Supporting Information

Equivalent cation-tuned to realize a new Ce(IV) fluoride with excellent

comprehensive nonlinear optical performances

Bei-Bei Zhang[#], Wen-Ye Gao[#], Wei Xu, Liang Ma, Wenlong Liu, Ru-Ling Tang^{*} and Sheng-Ping Guo School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China Corresponding author: rltang@yzu.edu.cn [#]The authors contribute equally.

Supporting Information Index

Tables and Figures

- 1) **Table S1.** Selected bond lengths (Å) for $NH_4Ce_3F_{13}$.
- 2) **Table S2.** Selected bond angles (°) for $NH_4Ce_3F_{13}$.
- 3) **Table S3.** Fractional atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for NH₄Ce₃F₁₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ii} tensor.
- 4) **Table S4.** Hydrogen atom coordinates (Å \times 10⁴) and isotropic displacement parameters (Å² × 10³) for NH₄Ce₃F₁₃.
- 5) **Table S5.** The quantitative analysis result of EDS.
- 6) Table S6. Inorganic monovalent cation Ce(IV)-based fluorides.
- 7) **Table S7.** Fluorides with F_{13} in the formula.
- Table S8. The bandgaps, SHG efficiency and LIDTs of reported inorganic metal fluorides.
- 9) **Table S9.** The distortion degrees of the Ce-centered polyhedra in $NH_4Ce_3F_{13}$.
- 10) **Table S10.** Calculated dipole moment results of $NH_4Ce_3F_{13}$.
- 11) Figure S1. The coordination environment of Ce(1) and Ce(2) atoms in $NH_4Ce_3F_{13}$.
- 12) Figure S2. The EDS image for single-crystals of $NH_4Ce_3F_{13}$.
- Figure S3. The arrangement of 1D {[CeF₆]^{2−}}_∞ chains and the whole structure of Na₂CeF₆.

	0		
Bond	Length/Å	Bond	Length/Å
Ce1-F1	2.237(4)	Ce2-F1 ⁶	2.365(3)
Ce1-F1 ³	2.237(3)	Ce2-F3 ⁷	2.417(4)
Ce1-F2	2.197(6)	Ce2-F ⁴	2.616(4)
Ce1-F2 ⁴	2.301(6)	Ce2-F5	2.252(4)
Ce1-F3	2.356(6)	Ce2-F5 ⁸	2.307(4)
Ce1-F4	2.265(3)	Ce2-F6	2.250(3)
Ce1-F4 ³	2.265(3)	Ce2-F7	2.237(4)
Cel-F7 ²	2.455(4)	Ce2-F8	2.317(3)
Cel-F7 ¹	2.455(4)	Ce2-F9	2.305(3)

Table S1. Selected bond lengths (Å) for $NH_4Ce_3F_{13}$.

