# Engineering a pyrene MOF composite photocatalyst toward the formation of carbon dioxide radical anion through regulating the charge transfer from type-II to Z-scheme via a chemical bondmodulated strategy

Xin Zhao,<sup>a</sup> Yajun Zhao, <sup>a</sup> Yuan-Peng Li,<sup>a</sup> Pengbo Lyu,<sup>\*c</sup> Chunying Chen,<sup>d</sup> Zong-Wen Mo,<sup>a,b</sup> Chao Peng, <sup>a,b</sup> Jiewei Liu<sup>\*a,b</sup> and Li Zhang<sup>\*d</sup>

 <sup>a</sup> School of Environmental and chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, P.R. China. E-mail addresses: wyuchemliujw@126.com
 <sup>b</sup> Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.

<sup>e</sup>Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China. E-mail addresses: pengbo.lyu@xtu.edu.cn
<sup>d</sup> School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China. E-mail addresses: zhli99@mail.sysu.edu.cn

# Contents

| 1. General Information                                                   | S5  |
|--------------------------------------------------------------------------|-----|
| 2. Experimental section                                                  | S6  |
| 3. Characterization of the photocatalysts                                | S8  |
| 4. Photocatalytic Cyclization of Propargylic Amines with CO <sub>2</sub> | S15 |
| 5. Reaction mechanism study                                              | S21 |
| 6. Characterizations of propargylic amines and oxazolidinones            |     |

## **Captions for Figures and Tables**

Figure S1. PXRD patterns of WYU-11, CdS, CdS@WYU-11 and CdS@WYU-11-Cys composites.

**Figure S2.** PXRD patterns (a), SEM (b), TEM (c), XPS patterns (d) and EDS elemental mapping images (e) of WYU-11-Cys, respectively.

Figure S3. TEM images of CdS@WYU-11-Cys.

**Figure S4.** High resolution TEM images of CdS@WYU-11 and the size distribution of CdS (left); The lattice fringe of the CdS (right).

**Figure S5.** N<sub>2</sub> adsorption-desorption isotherm of WYU-11, CdS@WYU-11 and CdS@WYU-11-Cys composites at 77 K.

Figure S6. UV-vis DRS of WYU-11, CdS, CdS@WYU-11 and CdS@WYU-11-Cys composites.

Figure S7. Tauc plot of WYU-11 (a) and CdS (b); Mott-Schottky plot of WYU-11 (c) and CdS (d) in a 0.1 M Na<sub>2</sub>SO<sub>4</sub> solution containing  $K_3Fe(CN)_6/K_4Fe(CN)_6$  (0.01 M).

Figure S8. Band structure of WYU and CdS.

**Figure S9.** Scheme illustrating the potential type II or Z-scheme charge transfer pathways between WYU-11 and CdS in the CdS@WYU-11-Cys composites.

Figure S10. S 2p of CdS@WYU-11-cys composite in the dark and under visible light irradiation ( $\lambda > 400 \text{ nm}$ ).

Figure S11. VB-XPS of (a)WYU-11, (b) CdS and (c) WYU-11-Cys, respectively.

**Figure S12.** The cycling experiments of CdS@WYU-11-Cys for the photocatalytic cyclization of CO<sub>2</sub> and propargylic amines.

Figure S13. The SEM images of CdS@WYU-11-Cys before (a) and after (b) photocatalysis.

Figure S14. The TEM image of CdS@WYU-11-Cys after the second run.

Figure S15. The PXRD patterns of CdS@WYU-11-Cys before and after catalytic reaction.

Figure S16. XPS spectrum of CdS@WYU-11-Cys before and after catalytic reaction.

**Figure S17.** The cysteamine-grafted configuration and adsorption of *N*-benzylprop-2-yn-1-amine configuration within WYU-11. The distances are in Å.

Figure S18. CO<sub>2</sub> isotherms of Cds@WYU-11-Cys at different temperatures.

**Figure S19.** The photocatalytic cyclization reaction of propargylic amine with CO<sub>2</sub> in the presence of MeOH or K<sub>2</sub>S<sub>2</sub>O.

