102.2	88.7
10	300.0	89.2	117.6	79.7	105.4
Ave. particle size	174.4	138.2	135.7	117.8	104.8

Table S2Measured particle size (nm) of ten individual particles in SEM images for as-
prepared samples in group T.

Element	Atomic %	Atomic % Error	Weight %	Weight % Error	Net Counts
Mg	2.9	0.0	4.3	0.1	12 263
Со	5.9	0.1	21.2	0.4	12 648

Table S3 Element analysis from EDS

Numbering of particle	T-4
1	19.4
2	44.9
3	18.0
4	13.7
5	12.8
6	23.7
7	10.4
8	10.6
9	23.1
10	8.6
Ave. grain size	18.5

Table S4 Measured grain size (nm) of ten individual grains in TEM image for T-4 sample.

Co Sample Name at	Coulomb	Coulomb	Coulomb	Coulomb	Coulomb
	Efficiency	Efficiency	Efficiency	Efficiency	Efficiency
	at 0.1 A/g	at 0.5 A/g	at 1.0 A/g	at 2.0 A/g	at 5.0 A/g
T-1	92.0%	87.3%	92.1%	91.2%	91.0%
T-2	93.7%	91.2%	85.7%	85.6%	89.9%
T-3	94.6%	90.5%	92.5%	92.2%	90.3%
T-4	97.3%	93.9%	90.5%	92.6%	90.5%
T-5	90.9%	93.3%	92.7%	88.8%	80.1%

Table S5 Coulomb efficiency calculated by galvanostatic discharge at different current densities for samples in group T.

Sample Name	Specific	Specific	Specific	Specific	Specific
	Charge	Charge	Charge	Charge	Charge
	at 0.1 A/g	at 0.5 A/g	at 1.0 A/g	at 2.0 A/g	at 5.0 A/g
T-1	144.3	102.4	95.0	82.4	65.5
T-2	240.3	187.3	140.6	115.6	88.5
T-3	247.9	190.0	171.7	151.2	121.5
T-4	266.3	235.1	194.8	175.2	138.5
T-5	155.6	138.8	125.3	106.2	76.5

Table S6 Specific charge (C/g) calculated by galvanostatic discharge at different current densities for samples in group T.

Single Highest Specific Batch Temperature Preparing Morphology Charge Production in Synthesis Ref Method (C/g) Capacity Process (g) (°C) MgCo₂O₄ 6 Electrospun 84 at 0.5 A/g 0.1 700 nanofibers MgCo₂O₄ 160 at 0.5 7 Molten salt Unknown 280 spheres A/g $MgCo_2O_4$ 8 Hydrothermal 136 at 1 A/g 0.2 350 nanosheets Porous double-254 at 2 A/g 9 Hydrothermal 0.4 350 urchin-like MgCo₂O₄ MgCo₂O₄ 10 Hydrothermal 178 at 1 A/g 0.2 400 nanoflower MgCo₂O₄ 11 Solvothermal 376 at 1 A/g 0.2 400 nanoflakes MgCo₂O₄ 12 313 at 1 A/g micro Solvothermal 0.2 350 flowers 266 at 0.1 MgCo₂O₄ This **Ball milling** 100 105 particle A/g work

Table S7 The specific charge, single batch production capacity, and the synthesis temperature of $MgCo_2O_4$ in this work and previous literature.

References

- Y. Wang, J. Sun, S. Li, Y. Zhang, C. Xu and H. Chen, Hydrothermal synthesis of flower-like MgCo₂O₄ porous microstructures as high-performance electrode material for asymmetric supercapacitors, *J. Alloys Compd.*, 2020, **824**, 153939–153950.
- 2 S. A. Walling, S. A. Bernal, L. J. Gardner, H. Kinoshita and J. L. Provis, Phase Formation and Evolution in Mg(OH)₂-Zeolite Cements, *Ind. Eng. Chem. Res.*, 2018, 57, 2105–2113.
- 3 Q. Gu, G. Liu, H. Li, Q. Jia, F. Zhao and X. Liu, Synthesis of MgO–MgAl₂O₄ refractory aggregates for application in MgO–C slide plate, *Ceram. Int.*, 2019, **45**, 24768–24776.
- 4 M. Saket, R. Amini, P. Kardar and M. Ganjaee, The chemical treatment of the AZ31-Magnesium alloy surface by a high-performance corrosion protective praseodymium (III)-based film, *Mater. Chem. Phys.*, 2021, 260, 124113–124125.
- 5 W.-W. Liu, A. Aziz, S.-P. Chai, A. Rahman Mohamed, C.-T. Tye and P. Selatan, Preparation of iron oxide nanoparticles supported on magnesium oxide for producing high-quality single-walled carbon nanotubes, *New Carbon Materials*, 2011, 26, 225–261.
- 6 M. M. Ghaziani, J. Mazloom and F. E. Ghodsi, Electrospun MgCo₂O₄ nanofibers as an efficient electrode material for pseudocapacitor applications: Effect of calcination temperature on electrochemical performance, *Journal of Physics and Chemistry of Solids*, 2021, **152**, 109981–109991.
- S. G. Krishnan, M. V. Reddy, M. Harilal, B. Vidyadharan, I. I. Misnon, M. H. A. Rahim, J. Ismail and R. Jose, Characterization of MgCo₂O₄ as an electrode for high performance supercapacitors, *Electrochim. Acta*, 2015, 161, 312–321.
- 8 H. Wang, N. Mi, S. Sun, W. Zhang and S. Yao, Oxygen vacancies enhancing capacitance of MgCo₂O₄ for high performance asymmetric supercapacitors, *J. Alloys Compd.*, 2021, 869, 159294–159301.
- 9 J. Xu, L. Wang, J. Zhang, J. Qian, J. Liu, Z. Zhang, H. Zhang and X. Liu, Fabrication of porous doubleurchin-like MgCo₂O₄ hierarchical architectures for high-rate supercapacitors, *J. Alloys Compd.*, 2016, 688, 933–938.
- 10 S. G. Krishnan, M. Harilal, I. I. Misnon, M. V. Reddy, S. Adams and R. Jose, Effect of processing parameters on the charge storage properties of MgCo₂O₄ electrodes, *Ceram. Int.*, 2017, 43, 12270– 12279.
- 11 E. Bao, X. Ren, R. Wu, X. Liu, H. Chen, Y. Li and C. Xu, Porous MgCo₂O₄ nanoflakes serve as electrode materials for hybrid supercapacitors with excellent performance, *J. Colloid Interface Sci.*, 2022, 625, 925–935.
- 12 Y. Wang, S. Li, J. Sun, Y. Zhang, H. Chen and C. Xu, Simple solvothermal synthesis of magnesium cobaltite microflowers as a battery grade material with high electrochemical performances, *Ceram. Int.*, 2019, 45, 14642–14651.