Supporting Information

Ammonia activation using a heteroleptic stannylene and lithium stannylenoid formation facilitated by hemilabile iminophosphorane-based ligands

David M. J. Krengel,^a Nico Graw,^a Regine Herbst-Irmer,^a Dietmar Stalke,^a Oliver P. E. Townrow,^{*b} Malte Fischer^{*a}

 ^a Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, D-37077 Göttingen (Germany)
 email: malte.fischer@uni-goettingen.de
 ^b Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen (Germany)
 email: oliver.townrow@fau.de

Table of Contents

General Considerations	S 2
Synthesis and Characterization of Compounds	S 3
Crystallographic Details	S79
Computational Details	S82
References	S99

General Considerations

Materials and Synthetic Methods

All manipulations of air- and moisture-sensitive materials were carried out using standard Schlenk-line and glovebox techniques (with oxygen and water concentrations below 0.1 ppm, as monitored by an O_2/H_2O Combi-Analyzer) under an inert atmosphere of argon or dinitrogen. Solvents were purified using a Solvent Purification System, degassed by sparging with argon, and stored over 3 Å molecular sieves. ^{Mes}TerSn{N(SiMe_3)_2} (1), 1,3,4,5-tetramethylimidazol-2-ylidene (IMe_4), 2,6-diisopropylphenyl azide (N_3Dipp), and 3,5-dimethylphenyl azide (N_3Xyl) were synthesized according to literature procedures.^[S1-S3] Trimethyl phosphine (P(CH_3)_3) was purchased from a commercial supplier, transferred into the glovebox, and stored in the glovebox freezer prior to use. 1-Azidoadamantane (N_3Ad) and lithium bis(trimethylsilyl)amide (Li{N(Si(CH_3)_3)_2}) were purchased from commercial suppliers and transferred into the glovebox prior to use.

Analytical Methods

NMR spectra were measured in benzene- d_6 (C₆D₆), toluene- d_8 (C₇D₈) or tetrahydrofuran- d_8 (C₄D₈O) (dried over CaH₂, distilled by trap-to-trap transfer in vacuo, degassed by three freezepump-thaw cycles and transferred to the glovebox prior to use). NMR samples were prepared under argon in NMR tubes with J. Young Teflon valves. NMR spectra were measured on Bruker Avance 300 MHz, 400 MHz, 500 MHz, and 600 MHz spectrometers. ¹H and ¹³C NMR spectra were referenced internally to residual protio-solvent (¹H) or solvent (¹³C) resonances (C₆D₆: δ_H = 7.16 ppm; δ_C = 128.06 ppm; C₇D₈: δ_H = 2.08 ppm; δ_C = 20.43 ppm; C₄D₈O: δ_H = 3.58 ppm; δ_C = 67.21 ppm). ¹¹⁹Sn{¹H} NMR spectra were referenced with respect to SnMe₄. ⁷Li{¹H} NMR spectra were referenced with respect to lithium chloride (9.7 M in D₂O). The given chemical shifts of ¹⁵N NMR spectra are obtained from ¹⁵N/¹H HSCQ and ¹⁵N/¹H HMBC experiments with nitromethane as external standard. LIFDI-MS (JEOL AccuTOF JMS-T100GCV; inert conditions) were measured by the Zentrale Massenabteilung (Fakultät für Chemie, Georg-August-Universität Göttingen). Elemental analyses were obtained from the Analytische Labor (Georg-August-Universität Göttingen) using an Elementar Vario EL 3 analyzer.

Synthesis and Characterization of Compounds

Synthesis of DippNP(CH₃)₃ (2a)

N₃Dipp (0.700 g, 3.44 mmol) was dissolved in 6 mL of *n*-hexane. $P(CH_3)_3$ (0.288 g, 3.44 mmol), precooled to -30 °C in 2 mL of *n*-hexane, was slowly added dropwise via syringe, resulting in immediate gas evolution. The solution was stirred for 30 minutes at room temperature, followed by removal of all volatile components under vacuum, yielding DippNP(CH₃)₃ (**2a**) as a slightly yellow solid. Crystals of **2a** suitable for single crystal X-ray diffraction were obtained from a saturated *n*-hexane solution of **2a** stored at -4 °C. NMR data of **2a** were recollected in C₆D₆ for the purpose of comparison.^[S4]

Yield: 0.802 g (3.19 mmol; 93%).

