Supporting Information

Stabilization of Copper Iodide Hybrids with Increased Strength of Ionic Bonding for Lighting and X-ray Imaging

Qianqian Wang, Haibo Li,* Jiali Fan, Zhennan Zhou, Hua Tong, Jialin Zhu, Wei Liu* and Gangfeng Ouyang*

School of Chemical Engineering and Technology, Sun Yat-sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, Guangdong, P. R. China E-mail: lihb63@mail.sysu.edu.cn, liuwei96@mail.sysu.edu.cn, cesoygf@mail.sysu.edu.cn

EXPERIMENTAL SECTION

Materials. CuI (>99.5%, Aladdin), triethylenediamine (ted, 98%, Macklin), 1-bromopropane (>99.0%, Macklin), 1-bromobutane (>99.0%, Macklin), 1-bromopentane (>99.0%, Macklin), potassium iodide (99.21%, Bidepharm), methanol (99.5%, Macklin), dimethyl sulfoxide-d6 (DMSO-d6, D.99.9% +0.03% TMS, Macklin), acetonitrile (AR, Macklin), polydimethylsiloxane (PDMS, AR, Macklin) and deionized water. All reagents were used as received without further purification.

Preparation of R-ted-R ligands. 10 mmol triethylenediamine (ted, 1.12 g) was dissolved in 5 mL of acetonitrile. Under magnetic stirring, 5 mL acetonitrile solution dissolved with 40 mmol of bromoalkane was dropwise added into the ted acetonitrile solution and stirred for 2 days to obtain the white precipitate. And the reaction solution is then poured out, leaving only the powder product, which is washed with cyclohexane and finally dried under vacuum. All ligands were dissolved in methanol at the concentration of 3 mL methanol/1 mmol ligand and prepared into methanol solution for use.

Synthesis of crystals of compounds 1-3. Single crystals were prepared by a slow diffusion method. In a glass sample bottle, 1 mmol CuI (0.19 g) was dissolved in 5 mL saturated KI solution, and then 2 mL acetonitrile was dropwise added. Finally, 3 mL methanol solution containing the ligand was slowly dribbled into the solution (the ligand dosage was 1 mmol). After a few days, transparent crystals grow out in the bottle, and the crystals emit bright yellow light under the ultraviolet lamp. Scoop out the crystals, and then add a small amount of ethanol to carefully rinse the crystals, and finally dry the crystals under vacuum.

Synthesis of powder of compounds 1-3. The 1 mmol R-ted-R ligand was dissolved in 3 mL methanol solution, and then 5 mL saturated KI solution dissolved with 1 mmol CuI was dropped into the solution to immediately produce a large amount of powder, which was illuminated with bright yellow light by 365 nm UV lamp. Then the product was centrifuged and washed with deionized water three times to remove KI in the solution, and then washed with anhydrous ethanol again and dried in vacuum. Finally, the powder was collected and weighed, and the product masses of compounds 1, 2 and 3 were 168.4 mg, 545 mg and 284 mg, respectively.

LC-MS and ¹H-NMR analyses. Liquid chromatography-mass spectrometry (LC-MS, Thermo Fisher, UltiMate3000 ISQESI) and 600 M nuclear magnetic resonance hydrogen spectrum (¹H-NMR, Bruker Switzerland AG, AVANCE NEO 600) to verify the successful synthesis of the R2-ted organic ligand and test the purity of the product. Mass spectrometry: All ligands were synthesized into 2 mg/mL methanol solution under direct injection and ESI+ detection mode, and the ion source was Electron Spray Ionization (ESI). ¹H-NMR spectroscopy: 5-10 mg ligand dissolved in 0.5 mL dimethyl sulfoxid-D6 deuterium.

Microscope images. The crystal micrographs were obtained by using a MIT500 metallographic microscope. The glow micrographs were obtained in the dark under the illumination of a 365 nm ultraviolet LED.

