ZnIn2S⁴ nanosheets with tunable dual vacancies for efficient sacrificial-agent-free H2O² photosynthesis

Chen Zhang, $\ddagger^{a,d}$ Gao Xu, \ddagger^a Qifeng Liang, ^a Li Liang, ^a Zebo Fang, ^a Rong Wu, ^d Shunhang Wei, a,* Lei Wang, c,* Xiaoxiang Xu, b,*

^a Zhejiang Engineering Research Center of MEMS, Shaoxing University, Shaoxing 312000, China

^b School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China

^c School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China

^d School of Physics Science and Technology, Xinjiang University, Urumqi 830000, China

‡ These authors contribute equally

*Corresponding authors. E-mail addresses: wsh@usx.edu.cn (S. Wei); lwang $866@163$.com (L. Wang); xxxu@tongji.edu.cn (X. Xu).

Characterization

An X-ray powder diffractometer (XRD, Empyrean) and a Raman spectrometer (LabRAM HR Evolution) were used to detect the crystal structure of the obtained samples. A field emission scanning electron microscope (FESEM, SIGMA 300) and a high-resolution transmission electron microscope (HRTEM, JEM-2100F) equipped with an energy dispersive X-ray spectrometer (EDS) were used to observe their morphology and elemental distributions. The time-resolved PL (TRPL) decay spectra were recorded using a spectrofluorometer (FLUOROLOG-3-11) with an excitation wavelength of 370 nm (detection wavelength was 512 nm). The surface states of the samples were characterized by an X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha+), and the binding energies calibrated to the C 1s peak at 284.8 eV. The UV-vis diffuse reflection spectra (DRS) of the samples were collected on an UVvis spectrophotometer (Shimadzu UV-3600 plus) equipped with an integrating sphere assembly, and $BaSO₄$ was used as the non-absorbing reference material. Electron paramagnetic resonance (EPR) spectra were recorded on a Bruker EMXPLUS at room temperature. The composition of samples was explored using inductively coupled plasma optical emission spectrometry (ICP-OES, Optima 8300) and organic element analyzer (OEA, Elemantar: Vario EL cube). The steady-state surface photovoltage (SPV) spectra were collected in a CEL-SPS1000 spectroscopic analysis system containing a 500 W Xenon lamp (CEL-S500).

Fig. S1 TEM images of (a) ZIS-3.5h and (b) ZIS-7h.

Fig. S2 the corresponding elemental mapping of the ZIS-7.

Fig. S3 EPR spectra of the ZIS-3.5h and ZIS-7h samples.

Fig. S4 (a) the Tauc plot and (b) Mott-Schottky plots of the as-prepared samples.

Fig. S5 Schematic illustration of band structure of the as-prepared samples.

Fig. S6 Photocatalytic H_2O_2 yield rate of different samples in O_2 - saturated pure water under AM1.5 irradiation.

Fig. S7 *K^f* and *K^d* constant of the ZIS-3.5h and ZIS-7h.

Fig. S8 The O 1s peaks of the as-prepared samples.

Fig. S9 Active species capture experiments over ZIS-7h under AM1.5 irradiation.

Samples	Zn	In	S	Ω	$\mathbf C$	$Zn : In : S : O$ atom
	$(at.\%)$	$(at.\%)$	$(at.^{\theta}\!\!\omega)$	$(at.^{\%})$	$(at.^{\%})$	ratio
$ZIS-3h$	5.11	21.14	23.10	23.75	26.90	0.48:2:2.18:2.25
$ZIS-3.5h$	8.66	20.93	25.87	20.61	23.93	0.82:2:2.47:1.97
$ZIS-4h$	10.83	19.18	27.04	16.97	25.35	1.13:2:2.82:1.77
$ZIS-5h$	16.18	18.50	30.27	11.55	23.49	1.75:2:3.27:1.25
$ZIS-7h$	17.00	15.15	27.59	9.88	30.38	2.24:2:3.64:1.30

Table S1. The element atom contents measured by XPS.

Table S2. The element atom contents measured by EDS

Samples	Zn (at.%)	In $(at.\%)$	S (at.%)	$Zn : In : S$ atom ratio
\vert ZIS-3.5h	6.89	41.16	51.59	0.33:2:2.51
$ Z$ IS-7h	13.15	29.77	57.08	0.88:2:3.83

Table S3. The inductively coupled plasma optical emission spectroscopy (ICP-OES) data of ZIS-3.5h.

Samples	Test elements	Sample element content $W(\%)$	ICP normalization		
	Zn	5.41			
$ZIS-3.5h$	In	56.07	$Zn_{0.34}In_2S_{2.46}$		
		19.27			
$ZIS-7h$	Zn	14.13			
	In	48.92	$Zn_{1.01}In_2S_{4.36}$		
		29.79			

Table S4. The element atom contents measured by organic element analyzer (OEA)

' Samples	$S(wt.^{\%})$	theoretical value of $S(wt.^{\%})$	normalization
\overline{Z} IS-3.5h	21.06	30.26	$Zn_xIn_vS_{2.78}$