Figure S20. The optimized crystal structure (double-cell) in dehydrated form viewing along (a) a

(14.24 Å), (b) **b** (11.14 Å) and (c) **c** (32.26 Å) directions.

Table S1. EXAFS fitting parameters of the Cd K-edge towards WYU-11-Cys.

 Table S2. Control experiments for the photocatalytic cyclization reaction of propargylic amine (1a)

 with CO2.

 Table S3. Solvent optimization for the photocatalytic cyclization reaction of propargylic amine (1a)

 with CO2.

**Table S4**. Comparation of CdS@WYU-11-Cys and other MOF-based catalysts for the cyclization reaction of propargylic amine with CO<sub>2</sub>.

### 1. General information

All reagents and solvents used in this work were purchased from commercial supplies without further purification. Powder X-ray diffraction (PXRD) studies were carried out on a Rigaku MiniFlex 600-C diffractometer (Bragg-Brentano geometry, Cu-Ka radiation,  $\lambda$ = 1.54178 Å). <sup>1</sup>H NMR was recorded on Bruker AVANCE III 500(500 MHz). XPS analyses were performed on a Thermo Scientific ESCALAB 250Xi with a monochromatized micro-focused Al Ka X-ray source provided by eceshi (www.eceshi.com). Binding energies (BE) were calibrated by setting the measured BE of C Is to 284.65 eV. UV-vis absorption spectra were recorded on a Shimadzu UV-3600 Plus spectrometer. Fluorescence spectra were measured on an Edinburgh FLS1000 Photoluminescence Spectrometer. The fluorescence lifetime experiments were performed in the time-correlated single photo counting (TCSPC) methods by using 340 nm picoseconds pulsed diode laser. The sorption isotherms were measured with an ASAP 2460/2020 gas sorption analyzer. Scanning electron microscopy (SEM) analysis was performed using a Zeiss Gemini SEM 500 apparatus. Transmission electron microscopy (TEM) investigations was performed by Tecnai G2 F20 S-TWIN. High-angle annular dark-field scanning TEM (HAADF-STEM) was performed by Thermo Scientific Themis Z. Samples for SEM tests were dispersed in EtOH with the aid of sonication, and then deposited on a conductive tape. Prior to TEM measurements, samples were dispersed in ethanol using a sonication method, and then mounted on a carbon coated copper grid.

#### 2. Experimental section

#### 2.1 Synthesis of CdS particles

Typically, Cd(CH<sub>3</sub>COO)<sub>2</sub>·2H<sub>2</sub>O (133.3 mg, 0.5 mmol) is added into 20 mL of dry ethanol, then the whole mixture are kept stirring and reflux at 80 °C for 12 h. The CdS particles are separated by centrifugation and washed with distilled water for several time and dried under vacuum at 60 °C overnight.

#### 2.2 Photoelectrochemical characterization

Photoelectrochemical measurements were performed on a CHI 660E electrochemical work station (Chenhua Instrument, Shanghai, China) in a standard three-electrode system with the sample-coated FTO, Pt plate and Ag/AgCl as the working electrode, counter electrode and reference electrode, respectively. The as-synthesized samples (5 mg) were added into Dupont D520 Nafion (25  $\mu$ L) and ethanol (0.2 mL) mixed solution, giving a suspension, and then the working electrodes were prepared by dropping the suspension onto the surface of a FTO plate. The working electrodes were dried at room temperature. The photocurrent was measured using constant voltage tracking (CVT) using a 0.1 M Na<sub>2</sub>SO<sub>4</sub> solution containing K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> (0.01 M) as the electrolyte. A 300 W Xe lamp ( $\lambda \ge 400$  nm) was used as the light source, and a shutter was used to modulate the light and dark conditions during the test. Photo-responsive signals of the samples were measured under chopped light at 10<sup>-5</sup> V. The electrochemical impedance spectroscopy (EIS) was performed in frequency range from 10<sup>-2</sup> to 10<sup>3</sup> Hz with a bias potential of 0.005 V. The Mott-Schottky measurements were performed at frequencies of 500, 1000, and 1500 Hz, respectively.