Single-crystal X-ray diffraction (SCXRD). Single crystal data was collected on a Bruker D8 Venture METALJET Ga-Target SC-XRD under test temperature (*T*) of 100 K and radiation wavelength (λ) of 0.71073 Å. The structure was solved by direct method and refined by full-matrix least-squares on F^2 using the Bruker SHELXTL package. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data_re-quest/cif. The structures of compounds 1-3 are deposited in CCDC with deposition number of 2368508, 2368509 and 23685010, respectively.

Powder X-ray diffraction (PXRD). PXRD data were collected on the Rigaku Ultima IV automated

diffraction system with an X-ray source of 1.54056 A Cu K α 1 and a power of 40 kV/40 mA (5-50°, 10°/min).

X-ray photoelectron spectroscopy (XPS) tests. The XPS spectra of compounds **1-3** were obtained by an X-ray photoelectron spectrometer (SHIMADZU AXIS SUPRA+).

Optical diffuse reflectance measurements. Optical diffuse reflectance spectrum was measured on the UV-2600 spectrophotometer from Shimadzu using BaSO₄ powder as the reflectivity reference. the optical bandgap was calculated by use of a typical Tauc method by employing the equation: $(\alpha hv)^n = A(hv-E_g)$, where α , h, v, A, and E_g are the absorption coefficient, Plank's constant, light frequency, a constant, and band gap. The value of n here is 2 presuming that compounds **1-3** are direct transition semiconductors.

Thermogravimetric (TG) analysis. The TG analysis was performed on the TG analyzer (Netzsch TG 209 F1 Libra R) and was heated from room temperature to 800 °C under nitrogen flow at a rate of 10 °C/min.

Photoluminescence/radioluminescence related measurements. Photoluminescence emission (PL) and excitation (PLE) measurements, radioluminescence (RL), room temperature fluorescence decay curve and photoluminescence quantum yield (PLQY) tests were carried out on FLS1000 spectrofluorometer (Edinburgh Instruments). The fluorescent lifetime excitation source is Edinburgh EPLED-295/365 nm picosecond pulsed diode laser. An X-ray tube (Moxtek, TUB00154-9I-WO6, working condition: 50 kV, 20 μ A) was used to collect the RL spectra, and BGO (Bi₄Ge₃O₁₂ crystal, a known reference material) was used for comparison.

Fabrication of flexible scintillator screens. 0.50 g compound **3** and 1.00 g PDMS were mixed uniformly and then dropped on the glass substrate, and then a thin film with uniform thickness was prepared by spin coating. The spin-coated films can be peeled off the glass substrate after curing at 120 °C overnight.

Figure S1. Synthesis of disubstituted ted derivative ligands.

Figure S2. MS (top) and ¹H-NMR (bottom) spectra of R-ted-R organic ligand L₁. The inset is for its molecular structure. ¹H NMR (600 MHz, DMSO- d_6) δ 3.91 (s, 12H), 3.55 – 3.48 (m, 4H), 1.78 – 1.68 (m, 4H), 0.93 (t, J = 7.3 Hz, 6H).

Figure S3. MS (top) and ¹H-NMR (bottom) spectra of R-ted-R organic ligand L₂. The inset is for its molecular structure. ¹H NMR (600 MHz, DMSO- d_6) δ 3.90 (d, J = 6.8 Hz, 12H), 3.57 – 3.51 (m, 4H), 1.73 – 1.65 (m, 4H), 1.33 (h, J = 7.4 Hz, 4H), 0.95 (t, J = 7.4 Hz, 6H).

Figure S4. MS (top) and ¹H-NMR (bottom) spectra of R-ted-R organic ligand L₃. The inset is for its molecular structure. ¹H NMR (600 MHz, DMSO- d_6) δ 3.91 (s, 12H), 3.57 – 3.50 (m, 4H), 1.75 – 1.67 (m, 4H), 1.35 (p, J = 7.2 Hz, 4H), 1.32 – 1.25 (m, 4H), 0.91 (t, J = 7.2 Hz, 6H).

Figure S5. X-ray photoelectron spectroscopy (XPS) survey spectra and high-resolution XPS spectra of Cu 2p, N 1s and I 3d of compounds (a-d) **1**, (e-h) **2** and (i-l) **3**, respectively.

