Supporting Information (SI)

Sulfonylcalix[4]arene-based Al₄ clusters: three aluminum oxo clusters with different coordinated solvents for the CO₂ cycloaddition reaction

Xiao-Jie Liu, Long-Xue Guo, Wei Xu, Ya-Wen Wang, Yuan-Hang Tian, Li-Xing Zhao, Xiao-Yu Li*, Jin-Hua Li*, and Guo-Ming Wang

College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, P. R. China Email: xylichem@qdu.edu.cn; jinhuali1978@163.com

Fig. S1 The coordination modes of BTC4A-SO $_2^{4-}$ ligand.

Fig. S2 The conversion powder from Al_4 -DMA to Al_4 -DMF (a), the simulated, experimental and catalyzed PXRD of Al_4 -DMA·MeOH (b), Al_4 -DMA (c), and simulated, experimental, catalyzed and cyclic PXRD of Al_4 -DMF (d).

Fig. S3 The IR spectra of Al_4 -DMA·MeOH (a), Al_4 -DMF (b) and Al_4 -DMA (c).

Fig. S4 The TGA of Al₄-DMA·MeOH, Al₄-DMA and Al₄-DMF.

Table S1. The formulas assignment of Al₄-DMA·MeOH, Al₄-DMA and Al₄-DMF in CHCl₃.

Species	Exp. <i>m</i> /z	Sim. <i>m</i> /z						
Al ₄ -DMA·MeOH								
1a	$[(Al)_4(OH)_3(BTC_4A-SO_2)_2(MeO)_2]^-$	1909.30	1909.31					
1b	1959.24	1959.35						
1c	$[(Al)_4(OH)_3(BTC_4A-SO_2)_2(MeO)_2(MeOH)_1(H_2O)_2]^-$	1977.25	1977.36					
1d	$[(Al)_4(OH)_3(BTC_4A-SO_2)_2(MeO)_2(MeOH)_2(H_2O)_1]^-$	1991.27	1991.38					
1e	$[(Al)_4(OH)_3(BTC_4A-SO_2)_2(MeO)_2(DMA)_1(MeOH)_1(H_2O)_1]^-$	2047.30	2047.42					
Al ₄ -DMA								
2a	2288.55	2288.53						
Al ₄ -DMF								
3a	$[(Al)_4(OH)_5(BTC_4A-SO_2)_2(H_2O)_1]^-$	1899.26	1899.29					
3b	$[(Al)_4(OH)_5(BTC_4A-SO_2)_2(^nPrOH)_1]^-$	1941.25	1941.34					
3c	$[(Al)_4(OH)_5(BTC_4A-SO_2)_2(^{n}PrOH)_1(H_2O)_1]^{-1}$	1959.24	1959.35					
3d	$[(Al)_4(OH)_5(BTC_4A-SO_2)_2(^nPrOH)_1(H_2O)_2]^-$	1977.25	1977.36					
3e	$[(Al)_4(OH)_5(BTC_4A-SO_2)_2(DMF)_1(^nPrOH)_1(H_2O)_2]^-$	2051.31	2051.42					

Entry	T [°C]	P [MPa]	Time [h]	Yield of Al ₄ -DMF (%)
1	80	0.1	4	83
2	80	0.5	4	99
3	80	1	4	99
4	80	2	4	99
5	70	0.5	4	85
6	60	0.5	4	77
7	80	0.5	3	62
8	80	0.5	4	99
9	80	0.5	5	99

Table S2. The effect of temperature, pressure and time on cycloaddition of CO_2 catalyzed by Al_4 -DMF was studied.

Reaction conditions: epichlorohydrin (5.0 mmol), Al₄-DMF (0.01 mol%), "Bu₄NBr (3 mol%) solvent free.

Table S3. The effects of the amount of catalyst and cocatalyst and the synthesis material of Al_4 -DMF cluster on the cycloaddition reaction of CO_2 catalyzed by Al_4 -DMF were studied.

Entry	ⁿ Bu ₄ NBr	Al ₄ -DMF	Yield of Al ₄ -DMF (%)
1	1 mol%	0.01 mol%	58
2	3 mol%	0.01 mol%	99
3	5 mol%	0.01 mol%	99
4	3 mol%	0	71
5	3 mol%	0.03 mol%	99
6	3 mol%	0.05 mol%	99
7	3 mol%	H ₄ BTC ₄ A- SO ₂ +AlCl ₃ ·6H ₂ O	78
8	3 mol%	DMA	73
9	3 mol%	DMF	72

Reaction conditions: epichlorohydrin (5.0 mmol), CO₂ (0.5 MPa), temperature (80 °C), time (4 h), solvent free.