#### 2.3 In situ irradiated X-ray photoelectron spectroscopy (ISI-XPS)

In situ irradiated X-ray photoelectron spectroscopy (XPS) measurements were conducted on a Thermo Scientific ESCALAB 250Xi with a monochromatized micro-focused Al Ka X-ray source. All binding energies were referenced to the adventitious C 1s line at 248.4 eV. A 300 W Xe lamp ( $\lambda \ge 400$  nm) (Perfect Light) was kept  $\approx 15$  cm away from the samples as a light source.

## 2.4 EPR radicals trapping experiments

The spectra were collected from a Bruker EMXnano spectrometer at room temperature using 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) as radical trapping agent. The DMPO-•CO<sub>2</sub><sup>-</sup> adduct was obtained from the mixing of 20  $\mu$ L solution A (10 mg of the sample powder dispersing in 2 mL CH<sub>3</sub>CN) and 20  $\mu$ L solution B (20  $\mu$ L of DMPO added into 200  $\mu$ L CH<sub>3</sub>CN), which was irradiation under atmospheric CO<sub>2</sub> and visible light ( $\lambda \ge 400$  nm) for 5 min.

# 3. Characterization of the photocatalysts

| Sample     | Path      | CN   | R/Å  | $\sigma^2(\text{\AA}^2)$ | $\Delta E_0(\mathrm{eV})$ | R factor |
|------------|-----------|------|------|--------------------------|---------------------------|----------|
| CdO        | Cd–O      | 5.9  | 2.34 | 0.009                    | 3.8                       | 0.01     |
|            | Cd–O–Cd   | 12.4 | 3.32 | 0.003                    | 1.45                      |          |
| WYU-11-Cys | Cd–O/Cd–N | 4.9  | 2.29 | 0.007                    | 13.2                      | 0.004    |

Table S1. EXAFS fitting parameters of the Cd K-edge towards WYU-11-Cys



Figure S1. PXRD patterns of CdS, WYU-11, WYU-11-Cys, CdS@WYU-11 and CdS@WYU-11-

Cys composites.



**Figure S2**. PXRD patterns (a), SEM (b), TEM (c), XPS spectrum (d) and EDS elemental mapping images (e) of WYU-11-Cys, respectively.

The bulk purity and irregular morphology of WYU-11-Cys were revealed by the PXRD patterns (Figure S2a), scanning electron microscopy (SEM) (Figure S2b) and TEM (Figure S2c). XPS spectrum indicates of the +3 valence nature of Cd in WYU-11-Cys (Figure S2d). EDX elemental mapping images indicated the evenly distribution of all the elements in the whole WYU-11-Cys material (Figure S2e).



Figure S3. TEM images of CdS@WYU-11-Cys.



Figure S4. High resolution TEM images of CdS@WYU-11 and the size distribution of CdS (left); The lattice fringe of the CdS (right).



Figure S5. N2 adsorption-desorption isotherm of WYU-11, CdS@WYU-11 and CdS@WYU-11-

Cys composites at 77 K.



Figure S6. UV-vis DRS of WYU-11, CdS, CdS@WYU-11 and CdS@WYU-11-Cys composites.



**Figure S7.** Tauc plot of WYU-11 (a) and CdS (b); Mott-Schottky plot of WYU-11 (c) and CdS (d) in a 0.1 M Na<sub>2</sub>SO<sub>4</sub> solution containing K<sub>3</sub>Fe(CN)<sub>6</sub>/K<sub>4</sub>Fe(CN)<sub>6</sub> (0.01 M).



Figure S8. Band structure of WYU and CdS.



Figure S9. Scheme illustrating the potential type II or Z-scheme charge transfer pathways between WYU-11 and CdS in the CdS@WYU-11-Cys composites.



Figure S10. (h) S 2p of CdS@WYU-11-cys composite in the dark and under visible light

irradiation ( $\lambda$ >400 nm).



Figure 11. VB-XPS of (a)WYU-11, (b) CdS and (c) WYU-11-Cys, respectively.