Figure S6. (a-c) UV-Vis diffuse reflectance spectra of compounds **1-3** (insets are Tauc curves and microscope images of crystals under natural light), respectively.

Figure S7. CIE color coordinates of compounds 1-3. Inset: luminescent coating made by 3.

Figure S8. Emission spectra of compounds 1-3 under light excitation of different energies.

Figure S9. Photoluminescent quantum yield analysis curves of compounds 1-3.

Figure S10. Radioluminescence (RL) spectra of compound **3** in the dose rate range of 220 to 705 μ Gy_{air} s⁻¹.

Ligand	Sustamatia noma	Abbuorristian	Corresponding bromoalkane	Viald
number	Systematic name	Addreviation	and its dosage	rield
т	1,4-dipropyl-1,4-diazabicyclo	Dr tod Dr	1 bromonronano 402 g	620/
L ₁	[2.2.2]octan-1,4-diium bromide	Pr-teu-Pr	1-bromopropane, 4.92 g	0370
т	1,4-dibutyl-1,4-diazabicyclo	Du tod Du	1 human hutana 5 19 a	55%
L_2	[2.2.2]octan-1,4-diium bromide	Би-кеа-Би	1-bromobutane, 5.48 g	
т	1,4-dipentyl-1,4-diazabicyclo	Dan tad Dan	1 bromonontano 604 a	10%
L ₃	[2.2.2]octan-1,4-diium bromide	I CII-ICU-F CII	1-bromopentane, 0.04 g	4770

Table S1. Preparation information of three R-ted-R organic ligands.

Table S2. Summary of single crystal analysis data of compounds 1-3.

Hybrid	Compound 1 $(Cu_4I_8)(CuI_4)_3(C_{12}H_{26}N_2)_6^{[a]}$	Compound 2 $(Cu_3I_6)(C_{14}H_{30}N_2)^{[b]}$	Compound 3 (Cu ₃ I ₆) ₄ (C ₁₆ H ₃₄ N ₂) ₆
Ligand abbreviation	Pr-ted-Pr	Bu-ted-Bu	Pen-ted-Pen
Empirical formula	$C_{72}H_{159}Cu_7I_{20}N_{12}O$	$C_{17}H_{42}Cu_3I_6N_2KO_3$	$C_{48}H_{102}Cu_6I_{12}N_6$
Formula weight	4191.96	1314.91	2667.07
Space group	pl	P21212	Cc
<i>a</i> (Å)	8.1488(5)	13.2569(3)	16.9436(2)
<i>b</i> (Å)	28.0082(18)	31.2788(9)	28.3740(3)
<i>c</i> (Å)	30.0270(19)	8.5120(2)	32.0723(3)
α (deg)	62.316(2)	90	90
β (deg)	83.563(2)	90	102.407(1)
γ (deg)	83.272(2)	90	90
$V(Å^3)$	6013.9(7)	3529.59(15)	15058.9(3)
Ζ	2	4	4
Test temperature(K)	100	100	100
λ (Å)	0.71073	0.71073	0.71073
R_1	0.0728	0.0294	0.0485
wR_2	0.2237	0.0697	0.1088

^[a] One H_3O^+ in compound 1, ^[b] one K^+ and three CH_3OH in compound 2 are omitted for consistency of the structural formula.

Compound	Band gap (eV)	PLE _{max} (nm)	PL _{max} (nm)	Stokes shift (nm)	fwhm (nm)	PLQY (%)
1	3.32	348	592	244	132	61.29
2	3.36	332	578	246	180	64.46
3	3.32	330	578	248	130	58.95

Table S3. Comparison of some optical properties of compounds 1-3.

Table S4. The WLED performance of compound **3** $[(Cu_3I_6)_4(C_{16}H_{34}N_2)_6]$ compared with other similar materials.