¹1-X,1-Y,1/2+Z; ²+X,1-Y,1/2+Z; ³1-X,+Y,+Z; ⁴1-X,2-Y,-1/2+Z; ⁵-X,+Y,+Z; ⁶1-X,-1+Y,+Z; ⁷1-X,1-Y,-1/2+Z; ⁸+X,1-Y,-1/2+Z

Atom	Angle/°	Atom	Angle/°
F1 ³ -Ce1-F1	87.0(2)	F5-Ce2-F17	77.39(14)
$F1 - Ce1 - F2^{4}$	71.10(14)	F5 ⁸ -Ce2-F1 ⁷	145.11(14)
F1 ³ -Ce1-F7 ⁴	71.10(14)	F5-Ce2-F36	134.00(17)
F1-Ce1-F3	130.41(12)	F58-Ce2-F36	73.26(17)
F1 ³ -Ce1-F3	130.41(12)	F5-Ce2-F4	76.93(14)
F1 ³ -Ce1-F4	87.79(14)	F5-Ce2-F5 ⁸	136.20(9)
F1 ³ -Ce1-F4 ³	141.74(13)	F5 ⁸ -Ce2-F8	102.64(15)
F1-Ce1-F4 ³	87.79(14)	F5-Ce2-F8	79.84(16)
F1-Ce1-F4	141.74(13)	F5-Ce2-F9	73.41(19)
F1-Ce1-F7 ²	69.42(14)	F6-Ce2-F1 ⁷	68.19(15)
F1 ³ -Ce1-F7 ¹	69.42(14)	F6-Ce2-F36	61.22(17)
F1-Ce1-F7 ²	143.57(14)	F6-Ce2-F4	72.74(14)
F1-Ce1-F71	143.56(14)	F6-Ce2-F5 ⁸	123.10(16)
F1-Ce1-F1 ³	78.77(14)	F6-Ce2-F5	72.95(16)
F2-Ce1-F1	78.77(14)	F6-Ce2-F8	133.56(16)
$F2-Ce1-F2^4$	137.89(4)	F6-Ce2-F9	137.39(19)
F2 ⁴ -Ce1-F3	143.2(2)	F7-Ce2-F1 ⁷	71.51(15)
F2-Ce1-F3	78.9(2)	F7-Ce2-F3 ⁶	63.64(15)
F2-Ce1-F4 ⁴	136.87(12)	F7-Ce2-F4	139.96(14)
F2-Ce1-F4	136.87(12)	F7-Ce2-F5	144.04(16)
$F2^{4}-Ce1-F7^{1}$	122.51(11)	F7-Ce2-F5 ⁸	73.71(15)
F2-Ce1-F71	69.85(13)	F7-Ce2-F6	110.30(14)
F2 ⁴ -Ce1-F7 ²	122.51(11)	F7-Ce2-F8	72.79(16)
F2-Ce1-F7 ²	69.85(13)	F7-Ce2-F9	112.30(17)
F3-Ce1-F71	61.41(11)	F8-Ce2-F17	69.59(15)
F3-Ce1-F7 ²	61.41(11)	F8-Ce2-F36	135.70(17)
F4-Ce1-F2 ⁴	71.38(14)	F9-Ce2-F17	127.42(15)
$F4^{3}-Ce1-F2^{4}$	71.38(14)	F9-Ce2-F36	141.8(2)
$F4^3$ -Ce1-F3	79.33(15)	F9-Ce2-F5 ⁸	69.54(18)
F4-Ce1-F3	79.33(15)	F9-Ce2-F8	62.96(17)
F4-Ce1-F4 ³	73.48(18)	Ce1-F1-Ce29	145.7(2)
$F4^{3}-Ce1-F7^{2}$	127.91(13)	Ce1-F1-Ce1 ¹⁰	166.0(3)
F4-Ce1-F7 ²	67.06(13)	Ce1-F1-Ce2 ²	115.53(12)
$F4^{3}-Ce1-F7^{1}$	67.06(13)	Ce1-F1-Ce2 ¹	115.53(12)
F4-Ce1-F71	127.91(13)	$Ce2^{1}-F1-Ce2^{2}$	111.5(3)
$F7^{1}-Ce1-F7^{2}$	114.2(2)	Ce2-F1-Ce1	145.92(17)
F17-Ce2-F36	88.79(16)	Ce2-F1-Ce2 ²	153.23(19)
F4-Ce2-F17	137.96(14)	Ce2 ³ -F1-Ce2	125.3(3)
F4-Ce2-F3 ⁶	85.72(14)	Ce2-F1-Ce1 ⁶	118.67(14)
F4-Ce2-F5 ⁸	71.58(14)	Ce2-F1-Ce2 ⁵	115.6(2)
F4-Ce2-F8	136.04(15)	Ce2-F1-Ce2 ⁵	116.5(2)

Table S2. Selected bond angles (°) for $NH_4Ce_3F_{13}$.

<u>F4-Ce2-F9</u> 74.80(15) ¹1-X,1-Y,1/2+Z; ²+X,1-Y,1/2+Z; ³1-X,+Y,+Z; ⁴1-X,2-Y,-1/2+Z; ⁵-X,+Y,+Z; ⁶1-X,1-Y, -1/2+Z; ⁷1-X,-1+Y,+Z; ⁸+X,1-Y,-1/2+Z; ⁹1-X,1+Y,+Z; ¹⁰1-X,2-Y,1/2+Z

Atom	X	У	Z	U(eq)
Cel	5000	8905.1(5)	5570.6(7)	4.77(15)
Ce2	2475.7(4)	3963.7(4)	3953.0(10)	4.58(13)
F1	6946(5)	11084(4)	5150(5)	12.5(10)
F2	5000	10326(8)	7894(7)	14.7(13)
F3	5000	6390(6)	7353(8)	10.1(11)
F4	3289(4)	6926(5)	4245(4)	11.8(8)
F5	1993(5)	4517(6)	6569(5)	11.8(8)
F6	5000	3945(6)	5192(6)	12.2(15)
F7	2396(4)	1800(6)	2048(6)	11.7(9)
F8	0	2315(7)	4311(6)	10.5(11)
F9	0	625(8)	4089(8)	11.0(12)
N1	0	8981(13)	2601(15)	23(3)

Table S3. Fractional atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for NH₄Ce₃F₁₃. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Table S4. Hydrogen atom coordinates (Å \times 10⁴) and isotropic displacement parameters (Å² \times 10³) for NH₄Ce₃F₁₃.