Photocatalysts	Light	Dosage	Reaction	H_2O_2 yield rate	Ref.
		$(g L^{-1})$	solution	$(\mu M h^{-1})$	
$g - C_3 N_4$	300 W Xe lamp	1	Pure water	54.87	$\mathbf{1}$
	λ > 420 nm				
$In_2S_3@O_v/In_2O_3$	300 W Xe lamp	0.75	Pure water	206.45	$\overline{2}$
	λ > 420 nm				
Au / $BiVO4$	2000 W Xe lamp	1.67	Pure water	4.2	$\overline{3}$
	λ > 420 nm				
Polyimide / $ZnIn2S4$	300 W Xe lamp	0.1	Pure water	-41.11	$\overline{4}$
	λ >420 nm				
N i _{SAPs} -PuCN	300 W Xe lamp		Pure water	342.2	5
	λ 2420 nm				
cyclodextrin-	300 W Xe lamp	0.25	Pure water	139.3	6
pyrimidine polymer	λ 2420 nm				
CTF-BDDBN	300 W Xe lamp	0.6	Pure water	58.33	7
	λ >420 nm				
10% - Ti ₃ C ₂ /TiO ₂	UV light (λ =365	$\mathbf{1}$	Water /	179.7	8
	nm)		ethanol		
$Ag / ZnFe2O4 - Ag-$	AM 1.5 G	$\mathbf{1}$	Water /	103.15	9
$Ag_3PO_4(111)$			methanol		
EG-ZIS $(ZnIn_2S_4)$	LED lamp	0.4	Water /	229.13	10
	(100 mW cm^{-2})		isopropanol		
$\mathbf{ZnIn}_2\mathbf{S}_4$ with dual	300 W Xe lamp	0.5	Pure water	199.30	This
vacancies	$\lambda \geq 420$ nm				work

Table S5 Summary of the H_2O_2 yield rate of different photocatalysts

Samples	τ_1 (ns)	τ_2 (ns)	A ₁	A_2	Average lifetime $\langle \tau \rangle$	γ^2
					(ns)	
$ZIS-3.5h$	5.08	56.73	9640.18	1086.38	33.86	0.99
$ZIS-7h$	6.03	60.16	9276.41	1247.71	37.04	0.99

Table S6. Summary of average electron lifetime deduced from the TRPL spectra

The average lifetime is calculated by equation:

$$
<\tau>=\frac{A_1\tau_1^2+A_2\tau_2^2}{A_1\tau_1+A_2\tau_2}
$$

 χ^2 : the goodness of fit parameter.

References

- 1. S. Gou, C. Wang, Z. Gong, Q. Wang, X. Li, X. Chen, J. Wang, J. Ma and Y. Zhu, Three-dimensional charge carrier transport channel enhanced photocatalytic H_2O_2 production in pure water over g-C3N4, *Sep. Purif. Technol.*, 2025, **354**, 128829.
- 2. X. Chen, W. Zhang, L. Zhang, L. Feng, C. Zhang, J. Jiang and H. Wang, Construction of Porous Tubular $In_2S_3@In_2O_3$ with Plasma Treatment-Derived Oxygen Vacancies for Efficient Photocatalytic H_2O_2 Production in Pure Water Via Two-Electron Reduction, *ACS Appl. Mater. Interfaces*, 2021, **13**, 25868-25878.
- 3. H. Hirakawa, S. Shiota, Y. Shiraishi, H. Sakamoto, S. Ichikawa and T. Hirai, Au Nanoparticles Supported on BiVO₄: Effective Inorganic Photocatalysts for H_2O_2 Production from Water and O₂ under Visible Light, *ACS Catal.*, 2016, 6, 4976-4982.
- 4. X. Liu, X. Dong, Y. Wang, J. Gao, N. Zheng and X. Zhang, Polyimide/ZnIn₂S₄ heterostructures toward outstanding photocatalytic H_2O_2 production from pure water and air, *Appl. Surf. Sci.*, 2024, **643**, 158637.
- 5. X. Zhang, H. Su, P. Cui, Y. Cao, Z. Teng, Q. Zhang, Y. Wang, Y. Feng, R. Feng, J. Hou, X. Zhou, P. Ma, H. Hu, K. Wang, C. Wang, L. Gan, Y. Zhao, Q. Liu, T. Zhang and K. Zheng, Developing Nisingle-atom sites in carbon nitride for efficient

photocatalytic H2O² production, *Nat. Commun.*, 2023, **14**, 7115.

- 6. C. Chu, Q. Li, W. Miao, H. Qin, X. Liu, D. Yao and S. Mao, Photocatalytic H_2O_2 production driven by cyclodextrin-pyrimidine polymer in a wide pH range without electron donor or oxygen aeration, *Appl. Catal. B: Environ.*, 2022, **314**, 121485.
- 7. L. Chen, L. Wang, Y. Wan, Y. Zhang, Z. Qi, X. Wu and H. Xu, Acetylene and diacetylene functionalized covalent triazine frameworks as metal‐free photocatalysts for hydrogen peroxide production: a new two‐electron water oxidation pathway, *Adv. Mater.*, 2020, **32**, 1904433.
- 8. Y. Chen, W. Gu, L. Tan, Z. Ao, T. An and S. Wang, Photocatalytic H_2O_2 production using Ti₃C₂ MXene as a non-noble metal cocatalyst, *Appl. Catal. A: Gen.*, 2021, **618**, 118127.
- 9. X. Ma and H. Cheng, Facet-dependent photocatalytic H_2O_2 production of single phase Ag₃PO₄ and Z-scheme Ag/ZnFe₂O₄-Ag-Ag₃PO₄ composites, *Chem. Eng. J.*, 2022, **429**, 132373.
- 10. C. Ouyang, X. Quan, Z. A. Chen, K. Wang, X. Gu, Z. Hong and M. Zhi, Intercalation-and vacancy-enhanced internal electric fields in ZnIn_2S_4 for highly efficient photocatalytic H₂O₂ production, *J. Phys. Chem. C*, 2023, 127, 20683-20699.