Number	Compound	CRI	CIE coordinates	CCT (K)	Reference
1	BAM, (Cu ₃ I ₆) ₄ (C ₁₆ H ₃₄ N ₂) ₆	85	(0.33, 0.39)	5220	This work
2	YAG: Ce, CuX ₂ (tpp) ₂ (i-bu-ted)	/	(0.329, 0.406)	5652	[1]
3	$Cu_2I_2(tpp)_2(bpp),$ $Cu_2I_2(tpp)_2(4,4'\text{-bpy})$	73.8	(0.31, 0.36)	4512	[2]
4	1D-CuBr(py) _{0.9995} (pz) _{0.0005}	68.4	(0.34, 0.41)	5792	[3]
5	1D-CuBr(py) _{0.9993} (pz) _{0.0007}	67.0	(0.35, 0.42)	5024	[3]
6	1D-CuBr(py) _{0.9988} (pz) _{0.0012}	67.2	(0.39, 0.43)	3888	[3]
7	1D-CuBr(py)0.9968(pz)0.0032	58.0	(0.42, 0.46)	3658	[3]
8	1D-CuBr(py) _{0.9988} (2-et-pz) _{0.0012}	65.4	(0.26, 0.36)	4259	[3]
9	1D-CuBr(py) _{0.9988} (2-me-pz) _{0.0012}	65.5	(0.28, 0.37)	3940	[3]
10	1D-CuBr(py) _{0.9988} (2-Cl-pz) _{0.0012}	77.2	(0.43, 0.42)	3697	[3]
11	1D-CuBr(py) _{0.9988} (2-Br-pz) _{0.0012}	75.6	(0.44, 0.40)	3360	[3]
12	(Sr, Ca)AlSiN ₃ :Eu, (BPTA) ₂ MnBr ₄	93.2	(0.34, 0.39)	5301	[4]
13	BAM, [M ₂ ImH] ₃ ⁺ [SbCl ₆] ³⁻	~80.5	(0.306, 0.323)	~7000	[5]
14	$Cu_2X_3(tpp)_2(n-pr-ted),$ $Cu_4I_6(ted-oct-ted)$	90	(0.406, 0.422)	3800	[6]

Compound	Light yield (photons/MeV)	Detection limit	Reference
(Cu ₃ I ₆) ₄ (C ₁₆ H ₃₄ N ₂) ₆	17508	1.14 µGy _{air} /s	This work
(4-bzpy) ₄ Cu ₄ I ₄	60948	/	[7]
(4-bzpy) ₂ Cu ₆ I ₈	5353	/	[7]
(4-bzpy) ₃ Cu ₃ I ₆	7011	/	[7]
Cu ₂ Au ₂ (R-BTT) ₄	13600-17000	111.7 nGy _{air} /s	[8]
PPh ₄ CuBr ₂	5000	$6.37 \ \mu Gy_{air}/s$	[9]
(Bmpip) ₂ Cu ₂ Br ₄	1600	$0.71 \ \mu Gy_{air}/s$	[9]
$Cu_4I_4py_4$	9277±850	/	[10]
CuCl(PPh ₃) ₂ (3-mepy)	5951±135	338.8 nGy _{air} /s	[11]

Table S5. The performance of compound **3** $[(Cu_3I_6)_4(C_{16}H_{34}N_2)_6]$ compared with other similar X-ray scintillators.

Figure S11. Schematic diagrams of inorganic module of compound 1.

Number	Atom1	Atom2	Atom3	Angle(°)
1	Cu3	19	Cu5	58.01(9)
2	Cu3	I10	Cu4	58.37(9)
3	Cu3	I12	Cu4	56.56(9)
4	Cu3	I12	Cu5	55.89(8)
5	Cu3	I12	Cu6	164.01(9)
6	Cu4	I12	Cu5	79.81(7)
7	Cu4	I12	Cu6	132.98(7)
8	Cu5	I12	Cu6	132.71(7)
9	Cu4	I13	Cu5	82.36(7)
10	Cu4	I13	Cu6	125.62(8)

Table S6. Bound angles of inorganic module of compound 1.