The work functions ( $\Phi$ ) were calculated by the valence band X-ray photoelectron spectroscopy (VB-XPS) method based on the equation:  $\Phi = \varphi + \Delta V$  ( $\varphi$  represents work function of XPS analyzer,  $\varphi = 4.2 \text{ eV}$ ,  $\Delta V$  is the contact potential difference). The  $\Delta V$  values were obtained by analyzing the distance between two inflection points (IP) in VB XPS. Therefore, the work functions ( $\Phi$ ) of WYU-11, CdS and WYU-11-Cys were calculated to be 8.05, 7.68 and 6.86 eV, respectively.

## 4. Photocatalytic Cyclization of Propargylic Amines with CO<sub>2</sub>

**Table S2.** Control experiments for the photocatalytic cyclization reaction of propargylic amine (1a) with  $CO_2^a$ 

| ~ ^              | Catal               | yst (2 mol%)                     |                        |
|------------------|---------------------|----------------------------------|------------------------|
| N H              | (balloon) base, CF  | H <sub>3</sub> CN, visible light | °∕ N ↓                 |
| 1a               |                     |                                  | //<br>2a               |
| entry            | catalyst            | base                             | yield (%) <sup>b</sup> |
| 1                | CdS@WYU-11-Cys      | TMG                              | 97                     |
| 2                | CdS@WYU-11          | TMG                              | 30                     |
| 3°               | H <sub>4</sub> PTTB | TMG                              | trace                  |
| 4 <sup>d</sup>   | CdS                 | TMG                              | 26                     |
| 5 <sup>e</sup>   | WYU-11              | TMG                              | 19                     |
| 6                | none                | TMG                              | 0                      |
| 7                | CdS@WYU-11-Cys      | none                             | trace                  |
| $8^{\mathrm{f}}$ | CdS@WYU-11-Cys      | TMG                              | trace                  |
| 9 <sup>g</sup>   | CdS@WYU-11-Cys      | TMG                              | trace                  |

<sup>a</sup> Reaction condition: **1a** (73 mg, 0.5 mmol), Catalyst (2 mol%), TMG (11.5 mg, 0.1 mmol), CH<sub>3</sub>CN (2 mL), visible light ( $\lambda$  > 400 nm), 8 h, CO<sub>2</sub> (balloon). <sup>b</sup>The yield of the reaction was determined by <sup>1</sup>H NMR of the crude residue. <sup>c</sup>0.01 mmol of H<sub>4</sub>PTTB. <sup>d</sup>0.01 mmol of CdS. <sup>c</sup>0.01 mmol of WYU-11. <sup>f</sup>N<sub>2</sub> atmosphere. <sup>g</sup>in the absence of visible light irradiation.

| N H   | Cata<br>+ CO <sub>2</sub> - Cata<br>(balloon) base, C | lyst (2 mol%)<br>─────<br>H <sub>3</sub> CN, visible light |                        |
|-------|-------------------------------------------------------|------------------------------------------------------------|------------------------|
| 1a    |                                                       |                                                            | 2a                     |
| entry | catalyst                                              | base                                                       | yield (%) <sup>b</sup> |
| 1     | CdS@WYU-11-Cys                                        | TMG                                                        | 97                     |
| 2     | CdS@WYU-11-Cys                                        | DBU                                                        | 91                     |
| 3     | CdS@WYU-11-Cys                                        | DIPEA                                                      | 6                      |
| 4     | CdS@WYU-11-Cys                                        | TEA                                                        | 14                     |

**Table S3.** Base optimization for the photocatalytic cyclization reaction of propargylic amine (1a) with  $CO_2$ .<sup>a</sup>

<sup>a</sup> Reaction condition: **1a** (73 mg, 0.5 mmol), Catalyst (13 mg, 2 mol%), TMG (11.5 mg, 0.1 mmol), CH<sub>3</sub>CN (2 mL), visible light ( $\lambda >$ 400 nm), 8 h, CO<sub>2</sub> (balloon). <sup>b</sup>The yield of the reaction was determined by <sup>1</sup>H NMR of the crude residue.



