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Characterization

An X-ray powder diffractometer (XRD, Empyrean) and a Raman 

spectrometer (LabRAM HR Evolution) were used to detect the crystal 

structure of the obtained samples. A field emission scanning electron 

microscope (FESEM, SIGMA 300) and a high-resolution transmission 

electron microscope (HRTEM, JEM-2100F) equipped with an energy 

dispersive X-ray spectrometer (EDS) were used to observe their 

morphology and elemental distributions. The time-resolved PL (TRPL) 

decay spectra were recorded using a spectrofluorometer (FLUOROLOG-

3-11) with an excitation wavelength of 370 nm (detection wavelength was 

512 nm). The surface states of the samples were characterized by an X-ray 

photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha+), and the 

binding energies calibrated to the C 1s peak at 284.8 eV. The UV-vis 

diffuse reflection spectra (DRS) of the samples were collected on an UV-

vis spectrophotometer (Shimadzu UV-3600 plus) equipped with an 

integrating sphere assembly, and BaSO4 was used as the non-absorbing 

reference material. Electron paramagnetic resonance (EPR) spectra were 

recorded on a Bruker EMXPLUS at room temperature. The composition 

of samples was explored using inductively coupled plasma optical 

emission spectrometry (ICP-OES, Optima 8300) and organic element 

analyzer (OEA, Elemantar: Vario EL cube). The steady-state surface 

photovoltage (SPV) spectra were collected in a CEL-SPS1000 



spectroscopic analysis system containing a 500 W Xenon lamp (CEL-

S500). 



Fig. S1 TEM images of (a) ZIS-3.5h and (b) ZIS-7h.



Fig. S2 the corresponding elemental mapping of the ZIS-7.



Fig. S3 EPR spectra of the ZIS-3.5h and ZIS-7h samples.



Fig. S4 (a) the Tauc plot and (b) Mott-Schottky plots of the as-prepared samples.



Fig. S5 Schematic illustration of band structure of the as-prepared samples.



Fig. S6 Photocatalytic H2O2 yield rate of different samples in O2 - saturated pure water 
under AM1.5 irradiation.



Fig. S7 Kf and Kd constant of the ZIS-3.5h and ZIS-7h.



Fig. S8 The O 1s peaks of the as-prepared samples.



Fig. S9 Active species capture experiments over ZIS-7h under AM1.5 irradiation.



Table S1. The element atom contents measured by XPS.
Samples Zn 

(at.%)
In 
(at.%)

S 
(at.%)

O
(at.%)

C 
(at.%)

Zn : In : S : O atom 
ratio

ZIS-3h 5.11 21.14 23.10 23.75 26.90 0.48 : 2 : 2.18 : 2.25
ZIS-3.5h 8.66 20.93 25.87 20.61 23.93 0.82 : 2 : 2.47 : 1.97
ZIS-4h 10.83 19.18 27.04 16.97 25.35 1.13 : 2 : 2.82 : 1.77
ZIS-5h 16.18 18.50 30.27 11.55 23.49 1.75 : 2 : 3.27 : 1.25
ZIS-7h 17.00 15.15 27.59 9.88 30.38 2.24 : 2 : 3.64 : 1.30

Table S2. The element atom contents measured by EDS
Samples Zn (at.%) In (at.%) S (at.%) Zn : In : S atom ratio
ZIS-3.5h 6.89 41.16 51.59 0.33 : 2 : 2.51
ZIS-7h 13.15 29.77 57.08 0.88 : 2 : 3.83

Table S3. The inductively coupled plasma optical emission spectroscopy (ICP-OES) 
data of ZIS-3.5h.

Samples Test elements Sample element content W (%) ICP normalization
Zn 5.41
In 56.07ZIS-3.5h
S 19.27

Zn0.34In2S2.46

Zn 14.13
In 48.92ZIS-7h
S 29.79

Zn1.01In2S4.36

Table S4. The element atom contents measured by organic element analyzer (OEA)
Samples S (wt.%) theoretical value of S (wt.%) normalization
ZIS-3.5h 21.06 30.26 ZnxInyS2.78



Table S5 Summary of the H2O2 yield rate of different photocatalysts

Photocatalysts Light Dosage
(g L-1)

Reaction 
solution

H2O2 yield rate 
(μM h-1)

Ref.

g-C3N4 300 W Xe lamp
λ > 420 nm

1 Pure water 54.87 1

In2S3@Ov / In2O3 300 W Xe lamp
λ > 420 nm

0.75 Pure water 206.45 2

Au / BiVO4 2000 W Xe lamp
λ > 420 nm

1.67 Pure water 4.2 3

Polyimide / ZnIn2S4 300 W Xe lamp
λ>420 nm

0.1 Pure water ~41.11 4

NiSAPs-PuCN 300 W Xe lamp
λ≥420 nm

1 Pure water 342.2 5

cyclodextrin-
pyrimidine polymer

300 W Xe lamp
λ≥420 nm

0.25 Pure water 139.3 6

CTF-BDDBN 300 W Xe lamp
λ>420 nm

0.6 Pure water 58.33 7

10 % - Ti3C2 / TiO2 UV light (λ =365 
nm)

1 Water / 
ethanol

179.7 8

Ag / ZnFe2O4-Ag-
Ag3PO4 (111)

AM 1.5 G 1 Water / 
methanol

103.15 9

EG-ZIS (ZnIn2S4) LED lamp
(100 mW cm-2)

0.4 Water / 
isopropanol

229.13 10

ZnIn2S4 with dual 
vacancies

300 W Xe lamp
λ≥420 nm

0.5 Pure water 199.30 This 
work



Table S6. Summary of average electron lifetime deduced from the TRPL spectra
Samples τ1 (ns) τ2 (ns) A1 A2 Average lifetime <τ> 

(ns)
χ2

ZIS-3.5h 5.08 56.73 9640.18 1086.38 33.86 0.99
ZIS-7h 6.03 60.16 9276.41 1247.71 37.04 0.99

The average lifetime is calculated by equation:

< 𝜏>=
𝐴1𝜏

2
1 + 𝐴2𝜏

2
2

𝐴1𝜏1 + 𝐴2𝜏2

χ2: the goodness of fit parameter.
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