Number	Atom1	Atom2	Atom3	Angle(°)
11	Cu5	I13	Cu6	126.67(8)
12	19	Cu3	I10	128.3(1)
13	19	Cu3	I12	116.0(1)
14	I10	Cu3	I12	115.3(1)
15	I10	Cu4	I11	114.89(9)
16	I10	Cu4	I12	103.64(8)
17	I10	Cu4	I13	106.95(8)
18	I11	Cu4	I12	114.03(9)
19	I11	Cu4	I13	118.67(9)
20	I12	Cu4	I13	96.21(7)
21	19	Cu5	I12	104.95(7)
22	19	Cu5	I13	106.94(7)
23	19	Cu5	I14	110.03(8)
24	I12	Cu5	I13	95.66(7)
25	I12	Cu5	I14	117.28(8)
26	I13	Cu5	I14	120.20(8)
27	I13	Cu5	Cu3	79.6(1)
28	I14	Cu5	Cu3	159.9(1)
29	I13	Cu6	I15	116.7(1)
30	I13	Cu6	I16	115.0(1)
31	I13	Cu6	I12	89.59(7)
32	I15	Cu6	I16	120.2(1)
33	I15	Cu6	I12	98.80(8)
34	I16	Cu6	I12	109.42(9)
35	I1	Cu1	I2	103.34(8)
36	I1	Cu1	13	116.96(9)
37	I1	Cu1	I4	106.16(8)
38	I2	Cu1	13	108.25(8)
39	I2	Cu1	I4	120.08(9)
40	I3	Cu1	I4	102.80(8)
41	15	Cu2	16	108.3(1)
42	15	Cu2	I7	116.0(1)
43	I5	Cu2	18	110.6(1)
44	16	Cu2	I7	113.5(1)
45	I6	Cu2	18	113.7(1)
46	I7	Cu2	18	94.4(1)
47	I17	Cu7	I18	104.9(1)
48	I17	Cu7	I20	111.4(1)
49	I17	Cu7	I19A	115.8(1)
50	I18	Cu7	I20	114.8(1)
51	I18	Cu7	I19A	111.4(1)
52	I20	Cu7	I19A	98.8(1)

Number	Atom1	Atom2	Length(Å)
1	19	Cu3	2.500(3)
2	19	Cu5	2.734(3)
3	I10	Cu3	2.504(3)
4	I10	Cu4	2.760(4)
5	I11	Cu4	2.528(2)
6	I12	Cu3	2.652(4)
7	I12	Cu4	2.782(2)
8	I12	Cu5	2.776(2)
9	I12	Cu6	3.088(3)
10	I13	Cu4	2.692(2)
11	I13	Cu5	2.723(2)
12	I13	Cu6	2.680(3)
13	I14	Cu5	2.536(2)
14	I15	Cu6	2.535(3)
15	I16	Cu6	2.539(2)
16	Cu6	I12	3.088(3)
17	I1	Cu1	2.708(3)
18	I2	Cu1	2.643(2)
19	13	Cul	2.637(2)
20	I4	Cu1	2.675(3)
21	15	Cu2	2.625(4)
22	16	Cu2	2.622(4)
23	I7	Cu2	2.639(3)
24	18	Cu2	2.776(4)
25	I17	Cu7	2.676(3)
26	I18	Cu7	2.626(3)
27	I20	Cu7	2.670(3)
28	Cu7	I19A	2.702(5)

Table S7. Bound length of inorganic module of compound 1.

Figure S12. Schematic diagram of inorganic module of compound **2**.

Number	Atom1	Atom2	Atom3	Angle(°)
1	Cu1	I2	Cu2	56.96(5)
2	Cu1	13	Cu2	54.82(4)
3	Cu1	I3	Cu3	55.15(5)
4	Cu2	13	Cu3	74.56(4)
5	Cu2	I4	Cu3	79.75(4)
6	Cu1	15	Cu3	57.26(7)
7	I2	Cu1	13	114.09(6)
8	I2	Cu1	15	128.92(9)
9	I3	Cu1	15	116.76(8)
10	I1	Cu2	I2	110.09(5)
11	I1	Cu2	13	112.98(5)
12	I1	Cu2	I4	118.44(5)
13	I2	Cu2	13	102.06(4)
14	I2	Cu2	I4	111.54(5)
15	I3	Cu2	I4	100.20(4)
16	I3	Cu3	I4	99.33(5)
17	I3	Cu3	15	105.65(7)
18	I3	Cu3	I6	109.92(5)
19	I4	Cu3	15	107.24(7)
20	I4	Cu3	16	117.16(5)
21	15	Cu3	16	115.75(7)

Table S8. Bound angles of inorganic module of compound 2.