Figure S12. The cycling experiments of CdS@WYU-11-Cys for the photocatalytic cyclization of  $CO_2$  and propargylic amines.



Figure S13. The SEM images of CdS@WYU-11-Cys before (a) and after (b) photocatalysis.



Figure S14. The TEM image of CdS@WYU-11-Cys after the second run.



Figure S15. The PXRD patterns of CdS@WYU-11-Cys before and after catalytic reaction.



Figure S16. XPS spectrum of CdS@WYU-11-Cys before and after catalytic reaction.

| Catalysts                                                  | Amount of Catalyst | Visible light              | T(°C) | Time(h) | Yield (%) | Reference                                    |
|------------------------------------------------------------|--------------------|----------------------------|-------|---------|-----------|----------------------------------------------|
| Zn <sub>116</sub>                                          | 0.27 mol%          | /                          | 70    | 12      | 99        | Angew. Chem. Int. Ed., 2020, 132, 8664-8671  |
| MOF-Cu-Mg                                                  | 1.4 mol%           | /                          | 25    | 6       | 93        | Inorg. Chem., 2021, 60, 13425–13433          |
| Ag <sub>27</sub> -MOF                                      | 1 mol%             | /                          | 25    | 6       | 97        | Angew. Chem. Int. Ed., 2020, 59, 20031–20036 |
| TNS-Ag8                                                    | 0.1 mol%           | /                          | 25    | 24      | 95        | ACS Catal., 2018, 8, 1384–1391               |
| NiBDP-AgS                                                  | 0.5 mol%           | /                          | 25    | 4       | 99        | ChemComm., 2018, 54, 4469-4472               |
| TMOF-3-Ag                                                  | 10 mol%            | /                          | 50    | 12      | 97        | ACS Catal., 2018, 8, 2519-2525               |
| Ag-MOF-1                                                   | 4 mol%             | /                          | 25    | 24      | 95        | ACS Omega, <b>2019</b> , 4, 10828-10833      |
| MOF-SO <sub>3</sub> Ag                                     | 0.15 mol%          | /                          | 25    | 24      | 99        | Inorg. Chem., 2020, 59, 9765–9773            |
| Cu-TSP                                                     | 2 mol%             | /                          | 50    | 24      | 99        | Inorg. Chem. Front., 2022, 9, 3839–3844      |
| Ag@2,6-FPP-TAPT                                            | 0.052 mol%         | /                          | 50    | 2       | 99        | Green Chem., 2022, 24, 930–940               |
| Cu <sub>2</sub> O@ZIF-8                                    | 5 mol%             | /                          | 40    | 6       | 99        | Angew. Chem., 2022, e202114817               |
| Cu <sub>2</sub> O@MIL-101(Cr)-DABCO                        | 2.5 mol%           | /                          | 25    | 12      | 99        | Green Chem., 2023, 25, 1938–1947             |
| MOF-1a-Cd                                                  | 0.4 mol%           | /                          | 60    | 24      | 82        | Chemcatchem., 2017, 9, 4598                  |
| WYU-11                                                     | 1 mol%             | /                          | 60    | 24      | 99        | Inorg. Chem., 2023, 62, 18553-18562          |
| Cu-TCPP(Fe)                                                | 1 mol%             | /                          | 50    | 24      | 98        | Dalton Trans., 2024, 53, 10060–10064         |
| Cu <sup>I</sup> /Cu <sup>II</sup> mixed-valence MOF        | 0.5 mol%           | /                          | 50    | 12      | 99        | Inorg. Chem. Front., 2024, 11, 6072-6078     |
| ${[Cu_5I_6Th_6(\mu_3O)_4(\mu_3-OH)_4(H_2O)_{10}(L)_{10}]}$ | ] 1 mol%           | /                          | r.t   | 6       | 98        | Inorg. Chem., 2024, 63, 13450–13458          |
| 1 <sub>0.1</sub> -2 <sub>0.4</sub> -3 <sub>0.5</sub> -JNM  | 3 mol%             | /                          | r.t   | 3       | 99        | J. Am. Chem. Soc., 2024, 146, 19271–19278    |
| Cds@WYU-11-Cys                                             | 2 mol%             | $\lambda{>}400 \text{ nm}$ | r. t  | 8       | 97        | This work                                    |

Table S4. Comparation of CdS@WYU-11-Cys and other MOF-based catalysts for the cyclization reaction of propargylic amine with CO<sub>2</sub>.