Atom	Х	у	Z	U(eq)
H1A	0	8600(200)	3560(70)	100(80)
H1B	0	8080(150)	1950(150)	170(120)
H1C	840(50)	9680(70)	2430(130)	310(130)

Table	S5 .	The c	uantitative	analysis	result	of EDS.
				2		

Compound		Molar ratio
1	N: Ce: F	5.85:17.61:76.54 = 1:3.01:13.08
2	N: Ce: F	5.76 : 17.13 : 77.11 = 1: 2.97 : 13.39
3	N : Ce : F	5.92 : 17.84 : 76.24 = 1: 3.01 : 12.88

Compound	Space	Coordination	Symmetry	Dimension	Reference
	group	geometry			
NH ₄ Ce ₃ F ₁₃	$Pmc2_1$	CeF ₉	NCS	3D	This work
Na ₂ CeF ₆	<i>P</i> 62 <i>m</i>	CeF ₉	NCS	3D	1
LiCeF ₅	$I4_{1}/a$	CeF ₉	CS	3D	2
Cs_3CeF_7	$Fm^{3}m$	CeF ₆	CS	3D	3
Rb ₃ CeF ₇	$Fm^{3}m$	CeF ₆	CS	3D	3
Na ₃ CeF ₇	I4/mmm	CeF ₈	CS	3D	3
CsCeF ₅	$P2_{1}/c$	CeF ₈	CS	3D	4
Li ₄ CeF ₈	Pnma	CeF ₈	CS	3D	5
$(NH_4)_7Ce_6F_{31}$	<i>R</i> 3	CeF ₈	CS	3D	6
$(NH_4)_2CeF_6$	Pbcn	CeF ₈	CS	3D	7
$(NH_4)_4CeF_8$	C2/c	CeF ₈	CS	3D	8

Table S6. Inorganic monovalent cation Ce(IV)-based fluorides.

Compound	Space	Coordination	Symmetry	Dimension	Reference
	group	geometry			
NH ₄ Ce ₃ F ₁₃	$Pmc2_1$	CeF ₉	NCS	3D	This work
$\mathrm{KBi}_4\mathrm{F}_{13}$	I ⁴	BiF ₃	NCS	3D	9
$NH_4Sb_4F_{13}$	IĀ	SbF ₃	NCS	3D	10
KSb_4F_{13}	I ^Ţ 4	SbF ₃	NCS	3D	11
RbU ₃ F ₁₃	$Pmc2_1$	UF ₉	NCS	3D	12
NH ₄ UF ₁₃	$Pmc2_1$	UF ₉	NCS	3D	13
RbTh ₃ F ₁₃	$Pmc2_1$	ThF ₉	NCS	3D	14
$[(C_5H_6N_2)_2H](Sb_4F_{13})$	<i>P</i> 1	SbF ₄ , SbF ₅	NCS	3D	15

Compound	Space	SHG efficiency	LIDT	Band	Reference
	group	(× KDP)	(× AGS)	gap(eV)	
BaMgF ₄	$Cmc2_1$	0.085		9.28	16
BaZnF ₄	$Cmc2_1$	0.16		7.27	16
Na_2SbF_5	$P2_{1}2_{1}2_{1}$	0.17		5.0	17
CsNaTaF7	$Cmc2_1$	0.2		5.14	18
Li ₂ CaHfF ₈	Ī ⁴	0.3			19
Li ₂ CaZrF ₈	<i>I</i> 4	0.36			19
KNa ₂ ZrF ₇	$Pmn2_1$	0.4	50	5.07	20
$K_3Ba_2Zr_6F_{31}$	$P6_3mc$	0.5			21
KBi ₄ F ₁₃	Ī4	0.5	23.1	4.24	10
$K_2BaHf_2F_{12}$	Imm2	0.36			22
$K_2BaZr_2F_{12}$	Imm2	0.6			22
NH ₄ Ce ₃ F ₁₃	$Pmc2_1$	1.2	39	4.26	This work
Na ₂ CeF ₆	<i>P</i> 62 <i>m</i>	2.1	over 20	3.89	1
NaSb ₃ F ₁₀	$P6_{3}$	3.2	1.3 GM cm ⁻²	5.0	23
SbF ₃	Ama2	5.8		4.3	24