Number	Atom1	Atom2	Length(Å)
1	I1	Cu2	2.561(1)
2	I2	Cu1	2.502(2)
3	I2	Cu2	2.776(1)
4	I3	Cu1	2.675(2)
5	I3	Cu2	2.811(1)
6	I3	Cu3	2.820(2)
7	I4	Cu2	2.646(1)
8	I4	Cu3	2.673(1)
9	15	Cu1	2.543(3)
10	15	Cu3	2.757(3)
11	I6	Cu3	2.535(1)

Table S9. Bound lengths of inorganic module of compound 2.

Figure S13. Schematic diagram of inorganic module of compound 3.

Number	Atom1	Atom2	Atom3	Angle(°)
1	Cu2	I2	Cu3A	56.4(2)
2	Cu2	13	Cu3	81.8(1)
3	Cu3	I4	Cu3A	58.3(2)
4	Cu2	I6A	Cu3	77.2(6)
5	Cu2	I6A	Cu3A	55.0(5)
6	Cu3	I6A	Cu3A	56.4(5)
7	I1	Cu2	I2	110.2(1)
8	I1	Cu2	I3	113.3(1)
9	I1	Cu2	I6A	121.2(5)

Table S10. Bound angles of inorganic module of compound **3**.

Number	Atom1	Atom2	Atom3	Angle(°)
10	I2	Cu2	I3	111.6(1)
11	I2	Cu2	I6A	100.6(5)
12	I3	Cu2	I6A	98.9(5)
13	I3	Cu3	I4	108.4(1)
14	I3	Cu3	15	112.6(1)
15	I3	Cu3	I6A	97.3(5)
16	I4	Cu3	15	116.3(1)
17	I4	Cu3	I6A	103.1(5)
18	15	Cu3	I6A	117.0(5)
19	12	Cu3A	I4	130.7(2)
20	12	Cu3A	I6A	114.6(5)
21	I4	Cu3A	I6A	114.0(5)
22	Cu4	18	Cu6	78.8(1)
23	Cu4	I9A	Cu5	57.4(2)
24	Cu4	I10A	Cu5	52.8(5)
25	Cu4	I10A	Cu6	78.8(7)
26	Cu5	I10A	Cu6	62.3(6)
27	Cu5	I11A	Cu6	58.0(1)
28	I7	Cu4	18	115.0(1)
29	17	Cu4	I9A	111.6(2)
30	I7	Cu4	I10A	125.5(5)
31	I7	Cu4	Cu5	160.8(2)
32	18	Cu4	I9A	109.2(2)
33	18	Cu4	I10A	90.7(5)
34	I9A	Cu4	I10A	102.3(5)
35	I9A	Cu5	I10A	128.2(6)
36	I9A	Cu5	I11A	129.6(3)
37	I10A	Cu5	I11A	101.9(6)
38	18	Cu6	I10A	105.9(6)
39	18	Cu6	I11A	110.5(1)
40	18	Cu6	I12B	116.4(2)
41	I10A	Cu6	I11A	101.2(6)
42	I10A	Cu6	I12B	110.7(6)
43	I11A	Cu6	I12B	110.9(2)
44	Cu10	I20	Cu11	83.8(1)
45	Cu10	120	Cu13	47.5(1)
46	Cu11	I20	Cu13	49.9(1)
47	Cu10	I22A	Cu13	56.0(2)
48	Cu10	123	Cu11	76.9(2)
49	Cu10	123	Cu13	53.1(2)
50	Cu11	123	Cu13	54.7(2)
51	Cu11	I24	Cu13	58.3(2)
52	I20	Cu10	I21A	113.6(2)