¹**H NMR** (500 MHz, C₆D₆, 298 K): δ = 0.93 (d, ²*J*_{P,H} = 12.0 Hz, 9H, P(CH₃)₃), 1.34 (d, ³*J*_{H,H} = 7.0 Hz, 12H, CH(CH₃)₂), 3.58 (hept, ³*J*_{H,H} = 6.9 Hz, 2H, C*H*(CH₃)₂), 7.04-7.09 (m, 1H, CH_{Aryl}), 7.22-7.24 (m, 2H, CH_{Aryl}) ppm.

¹**H NMR** (500 MHz, THF-*d*₈, 298 K): δ = 1.12 (d, ³*J*_{H,H} = 6.9 Hz, CH(C*H*₃)₂), 1.50 (d, ²*J*_{P,H} = 12.3 Hz, 9H, P(CH₃)₃), 3.43 (hept, ³*J*_{H,H} = 6.9 Hz, 2H, C*H*(CH₃)₂), 6.56-6.62 (m, 1H, CH_{Aryl}), 6.83-6.86 (m, 2H, CH_{Aryl}) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 17.7 (d, ¹J_{P,C} = 69.3 Hz, P(CH₃)₃), 24.2 (CH(<u>C</u>H₃)₂), 28.7 (d, J_{P,C} = 1.6 Hz, <u>C</u>H(CH₃)₂), 119.6 (d, J_{P,C} = 3.8 Hz, CH_{Aryl}), 123.0 (d, J_{P,C} = 3.2 Hz, CH_{Aryl}), 142.5 (d, J_{P,C} = 7.3 Hz, C_{q,Aryl}), 145.7 (d, J_{P,C} = 3.0 Hz, C_{q,Aryl}N) ppm.

³¹P{¹H} NMR (203 MHz, C₆D₆, 298 K): δ = -8.2 ppm.

³¹**P NMR** (203 MHz, C₆D₆, 298 K): δ = -8.2 (m) ppm.

³¹**P**{¹**H**} **NMR** (203 MHz, THF-*d*₈, 298 K): δ = -6.7 ppm.

³¹**P NMR** (203 MHz, THF- d_8 , 298 K): δ = -6.7 (m) ppm.

EA: Anal. calcd. for $C_{15}H_{26}NP$: C, 71.68; H, 10.43; N, 5.57; Found: C, 71.52; H, 10.40; N, 5.52.

Figure S2. ¹³C{¹H} NMR spectrum of DippNP(CH₃)₃ (2a) (126 MHz, C₆D₆, 298 K).

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20 **Figure S4**. ³¹P NMR spectrum of DippNP(CH₃)₃ (**2a**) (203 MHz, C₆D₆, 298 K).

Figure S5. Asymmetric unit of the crystal structure of DippNP(CH₃)₃ (**2a**). Anisotropic displacement parameters are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): N1–P1 1.5597(17), P1–C1 1.788(2), P1–C2 1.805(3), P1–C3 1.797(2), N1–C4 1.397(2), C4–N1–P1 131.34(13).

The data were collected on a non-merohedral twin with the twin law $-0.90\ 0\ 0.19\ 0\ -1\ 0\ 0.95\ 0\ -0.90$. The fractional contribution of the minor component refined to 0.4755(15).

Table S1. Bond len	gths [Å] and	angles [°] for 2a.
--------------------	--------------	--------------------

N(2)-C(19)	1.388(2)	C(13)-C(15)	1.531(3)
N(2)-P(2)	1.5540(16)	C(13)-C(14)	1.537(3)
P(1)-N(1)	1.5597(17)	C(19)-C(20)	1.413(3)
P(1)-C(1)	1.788(2)	C(19)-C(24)	1.417(3)
P(1)-C(3)	1.797(2)	C(20)-C(21)	1.394(3)
P(1)-C(2)	1.805(3)	C(20)-C(25)	1.519(3)
P(2)-C(16)	1.798(2)	C(21)-C(22)	1.389(3)
P(2)-C(17)	1.802(2)	C(22)-C(23)	1.387(3)
P(2)-C(18)	1.803(2)	C(23)-C(24)	1.396(3)
N(1)-C(4)	1.397(2)	C(24)-C(28)	1.517(3)
C(4)-C(5)	1.415(3)	C(25)-C(27)	1.523(3)
C(4)-C(9)	1.415(3)	C(25)-C(26)	1.536(3)
C(5)-C(6)	1.399(3)	C(28)-C(30)	1.522(3)
C(5)-C(10)	1.516(3)	C(28)-C(29)	1.533(3)
C(6)-C(7)	1.386(3)		
C(7)-C(8)	1.387(3)	C(19)-N(2)-P(2)	137.85(13)
C(8)-C(9)	1.398(3)	N(1)-P(1)-C(1)	107.78(10)
C(9)-C(13)	1.521(3)	N(1)-P(1)-C(3)	117.34(10)
C(10)-C(12)	1.520(3)	C(1)-P(1)-C(3)	106.50(14)
C(10)-C(11)	1.529(3)	N(1)-P(1)-C(2)	116.83(11)