# 5. Reaction mechanism study



**Figure S17.** The cysteamine-grafted configuration and adsorption of *N*-benzylprop-2-yn-1-amine configuration within WYU-11. The distances are in Å.



Figure S18. CO<sub>2</sub> isotherms of Cds@WYU-11-Cys at different temperatures.



Figure S19. The photocatalytic cyclization reaction of propargylic amine with  $CO_2$  in the presence of MeOH or  $K_2S_2O_8$ .



Figure S20. The optimized crystal structure (double-cell) in dehydrated form viewing along (a) a (14.24 Å), (b) b (11.14 Å) and (c) c (32.26 Å) directions.

## 6. Characterizations of propargylic amines and oxazolidinones

Synthesis of propargylic amines (1a-1l)

 $Br + RNH_2 \xrightarrow{R.T} N_H^R$ 

Terminal propargylic amines (**1a-1l**) were synthesized according to the previous report.<sup>[1, 3-4]</sup> In a typical experiment, propargylic bromide (0.45 mL, 4 mmol) was added into propargylic amine (20 mmol) dropwise via a constant pressure drop funnel over thirty minutes, and stirred overnight for about 12 h at ambient temperature. Then the resulting mixture was diluted in Et<sub>2</sub>O and washed with saturated aq. NaHCO<sub>3</sub> (3×10 mL), and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The reaction mixture was concentrated and purified by column chromatography on silica gel eluting with 10:1 petroleum ether/ethyl acetate to afford the corresponding product as yellow oil.



Yellow oil has been obtained after being purified by column chromatography on silica gel (eluting with PE/Ethyl acetate = 10:1, Rf = 0.6). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.20 (m, 5H, C<sub>6</sub>H<sub>5</sub>), 3.47 (d, J = 2.4 Hz, 2H, CH<sub>2</sub>), 3.00 (t, J = 7.1 Hz, 2H, CH<sub>2</sub>), 2.85 (t, J = 7.1 Hz, 2H, CH<sub>2</sub>), 2.23 (t, J = 2.4 Hz, 1H, NH), 1.54 (s, 1H, CH).



1g

Yellow oil has been obtained after being purified by column chromatography on silica gel (eluting with PE/Ethyl acetate = 5:1, Rf = 0.3). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  3.43 (d, *J* = 2.4 Hz, 2H, CH<sub>2</sub>), 2.63 (s, 1H, CH), 2.17 (t, *J* = 2.4 Hz, 1H, NH), 1.85 – 1.80 (m, 2H, C<sub>6</sub>H<sub>11</sub>), 1.74 – 1.67 (m, 2H, C<sub>6</sub>H<sub>11</sub>), 1.60 (d, *J* = 12.7 Hz, 2H, C<sub>6</sub>H<sub>11</sub>), 1.29 – 1.01 (m, 5H, C<sub>6</sub>H<sub>11</sub>).



Yellow oil has been obtained after being purified by column chromatography on silica gel (eluting with PE/Ethyl acetate = 5:1, Rf = 0.5). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.32 – 7.18 (m, 1H, CH), 6.96 (dd, J = 7.2, 3.0, 1.8 Hz, 2H, CH), 4.08 (d, J = 3.2 Hz, 2H, CH<sub>2</sub>), 3.56 – 3.39 (m, 2H, CH<sub>2</sub>), 2.28 (t, J = 2.4 Hz, 1H, NH), 1.77 (s, 1H, CH).



Yellow oil (82.3 mg, 97%) has been obtained after being purified by column chromatography on silica gel (eluting with PE/Ethyl acetate = 10:1, Rf = 0.4). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 – 7.20 (m, 5H, C<sub>6</sub>H<sub>5</sub>), 4.72 (d, *J* = 2.9 Hz, 1H, C=CH<sub>2</sub>), 4.45 (s, 2H, CH<sub>2</sub>), 4.23 (d, *J* = 3.1 Hz, 1H, C=CH<sub>2</sub>), 4.01 (t, *J* = 2.4 Hz, 2H, CH<sub>2</sub>).