Fig. S5 Recyclability experiments for catalytic activities of Al₄-DMF in cycloaddition reaction.

Fig. S6 ¹HNMR spectrum of **Al₄-DMA·MeOH**-1 catalyzed oxidation products of epichlorohydrin (400 MHz, CDCl₃, 298 K).

Fig. S7 ¹HNMR spectrum of **Al₄-DMA-1** catalyzed oxidation products of epichlorohydrin (400 MHz, CDCl₃, 298 K).

Fig. S8 ¹HNMR spectrum of **Al₄-DMF**-1 catalyzed oxidation products of epichlorohydrin (400 MHz, CDCl₃, 298 K).

Fig. S9 ¹HNMR spectrum of **Al**₄**-DMF·MeOH**-2 catalyzed oxidation products of epoxybromopropane (400 MHz, CDCl₃, 298 K).

Fig. S10 ¹HNMR spectrum of Al₄-DMA-2 catalyzed oxidation products of epoxybromopropane (400 MHz, CDCl₃, 298 K).

Fig. S11 ¹HNMR spectrum of **Al₄-DMF**-2 catalyzed oxidation products of epoxybromopropane (400 MHz, CDCl₃, 298 K).

Fig. S12 ¹HNMR spectrum of Al₄-DMA·MeOH-3 catalyzed oxidation products of ethylene oxide (400 MHz, CDCl₃, 298 K).

Fig. S13 ¹HNMR spectrum of **Al₄-DMA-3** catalyzed oxidation products of ethylene oxide (400 MHz, CDCl₃, 298 K).

Fig. S14 ¹HNMR spectrum of **Al₄-DMF**-3 catalyzed oxidation products of ethylene oxide (400 MHz, CDCl₃, 298 K).

Fig. S15 ¹HNMR spectrum of **Al**₄**-DMA**·**MeOH**-4 catalyzed oxidation products of octane oxide (400 MHz, CDCl₃, 298 K).

Fig. S16 ¹HNMR spectrum of **Al₄-DMA-**4 catalyzed oxidation products of octane oxide (400 MHz, CDCl₃, 298 K).

Fig. S17 ¹HNMR spectrum of **Al**₄**-DMF**-4 catalyzed oxidation products of octane oxide (400 MHz, CDCl₃, 298 K).

Fig. S18 ¹HNMR spectrum of **Al**₄**-DMA**·**MeOH**-5 catalyzed oxidation products of dodecane oxide (400 MHz, CDCl₃, 298 K).

Fig. S19 ¹HNMR spectrum of **Al₄-DMA-5** catalyzed oxidation products of dodecane oxide (400 MHz, CDCl₃, 298 K).

Fig. S20 ¹HNMR spectrum of **Al₄-DMF**-5 catalyzed oxidation products of dodecane oxide (400 MHz, CDCl₃, 298 K).

Fig. S21 ¹HNMR spectrum of **Al₄-DMA·MeOH**-6 catalyzed oxidation products of cyclohexane oxide (400 MHz, CDCl₃, 298 K).

Fig. S22 ¹HNMR spectrum of **Al**₄**-DMA**-6 catalyzed oxidation products of cyclohexane oxide (400 MHz, CDCl₃, 298 K).

Fig. S23 ¹HNMR spectrum of **Al**₄**-DMF**-6 catalyzed oxidation products of cyclohexane oxide (400 MHz, CDCl₃, 298 K).

Fig. S24 ¹HNMR spectrum of **Al**₄**-DMA·MeOH-7** catalyzed oxidation products of (R)styrene oxide (400 MHz, CDCl₃, 298 K).

Fig. S25 ¹HNMR spectrum of **Al**₄**-DMA-7** catalyzed oxidation products of (R)-styrene oxide (400 MHz, CDCl₃, 298 K).

Fig. S26 ¹HNMR spectrum of **Al₄-DMF-7** catalyzed oxidation products of (R)-styrene oxide (400 MHz, CDCl₃, 298 K).