Number	Atom1	Atom2	Atom3	Angle(°)
53	I20	Cu10	I22A	109.4(2)
54	I20	Cu10	I23	97.5(2)
55	I21A	Cu10	I22A	113.5(2)
56	I21A	Cu10	I23	115.7(2)
57	I22A	Cu10	I23	105.8(2)
58	I19	Cu11	I20	114.6(2)
59	I19	Cu11	I23	119.5(2)
60	I19	Cu11	I24	114.4(2)
61	I20	Cu11	I23	95.4(2)
62	I20	Cu11	I24	111.0(2)
63	I23	Cu11	I24	99.6(2)
64	I20	Cu13	I22A	96.5(2)
65	I20	Cu13	I23	86.5(2)
66	I20	Cu13	I24	99.5(2)
67	I22A	Cu13	I23	114.9(2)
68	I22A	Cu13	I24	131.1(3)
69	I23	Cu13	I24	112.0(2)
70	Cu7	I14	Cu9A	57.1(1)
71	Cu7	I15	Cu8	76.9(1)
72	Cu7	I15	Cu9A	55.1(1)
73	Cu8	I15	Cu9A	54.7(1)
74	Cu7	I16	Cu8	79.9(1)
75	Cu8	I18	Cu9A	57.7(1)
76	I13	Cu7	I14	110.1(1)
77	I13	Cu7	I15	116.7(1)
78	I13	Cu7	I16	115.1(1)
79	I14	Cu7	I15	105.7(1)
80	I14	Cu7	I16	108.7(1)
81	I15	Cu7	I16	99.7(1)
82	I15	Cu8	I16	96.7(1)
83	I15	Cu8	I17	115.9(1)
84	I15	Cu8	I18	103.6(1)
85	I16	Cu8	I17	117.3(1)
86	I16	Cu8	I18	111.2(1)
87	I17	Cu8	I18	110.7(1)
88	I14	Cu9A	I15	113.1(2)
89	I14	Cu9A	I18	132.7(2)
90	I15	Cu9A	I18	113.4(2)

Table S11. Bound	l lengths	of inorg	anic mod	lule of	compound	3.
	0		r		1	

Number	Atom1	Atom2	Length(Å)
1	I1	Cu2	2.594(4)
2	I2	Cu2	2.731(4)

Number	Atom1	Atom2	Length(Å)
3	I2	Cu3A	2.531(6)
4	13	Cu2	2.684(4)
5	13	Cu3	2.724(3)
6	I4	Cu3	2.665(3)
7	I4	Cu3A	2.609(6)
8	15	Cu3	2.522(4)
9	I6A	Cu2	2.82(2)
10	I6A	Cu3	2.85(2)
11	I6A	Cu3A	2.55(3)
12	17	Cu4	2.588(4)
13	18	Cu4	2.687(4)
14	18	Cu6	2.720(4)
15	I9A	Cu4	2.755(9)
16	I9A	Cu5	2.425(9)
17	I10A	Cu4	3.00(2)
18	I10A	Cu5	2.56(2)
19	I10A	Cu6	2.35(3)
20	I11A	Cu5	2.507(4)
21	I11A	Cu6	2.733(4)
22	I12B	Cu6	2.505(4)
23	I19	Cu11	2.531(4)
24	120	Cu10	2.662(5)
25	120	Cu11	2.666(5)
26	120	Cu13	3.293(5)
27	I21A	Cu10	2.559(5)
28	I22A	Cu10	2.704(5)
29	I22A	Cu13	2.535(5)
30	I23	Cu10	2.820(7)
31	I23	Cu11	2.902(6)
32	I23	Cu13	2.690(7)
33	I24	Cu11	2.752(7)
34	I24	Cu13	2.521(7)
35	I13	Cu7	2.553(4)
36	I14	Cu7	2.755(3)
37	I14	Cu9A	2.490(5)
38	I15	Cu7	2.712(4)
39	I15	Cu8	2.835(4)
40	I15	Cu9A	2.731(5)
41	I16	Cu7	2.689(3)
42	I16	Cu8	2.687(4)
43	I17	Cu8	2.527(4)
44	I18	Cu8	2.756(4)
45	I18	Cu9A	2.525(5)