Yellow oil (84 mg, 77%) has been obtained after being purified by column chromatography on silica gel (eluting with PE/Ethyl acetate = 10:1, Rf = 0.3). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.21 – 7.16 (m, 2H, C<sub>6</sub>H<sub>4</sub>), 6.89 – 6.84 (m, 2H, C<sub>6</sub>H<sub>4</sub>), 4.70 (dd, *J* = 5.6, 2.7 Hz, 1H, C=CH<sub>2</sub>), 4.39 (s, 2H, CH<sub>2</sub>), 4.21 – 4.22 (m, 1H, C=CH<sub>2</sub>), 3.99 (t, *J* = 2.4 Hz, 2H, CH<sub>2</sub>), 3.79 (s, 3H, CH<sub>3</sub>).



Yellow oil (88.2 mg, 85%) has been obtained after being purified by column chromatography on silica gel (eluting with PE/Ethyl acetate = 10:1, Rf = 0.4). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 – 7.21 (m, 2H, C<sub>6</sub>H<sub>4</sub>), 7.02 (dd, *J* = 12.0, 5.3 Hz, 2H, C<sub>6</sub>H<sub>4</sub>), 4.71 (dd, *J* = 5.5, 2.7 Hz, 1H, C=CH<sub>2</sub>), 4.41 (s, 2H, CH<sub>2</sub>), 4.24 (dd, *J* = 5.1, 2.2 Hz, 1H, C=CH<sub>2</sub>), 4.01 (t, *J* = 2.3 Hz, 2H, CH<sub>2</sub>).



Yellow oil (91 mg, 90%) has been obtained after being purified by column chromatography on silica gel (eluting with PE/Ethyl acetate = 10:1, Rf = 0.3). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 – 7.19 (m, 5H, C<sub>6</sub>H<sub>5</sub>), 4.76 – 4.67 (m, 1H, C=CH<sub>2</sub>), 4.27 – 4.20 (m, 1H, C=CH<sub>2</sub>), 4.01 (t, *J* = 2.2 Hz, 2H, CH<sub>2</sub>), 3.57 (dd, *J* = 1.6 Hz, 2H, CH<sub>2</sub>), 2.91 (t, *J* = 7.2 Hz, 2H, CH<sub>2</sub>).



Yellow solid (97.6 mg, 81.7%) has been obtained after being purified by column chromatography on silica gel (eluting with PE/Ethyl acetate = 5:1, Rf = 0.3). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 – 7.81 (m, 3H, C<sub>10</sub>H<sub>7</sub>), 7.72 (s, 1H, C<sub>10</sub>H<sub>7</sub>), 7.54 – 7.46 (m, 2H, C<sub>10</sub>H<sub>7</sub>), 7.40 (dd, *J* = 8.4, 1.7 Hz, 1H, C<sub>10</sub>H<sub>7</sub>), 4.74 (dd, *J* = 5.7, 2.6 Hz, 1H, C=CH<sub>2</sub>), 4.62 (s, 2H, CH<sub>2</sub>), 4.22 (dt, *J* = 3.1, 2.2 Hz, 1H, C=CH<sub>2</sub>), 4.03 (t, *J* = 2.4 Hz, 2H, CH<sub>2</sub>).



Yellow oil (78.4 mg, 80%) has been obtained after being purified by column chromatography on silica gel (eluting with PE/Ethyl acetate = 5:1, Rf = 0.3). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.68 (dd, *J* = 5.5, 2.7 Hz, 1H, C=CH<sub>2</sub>), 4.24 (dd, *J* = 5.2, 2.2 Hz, 1H, C=CH<sub>2</sub>), 4.13 (t, *J* = 2.4 Hz, 2H, CH<sub>2</sub>), 3.07 (d, *J* = 7.4 Hz, 2H, CH<sub>2</sub>), 1.71 – 1.61 (m, 5H, C<sub>6</sub>H<sub>11</sub>), 1.16 (d, *J* = 9.4 Hz, 4H, C<sub>6</sub>H<sub>11</sub>), 0.93 (s, 2H, C<sub>6</sub>H<sub>11</sub>).