Identification	AL-DMA·MeOH	AL-DMA	Al4-DMF	
code				
Empirical formula	$C_{96}H_{122}Al_4N_2O_{32}S_8$	$C_{96}H_{128}Al_4N_4O_{32}S_8$	$C_{92}H_{120}Al_4N_4O_{32}S_8\\$	
Formula weight	2132.31	2214.42	2158.31	
Temperature/K	99.98(10)	100.00(10)	150.01(10)	
Crystal system	monoclinic	monoclinic	triclinic	
Space group	C_2/c	P_{21}/n	<i>P</i> -1	
a/Å	23.4383(6)	15.3971(2)	12.04380(10)	
b/Å	18.9600(2)	23.9137(2)	13.38600(10)	
c/Å	27.5046(6)	17.5318(2)	19.3391(2)	
α/°	90	90	95.7660(10)	
β/°	118.351(3)	96.7090(10)	106.3040(10)	
γ/°	90	90	107.2180(10)	
Volume/Å ³	10756.7(5)	6411.03(12)	2800.45(5)	
Z	4	2	1	
$ ho_{cale}g/cm^3$	1.317	1.147	1.280	
µ/mm ⁻¹	2.494	2.114	2.407	
F(000)	4496.0	2336.0	1136.0	
	Cu Ka	Cu Ka	Cu Ka	
Radiation	$(\lambda = 1.54184)$	$(\lambda = 1.54184)$	$(\lambda = 1.54184)$	
2 ⊖ range for data collection/°	6.21 to 142.942	6.28 to 143.428	4.86 to 153.74	
	$-27 \le h \le 28,$	-18≤ h ≤18,	$-15 \le h \le 15$,	
Index ranges	$-23 \le k \le 22,$	-29≤ k ≤29,	$-16 \le k \le 16,$	

Table 54. Crystal data for Al ₄ -DiviA integration, Al ₄ -DiviA and Al ₄ -Divi	: Al ₄ -DMA·MeOH, Al ₄ -DMA and Al ₄ -DMF.	ΛA	4-DI	Al	for	data	rystal	S4.	able	7
--	---	----	------	----	-----	------	--------	-----	------	---

	$-33 \le 1 \le 33$	-21≤1 <i>≤</i> 21	$-23 \le 1 \le 24$
Reflections collected	85620	108525	37965
Independent reflections	10059 [Rint = 0.1767, Rsigma = 0.0710]	12005 [Rint = 0.1183, Rsigma = 0.0448]	11333 [Rint = 0.0822, Rsigma = 0.0640]
Data/restraints/pa rameters	10059/68/641	12005/59/666	11333/6/647
Goodness-of-fit on F ₂	1.205	1.042	1.103
Final R indexes	$R_1 = 0.1005,$	$R_1 = 0.1025$	$R_1 = 0.0536,$
$[I \ge _2 \sigma (I)]$	$wR_2 = 0.2787$	$wR_2 = 0_{.2682}$	$wR_2 = 0.1504$
Final R indexes	$R_1 = 0.1176,$	$R_1 = 0.1178,$	$R_1 = 0.0576,$
[all data]	$wR_2 = 0.3025$	$wR_2 = 0.2838$	$wR_2 = 0.1544$
Largest diff. peak/hole / e Å ⁻³	2.09/-1.22	1.78/-0.83	0.62/-0.81

