Supplementary Information (SI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Theoretical Prediction and Experimental Synthesis of Ba_{0.5}Pb_{0.5}S Alloy by Molecular Precursor Route

Guoxin Wu^{1,2}, Liang Wang^{2,*} Kepeng Song¹, Jiashuo Xu², Jinghai Li¹, Xinzhuo Fang¹, Dan Huang⁴, Liqiang Zheng¹, Qilin Wei^{1,*}, William W. Yu^{1,3,*}

- 1. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
- 2. School of Integrated Circuits, Shandong University, Jinan 250101, China.
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Qingdao 266237; Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Jinan 250100, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.

* Corresponding authors: <u>qlwei@sdu.edu.cn</u> (Q. Wei), <u>liangwang2023@sdu.edu.cn</u> (L. Wang), <u>wyu6000@gmail.com</u> (W. W. Yu).

Figure S1. Theoretical absorption spectra for $Ba_{0.5}Pb_{0.5}S$ in X, Y and Z directions.

Figure S2. Stable chemical potential region of $Ba_{0.5}Pb_{0.5}S$.

Figure S3. SEM image of $Ba_{0.5}Pb_{0.5}S$ thin film.

Figure S8. Plot of absorption coefficient (α) as a function of hu.

Figure S9. $Ba_{0.5}Pb_{0.5}S$ storage stability test under high-humidity condition.

Figure S10. XRD of Ba-Pb-S alloys with different Ba-Pb feed ratios.

Figure S11. Absorption spectrum of Ba-Pb-S alloys with different Ba-Pb feed ratios.

Figure S12. Band gap estimation of Ba-Pb-S alloys with different Ba-Pb feed ratios.

Figure S13. Energy level diagram (a) and UPS spectrum (b,c) of Ba_{0.5}Pb_{0.5}S.

Figure S14. XRD of the powder obtained by grinding BaS powder and PbS powder homogeneously and then reacting at 700°C for 4 hrs.

	Ba 138 (×10 ⁻³ mg/L)	Pb 208 (×10 ⁻³ mg/L)
Standard 1	5.000	5.000
Standard 2	9.967	10.022
Standard 3	49.970	50.019
Standard 4	100.013	99.467
Blank	0.209	0.062
Sample	210.383	290.460

Table S1. ICP data of Ba_{0.5}Pb_{0.5}S.

	(h k l)				Cell parameters		
Materials	200		220		- a=b=c		
-	2θ(°)	d(nm)	2θ(°)	d(nm)	_		
BaS	27.91	0.319	39.89	0.226	6.386		
PbS	30.07	0.297	43.06	0.210	5.936		
$Ba_{0.5}Pb_{0.5}S$	28.83	0.309#	41.14	0.219#	6.180		

Table S2. Comparison of crystal spacing and cell parameter data for BaS, PbS, and Ba_{0.5}Pb_{0.5}S from XRD, along with crystal spacing data for Ba_{0.5}Pb_{0.5}S from HAADF-STEM.

#Data obtained from HAADF-STEM.

Table S3. XPS data of Ba_{0.5}Pb_{0.5}S.

Element	Peak Splitting (eV)	Peak ID	Binding energy (eV)
Ва	45.4	3d _{5/2}	780.8
	15.4	3d _{3/2}	796.2
Pb	4.0	4f _{7/2}	137.2
	4.9	4f _{5/2}	142.1
PbO _x	4.0	4f _{7/2}	138.8
	4.9	4f _{5/2}	143.7
S	1.2	2p _{3/2}	160.1
	1.2	2p _{1/2}	161.3
SO _x		2р	162.3