C(1)-P(1)-C(2)	104.68(15)	C(12)-C(10)-C(11)	110.32(19)
C(3)-P(1)-C(2)	102.61(13)	C(9)-C(13)-C(15)	112.50(17)
N(2)-P(2)-C(16)	110.57(9)	C(9)-C(13)-C(14)	110.13(17)
N(2)-P(2)-C(17)	116.73(9)	C(15)-C(13)-C(14)	111.15(18)
C(16)-P(2)-C(17)	105.52(11)	N(2)-C(19)-C(20)	120.15(17)
N(2)-P(2)-C(18)	114.61(10)	N(2)-C(19)-C(24)	120.39(17)
C(16)-P(2)-C(18)	101.96(10)	C(20)-C(19)-C(24)	119.21(17)
C(17)-P(2)-C(18)	106.07(10)	C(21)-C(20)-C(19)	119.32(19)
C(4)-N(1)-P(1)	131.34(13)	C(21)-C(20)-C(25)	119.09(18)
N(1)-C(4)-C(5)	120.48(17)	C(19)-C(20)-C(25)	121.58(17)
N(1)-C(4)-C(9)	119.95(17)	C(22)-C(21)-C(20)	121.7(2)
C(5)-C(4)-C(9)	119.23(17)	C(23)-C(22)-C(21)	118.94(19)
C(6)-C(5)-C(4)	119.32(18)	C(22)-C(23)-C(24)	121.4(2)
C(6)-C(5)-C(10)	119.73(18)	C(23)-C(24)-C(19)	119.43(19)
C(4)-C(5)-C(10)	120.82(17)	C(23)-C(24)-C(28)	120.16(18)
C(7)-C(6)-C(5)	121.59(19)	C(19)-C(24)-C(28)	120.33(17)
C(6)-C(7)-C(8)	118.87(18)	C(20)-C(25)-C(27)	111.93(17)
C(7)-C(8)-C(9)	121.72(19)	C(20)-C(25)-C(26)	110.68(17)
C(8)-C(9)-C(4)	119.20(18)	C(27)-C(25)-C(26)	111.34(18)
C(8)-C(9)-C(13)	118.97(18)	C(24)-C(28)-C(30)	115.3(2)
C(4)-C(9)-C(13)	121.76(17)	C(24)-C(28)-C(29)	109.86(17)
C(5)-C(10)-C(12)	113.84(18)	C(30)-C(28)-C(29)	109.08(19)
C(5)-C(10)-C(11)	109.81(17)		

Synthesis of XyINP(CH₃)₃ (2b)

N₃Xyl (0.500 g, 3.40 mmol) was dissolved in 6 mL of *n*-hexane. P(CH₃)₃ (0.258 g, 3.40 mmol), precooled to -30 °C in 2 mL of *n*-hexane, was slowly added dropwise via syringe, resulting in immediate gas evolution. The solution was stirred for 30 minutes at room temperature, followed by removal of all volatile components under vacuum, yielding XyINP(CH₃)₃ (**2b**) as a yellow solid. NMR data of **2b** were recollected in C₆D₆ for the purpose of comparison.^[S5]

Yield: 0.632 g (3.24 mmol; 95%).

¹**H NMR** (500 MHz, C₆D₆, 298 K): δ = 0.95 (d, ²*J*_{P,H} = 12.4 Hz, 9H, P(CH₃)₃), 2.31 (s, 6H, CH₃), 6.52-6.54 (m, 1H, CH_{Aryl}), 6.70-6.71 (m, 2H, CH_{Aryl}) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 16.0 (d, ¹*J*_{P,C} = 67.2 Hz, P(CH₃)₃), 21.9 (CH₃), 119.2 (CH_{Aryl}), 121.2 (d, *J*_{P,C} = 18.9 Hz, CH_{Aryl}), 138.1 (C_{q,Aryl}CH₃), 153.4 (d, ²*J*_{P,C} = 3.7 Hz, C_{q,Aryl}N) ppm.

³¹**P**{¹**H**} **NMR** (203 MHz, C_6D_6 , 298 K): δ = 1.4 ppm.

 $^{31}\textbf{P}$ NMR (203 MHz, $C_6D_6,$ 298 K): δ = 1.4 (m) ppm.

EA: Anal. calcd. for C₁₁H₁₈NP: C, 67.67; H, 9.29; N, 7.17; Found: C, 67.46; H, 9.31; N, 7.24.