Yellow oil (85.2 mg, 94%) has been obtained after being purified by column chromatography on silica gel (eluting with PE/Ethyl acetate = 5:1, Rf = 0.2). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.69 (dd, *J* = 5.5, 2.7 Hz, 1H, C=CH<sub>2</sub>), 4.25 (dd, *J* = 5.2, 2.2 Hz, 1H, C=CH<sub>2</sub>), 4.11 (t, *J* = 2.4 Hz, 2H, CH<sub>2</sub>), 3.69 (s, 1H, C<sub>6</sub>H<sub>11</sub>), 1.79 (d, *J* = 8.4 Hz, 4H, C<sub>6</sub>H<sub>11</sub>), 1.65 (d, *J* = 13.0 Hz, 1H, C<sub>6</sub>H<sub>11</sub>), 1.38 – 1.28 (m, 4H, C<sub>6</sub>H<sub>11</sub>), 1.06 (dd, *J* = 3.0 Hz, 1H, C<sub>6</sub>H<sub>11</sub>).



Yellow oil (67.2 mg, 66%) has been obtained after being purified by column chromatography on silica gel (eluting with PE/Ethyl acetate = 10:1, Rf = 0.5). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.29 (m, 5H, C<sub>6</sub>H<sub>5</sub>), 5.26 (d, *J* = 7.1 Hz, 1H, CH), 4.70 (dd, *J* = 5.6, 2.7 Hz, 1H, C=CH<sub>2</sub>), 4.21 (dt, *J* = 3.1, 2.2 Hz, 1H, C=CH<sub>2</sub>), 4.10 (dt, *J* = 14.2, 2.4 Hz, 1H, CH<sub>2</sub>), 3.76 (dt, *J* = 2.4 Hz, 1H, CH<sub>2</sub>), 1.59 (d, *J* = 7.1 Hz, 3H, CH<sub>3</sub>).



Yellow oil (89.2 mg, 92%) has been obtained after being purified by column chromatography on silica gel (eluting with PE/Ethyl acetate = 5:1, Rf = 0.5). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.31 – 7.23 (m, 1H, C<sub>4</sub>H<sub>3</sub>S), 7.03 – 6.93 (m, 2H, C<sub>4</sub>H<sub>3</sub>S), 4.72 (dd, *J* = 5.7, 2.7 Hz, 1H, C=CH<sub>2</sub>), 4.63 (s, 2H, CH<sub>2</sub>), 4.25 (dd, *J* = 0.9 Hz, 1H, C=CH<sub>2</sub>), 4.09 (t, *J* = 2.4 Hz, 2H, CH<sub>2</sub>).

NMR spectra of substrates and products















<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectrum of **2b**.







<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectrum of **2d**.



<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectrum of **2f**.











 $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>) spectrum of **2k**.

#### Reference

- Zhao, X.; Qin, B.-B.; He, T.; Wang, H.-P.; Liu, J. Stable Pyrene-Based Metal–Organic Framework for Cyclization of Propargylic Amines with CO<sub>2</sub> and Detection of Antibiotics in Water. *Inorg. Chem.* 2023, 62, 18553–18562.
- Liu, X.; Wang, M.-Y.; Wang, S.-Y.; Wang, Q.; He, L.-N. In Situ Generated Zinc (II) Catalyst for Incorporation of CO<sub>2</sub> into 2-Oxazolidinones with Propargylic Amines at Atmospheric Pressure, *ChemSusChem*, 2017, 10, 1210–1216.
- Zhang, C.-H.; Hu, T.-D.; Zhai, Y.-T.; Zhang, Y.-X.; Wu, Z.-L. Stepwise engineering of the pore environment within metal–organic frameworks for green conversion of CO<sub>2</sub> and propargylic amines, *Green Chem.* 2023, 25, 1938-1947.