Table S8. The bandgaps, SHG efficiency and LIDTs of reported inorganic metal fluorides.

compound	polyhedron	Δd^{a}	
NH ₄ Ce ₃ F ₁₃	$Ce(1)F_9$	1.52E-03	
	$Ce(2)F_9$	5.97E-04	
1			

 ${}^{a}\Delta d = \overline{C} \sum [(d_{n} - d)/d]^{2} (d_{n} \text{ is the single bond length, } d \text{ is the average bond length, and C is the coordination number.})$

		Dipole moment			
NO.	Unit	x (esu cm)	y (esu cm)	z (esu cm)	Magnitude Debye
1	$Ce(1)F_9$	-0.0001	0.8088	0.7481	1.1017
2	$Ce(1)F_9$	-0.0001	-0.8087	0.7483	1.1019
3	$Ce(2)F_9$	-0.4771	0.1648	0.2262	0.5531
4	$Ce(2)F_9$	0.4770	0.1650	0.2264	0.5532
5	$Ce(2)F_9$	-0.4777	-0.1641	0.2259	0.5533
6	$Ce(2)F_9$	0.4777	-0.1640	0.2261	0.5533
Unit cell		2.2716	-0.0004	0.0017	2.4009

Table S10. Calculated dipole moment results of NH₄Ce₃F₁₃.

Figure S1. The coordination environment of Ce(1) and Ce(2) atoms in $NH_4Ce_3F_{13}$.

Figure S2. The EDS image for single-crystals of $NH_4Ce_3F_{13}$.

Figure S3. The arrangement of $1D \ \{[CeF_6]^{2-}\}_{\infty}$ chains and the whole structure of Na₂CeF₆.

Reference

- R. L. Tang, W. Xu, X. Lian, Y. Q. Wei, Y. L. Lv, W. L. Liu, and S. P. Guo, Na₂CeF₆: A Highly Laser Damage-Tolerant Double Perovskite Type Ce(IV) Fluoride Exhibiting Strong Second-Harmonic-Generation Effect, *Small*, 2024, 20, 2308348.
- A. Grzechnik, C. C. Underwood, J. W. Kolis, K. Friese, Crystal structures and stability of LiCeF₅ and LiThF₅ at high pressures: A comparative study of the coordination around the Ce⁴⁺ and Th⁴⁺ ions, *J. Fluor. Chem.*, 2013, 156, 124–129.
- 3 R. Hoppe, K.M. Roedder, Fluorokomplexe des vierwertigen Cers, Z. Anorg. Allg. Chem., 1961, 313, 154–160.
- 4 A. Grzechnik, C. C. Underwood, J. W. Kolis, Twinned caesium cerium(IV) pentafluoride, *Acta Crystallogr. B.*, 2014, 70, 112–113.
- 5 C. J. Windorff, A. T. Chemey, J. M. Sperling, B. E. Klamm, T. E. Albrecht-Schmitt, Examination of Molten Salt Reactor Relevant Elements Using Hydrothermal Synthesis, *Inorg. Chem.*, 2020, 59, 4176–4180.
- 6 C. C. Underwood, C. D. Mcmillen, J. W. Kolis, Hydrothermal Synthesis and Crystal Chemistry of Novel Fluorides with A₇B₆F₃₁ (A = Na, K, NH₄, Tl; B = Ce, Th) Compositions, *J. Chem. Crystallogr*, 2014, 44, 493– 500.
- 7 R. R. Ryan, A. C. Larson, F. H. Kruse, Crystal Structure of Ammonium Hexafluorocerate(IV), (NH₄)₂CeF₆, *Inorg. Chem.*, 1969, 8, 33–36.
- 8 S. J. Patwe, B. N. Wani, U. R. K. Rao, and K. S. Venkateswarlu, Synthesis and thermal study of tris(ammonium) hexafluoro metallates(III) of some rare earths, *Can. J. Chem.*, 1989, **67**, 1815–1818.
- 9 Q. Wu, H. M. Liu, F. C. Jinang, X. G. Meng, X. G. Chen, L. Yang, Z. G. Hu, J. G. Qin, KBi₄F₁₃: An Infrared Nonlinear Optical Material with High Laser Damage Threshold, *Inorg. Chem.*, 2015, **31**, 1875–1880.
- 10 L. A. Zemnukhova, A. A. Udovenko, N. V. Makarenko, S. I. Kuznetsov, and T. A. Babushkina, Crystal structure and Sb NQR Parameters of ammonium tridecafluorotetraantimonate(III) NH₄Sb₄F₁₃, *J. Struct. Chem.*, 2017, **58**, 694–699.
- 11 A. A. Udovenko, L. A. Zemnukhova, Y. E. Gorbunova, Y. N. Mikhailov, R. L. Davidovich, Crystal Structure of Thallium Tridecafluorotetraantimonate(III) TlSb₄F₁₃, *Russ. J. Coord. Chem.*, 2003, **29**, 310–311.
- 12 J. Yeon, M. D. Smith, J. Tapp, A. Möller and H. C. zur Loye, Mild Hydrothermal Crystal Growth, Structure, and Magnetic Properties of Ternary U(IV) Containing Fluorides: LiUF₅, KU₂F₉, K₇U₆F₃₁, RbUF₅, RbU₂F₉, and RbU₃F₁₃, *Inorg. Chem.*, 2014, **53**, 6289–6298.
- H. Abazli, A. Cousson, A. Tabuteau, M. Pages, Fluorure d'Ammonium et d'Uranium(IV): NH₄U₃F₁₃, Acta. Crystallogr. B, 1980, 36, 2765–2766.
- 14 C. C. Underwood, M. Mann, C. D. McMillen, and J. W. Kolis, Hydrothermal Descriptive Chemistry and Single Crystal Structure Determination of Cesium and Rubidium Thorium Fluorides, *Inorg. Chem.*, 2011, 50, 11825–11831.
- 15 J. H. Wu, C. L. Hu, Y. F. Li, J. G. Mao, and F. Kong, [(C₅H₆N₂)₂H](Sb₄F₁₃): a polyfluoroantimonite with a strong second harmonic generation effect, *Chem. Sci.*, 2024, **15**, 8071–8079.
- 16 J. G. Bergman, G. R. Crane, H. Guggenheim, Linear and nonlinear optical properties of ferroelectric BaMgF₄ and BaZnF₄, J. Appl. Phys., 1975, 46, 4645.
- 17 J. G. Bergman, D. S. Chemla, R. Fourcade, G. Mascherpa, Linear and nonlinear optical properties of Na₂SbF₅, *J. Solid State Chem.*, 1978, 23, 187–190.
- 18 R. L. Tang, X. Lian, X. H. Li, L. Huai, W. L. Liu, and S. P. Guo, From CsKTaF₇ to CsNaTaF₇: Alkali Metal Cations Regulation to Generate SHG Activity, *Chem. Eur. J.*, 2022, 28, e202201588.