References

- H. Li, Y. Lv, Z. Zhou, H. Tong, W. Liu and G. Ouyang, Coordinated Anionic Inorganic Module—An Efficient Approach Towards Highly Efficient Blue-Emitting Copper Halide Ionic Hybrid Structures, *Angew. Chem. Int. Ed.*, 2021, 61, e202115225.
- W. Liu, Y. Fang, G. Z. Wei, S. J. Teat, K. Xiong, Z. Hu, W. P. Lustig and J. Li, A Family of Highly Efficient CuI-Based Lighting Phosphors Prepared by a Systematic, Bottom-up Synthetic Approach, J. Am. Chem. Soc., 2015, 137, 9400-9408.
- 3. W. Liu, D. Banerjee, F. Lin and J. Li, Strongly luminescent inorganic–organic hybrid semiconductors with tunable white light emissions by doping, *J. Mater. Chem. C*, 2019, **7**, 1484-1490.
- 4. J. Fan, H. Tong, Q. Wang, J. Zhu, H. Li, W. Liu and G. Ouyang, Blue-Excitable–Green-Emitting Organic Manganese Halides for White Light-Emitting Diodes, *Cryst. Growth Des.*, 2024, **24**, 6572-6577.
- J. Zhu, C. Su, J. Yang, H. Tong, H. Li, W. Liu and G. Ouyang, Highly Emissive Organic Antimony Halide with Ferromagnetism and Methanol Sensing Properties, *Cryst. Growth Des.*, 2024, 24, 4293-4299.
- 6. H. Li, Y. Lv, Y. Tan, J. Yang, W. Liu and G. Ouyang, Ultrastable Copper Iodide Hybrid with Intrinsic Greenish White-Light Emission by Incorporating an Anionic Inorganic Functional Unit into an Extended Structure, *Inorg. Chem.*, 2024, DOI: 10.1021/acs.inorgchem.4c01231.
- Q. Kong, X. Jiang, Y. Sun, J. Zhu and X. Tao, Yellow-emissive organic copper(i) halide single crystals with [Cu₄I₄] cubane unit as efficient X-ray scintillators, *Inorg. Chem. Front.*, 2024, 11, 3028-3035.
- R.-W. Huang, X. Song, S. Chen, J. Yin, P. Maity, J. Wang, B. Shao, H. Zhu, C. Dong, P. Yuan, T. Ahmad, O. F. Mohammed and O. M. Bakr, Radioluminescent Cu–Au Metal Nanoclusters: Synthesis and Self-Assembly for Efficient X-ray Scintillation and Imaging, *J. Am. Chem. Soc.*, 2023, 145, 13816-13827.
- T. Xu, Y. Li, M. Nikl, R. Kucerkova, Z. Zhou, J. Chen, Y.-Y. Sun, G. Niu, J. Tang, Q. Wang, G. Ren and Y. Wu, Lead-Free Zero-Dimensional Organic-Copper(I) Halides as Stable and Sensitive X-ray Scintillators, ACS Appl. Mater. Interfaces, 2022, 14, 14157-14164.
- K. Kirakci, K. Fejfarová, J. Martinčík, M. Nikl and K. Lang, Tetranuclear Copper(I) Iodide Complexes: A New Class of X-ray Phosphors, *Inorg. Chem.*, 2017, 56, 4609-4614.
- 11. X. Liu, Y. Jiang, F. Li, X. Xu, R. Li, W. Zhu, J. Ni, C. Ding, S. Liu and Q. Zhao, Thermally Activated Delayed Fluorescent Scintillators Based on Mononuclear Copper(I) Halide Complexes for High-Resolution X-Ray Imaging, *Adv. Opt. Mater.*, 2022, **11**, 2202169.