Al ₄ -DMA·MeOH							
Al1—O1	1.836 (3)	013—Al1—O11	178.36 (14)				
Al1-010	1.812 (3)	013—Al1—O14	96.19 (14)				
Al1-011	2.125 (3)	013—Al1—O14i	93.53 (13)				
Al1—013	1.849 (3)	014i—Al1—O11	86.34 (12)				
Al1-014	1.850 (3)	014—Al1—O11	85.37 (12)				
Al1—O14i	1.870 (3)	014—Al1—O14i	76.94 (12)				
Al2—04	1.815 (3)	04—Al2—O5	87.50 (16)				
Al205	1.997 (3)	04—Al2—07	92.86 (16)				
Al2—07	1.854 (4)	04—Al2—O15	173.27 (15)				
Al2-013	1.812 (3)	O4—Al2—O16	96.61 (18)				
Al2-015	1.977 (4)	07—Al2—O5	88.94 (15)				
Al2—O16	1.875 (4)	07—Al2—O15	82.47 (16)				
01—Al1—011	86.92 (13)	07—Al2—O16	167.80 (18)				
01—Al1—013	93.42 (13)	013—Al2—O4	95.30 (14)				
01—Al1—014	95.17 (12)	013—Al2—O5	174.41 (16)				
01—Al1—O14i	170.01 (13)	013—Al2—O7	95.73 (14)				
010—Al1—O1	94.39 (13)	O13—Al2—O15	90.01 (14)				
010—Al1—011	86.50 (12)	O13—Al2—O16	91.05 (15)				
O10—Al1—O13	91.87 (13)	O15—Al2—O5	87.57 (16)				
O10—Al1—O14	167.08 (14)	O16—Al2—O5	83.81 (17)				
O10—Al1—O14i	92.55 (12)	O16—Al2—O15	87.41 (18)				
Symmetry code: (i) $-x+1$	1/2, -y+3/2, -z+1.						
	Al ₄ .	DMA	1				
Al1—O1	1.866 (4)	014—Al1—O5	175.1 (2)				
Al1—O2	1.845 (4)	014—Al1—O15	92.02 (17)				
Al1—05	2.039 (4)	014—Al1—O16	99.17 (19)				
Al1—014	1.821 (3)	015—Al1—O5	86.09 (16)				
Al1—015	1.878 (4)	015—Al1—O16	84.4 (2)				
Al1—016	1.900 (5)	016—Al1—O5	85.19 (18)				
Al2—Al2i	2.896 (3)	O3—Al2—O9	86.44 (13)				
Al2—O3	1.861 (3)	O3—Al2—O13	90.16 (18)				
Al2—04	1.810 (5)	04—Al2—O3	93.54 (17)				
Al2—09	2.234 (3)	04—Al2—O9	80.37 (17)				
Al2—O13i	1.860 (4)	04—Al2—O13i	96.01 (17)				
Al2—O13	1.863 (4)	04—Al2—O13	167.12 (16)				
Al2—014	1.835 (3)	04—Al2—O14	95.7 (2)				
01—Al1—O5	88.98 (16)	013i—Al2—O3	164.12 (19)				

Table S5. Selected bond distances (Å) and angles (°) for Al₄-DMA·MeOH, Al₄-DMA,and Al₄-DMF.

01—Al1—015	170.8 (2)	013—Al2—O9	87.57 (17)				
01—Al1—O16	87.5 (2)	013i—Al2—O9	82.69 (13)				
02—Al1—O1	94.22 (16)	013i—Al2—O13	77.88 (18)				
02—Al1—O5	84.26 (17)	014—Al2—O3	98.09 (14)				
02—Al1—O15	93.05 (19)	014—Al2—O9	174.2 (2)				
02—Al1—O16	169.29 (16)	014—Al2—O13	96.00 (19)				
014—Al1—01	93.50 (16)	014—Al2—O13i	93.56 (15)				
014—Al1—O2	91.30 (18)						
Symmetry code: (i) $-x+1$, − <i>y</i> +1, − <i>z</i> .						
	Al ₄ ·	-DMF					
Al1—08	2.0829 (14)	011—Al1—08	86.97 (6)				
Al1—011	1.8367 (15)	011—Al1—O12	91.87 (7)				
Al1—O12	1.8437 (15)	011—Al1—O14i	169.93 (7)				
Al1—O13	1.8338 (14)	011—Al1—016	84.65 (7)				
Al1—O14i	1.8744 (15)	012—Al1—O8	87.44 (6)				
Al1—016	1.9169 (16)	012—Al1—O14i	91.26 (7)				
Al2—O4	2.0466 (15)	012—Al1—O16	171.59 (7)				
Al2—O9	1.8383 (15)	013—Al1—O8	177.14 (6)				
Al2—O10	1.8660 (15)	013—Al1—O11	93.30 (6)				
Al2—O13	1.8440 (15)	013—Al1—O12	95.39 (6)				
Al2—O14	1.8801 (15)	013—Al1—O14i	95.93 (6)				
Al2—O15	1.9210 (15)	013—Al1—O16	92.46 (6)				
014—Al2—O4	85.95 (6)	014i—Al1—O8	83.61 (6)				
014—Al2—015	87.08 (7)	014i—Al1—O16	90.92 (7)				
015—Al2—O4	85.07 (6)	016—Al1—O8	84.73 (6)				
O13—Al2—O10	92.16 (6)	09—Al2—O4	87.37 (6)				
013—Al2—014	95.13 (6)	O9—Al2—O10	93.25 (7)				
013—Al2—O15	93.48 (7)	09—Al2—O13	94.12 (6)				
010—Al2—014	171.74 (7)	09—Al2—O14	90.10 (7)				
O10—Al2—O15	88.61 (7)	09—Al2—O15	172.10 (7)				
O13—Al2—O4	178.15 (7)	O10—Al2—O4	86.67 (6)				
Symmetry code: (i) $-x+1, -y+1, -z+1$.							