- 19 M. Yan, R. L. Tang, W. D. Yao, W. L. Liu and S. P. Guo, Centrosymmetric CaBaMF₈ and Noncentrosymmetric Li₂CaMF₈ (M =Zr, Hf): Dimension Variation and Nonlinear Optical Activity Resulting from an Isovalent Cation Substitution-Oriented Design, *Inorg. Chem.*, 2024, 63, 5260–5268.
- 20 X. Lian, W. D. Yao, W. L. Liu, R. L. Tang, and S. P. Guo, KNa₂ZrF₇: A Mixed-Metal Fluoride Exhibits Phase-Matchable Second-Harmonic-Generation Effect and High Laser-Induced Damage Threshold, *Inorg. Chem.*, 2021, **60**, 19–23.
- 21 M. Yan, R. L. Tang, W. D. Yao, W. L. Liu and S. P. Guo, Exploring a new short-wavelength nonlinear optical fluoride material featuring unprecedented polar cis-[Zr₆F₃₄]¹⁰⁻ clusters, *Chem. Sci.*, 2024, **15**, 2883–2888.
- 22 M. Yan, R. L. Tang, W. D. Yao, W. L. Liu and S. P. Guo, From CaBaM₂F₁₂ to K₂BaM₂F₁₂ (M = Zr, Hf): Heterovalent Cation-Substitution-Induced Symmetry Break and Nonlinear-Optical Activity, *Inorg. Chem.*, 2024, 63, 10949–10953.
- 23 G. Zhang, J. G. Qin, T. Liu, Y. J. Li, Y. C. Wu, C. T. Chen, NaSb₃F₁₀: A new second-order nonlinear optical crystal to be used in the IR region with very high laser damage threshold, *Appl. Phys. Lett.*, 2009, 95, 261104.
- 24 G. Zhang, T. Liu, T. X. Zhu, J. G. Qin, Y. C. Wu, C. T. Chen, SbF₃: A new second-order nonlinear optical material, *Opt. Mater.*, 2008, **31**, 110–113.