Figure S7. ¹³C{¹H} NMR spectrum of XyINP(CH₃)₃ (**2b**) (126 MHz, C₆D₆, 298 K).

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20 Figure S8. ³¹P{¹H} NMR spectrum of XyINP(CH₃)₃ (**2b**) (203 MHz, C₆D₆, 298 K).

200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -20 **Figure S9**. ³¹P NMR spectrum of XyINP(CH₃)₃ (**2b**) (203 MHz, C₆D₆, 298 K).

Synthesis of AdNP(CH₃)₃ (2c)

N₃Ad (0.700 g, 2.82 mmol) was dissolved in 6 mL of *n*-hexane. P(CH₃)₃ (0.215 g, 2.82 mmol), precooled to -30 °C in 2 mL of *n*-hexane, was slowly added dropwise via syringe. The solution was stirred for 1 h at room temperature which results in slow gas evolution, followed by removal of all volatile components under vacuum, yielding AdNP(CH₃)₃ (**2c**) as a colourless solid. Crystals of **2c** suitable for single crystal X-ray diffraction were obtained from a saturated *n*-hexane solution of **2c** stored at -4 °C. NMR data of **2c** were recollected in C₆D₆ for the purpose of comparison.^[S6]

Yield: 0.802 g (3.19 mmol; 93%).

¹**H NMR** (500 MHz, C₆D₆, 298 K): δ = 1.00 (d, ²*J*_{P,H} = 11.8 Hz, 9H, P(CH₃)₃), 1.68-1.76 (m, 6H, CH₂), 1.93-1.94 (m, 6H, CH₂), 2.12-2.15 (m, 3H, CH) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 20.5 (d, ¹J_{P,C} = 64.9 Hz, P(CH₃)₃), 30.8 (d, J_{P,C} = 2.1 Hz, CH), 37.1 (CH₂), 50.0 (d, J_{P,C} = 11.9 Hz, CH₂), 51.5 (d, ²J_{P,C} = 5.5 Hz, C_qN) ppm. ³¹P{¹H} NMR (203 MHz, C₆D₆, 298 K): δ = -14.5 ppm.

³¹**P NMR** (203 MHz, C₆D₆, 298 K): δ = -14.5 (m) ppm.

EA: Anal. calcd. for C₁₃H₂₄NP: C, 69.30; H, 10.74; N, 6.22; Found: C, 69.23; H, 10.81; N, 6.19.

Figure S14. Asymmetric unit of the crystal structure of $AdNP(CH_3)_3$ (**2c**). Anisotropic displacement parameters are drawn at the 50% probability level (hydrogen atoms have been omitted for clarity). Selected bond lengths (Å) and angles (deg): N1-P1 1.558(4), N1-C1 1.461(5), P1-C11 1.828(4), P1-C12 1.825(4), P1–C13 1.791(4), C1–N1–P1 129.6(3). The PMe₃ group is disordered over two positions and was refined with distance restraints and restraints for the anisotropic displacement parameters. The occupancy of the minor domain refined to 0.029(3).

 Table S2. Bond lengths [Å] and angles [°] for 2c.

_

P(1)-N(1)	1.558(4)	N(1)-P(1)-C(13)	107.8(2)
P(1)-C(13)	1.791(4)	N(1)-P(1)-C(12)	118.9(2)
P(1)-C(12)	1.825(4)	C(13)-P(1)-C(12)	104.8(2)
P(1)-C(11)	1.828(4)	N(1)-P(1)-C(11)	117.6(2)
P(1')-N(1)	1.579(17)	C(13)-P(1)-C(11)	103.7(2)
P(1')-C(12')	1.804(15)	C(12)-P(1)-C(11)	102.2(2)
P(1')-C(11')	1.808(16)	N(1)-P(1')-C(12')	114.8(19)
P(1')-C(13')	1.812(16)	N(1)-P(1')-C(11')	114.4(18)
N(1)-C(1)	1.461(5)	C(12')-P(1')-C(11')	104.7(17)
C(1)-C(4)	1.536(6)	N(1)-P(1')-C(13')	112.9(18)
C(1)-C(2)	1.542(6)	C(12')-P(1')-C(13')	104.8(17)
C(1)-C(3)	1.543(6)	C(11')-P(1')-C(13')	104.3(17)
C(2)-C(9)	1.532(6)	C(1)-N(1)-P(1)	129.6(3)
C(3)-C(5)	1.540(6)	C(1)-N(1)-P(1')	127.5(12)
C(4)-C(7)	1.532(6)	N(1)-C(1)-C(4)	107.5(3)
C(5)-C(10)	1.524(6)	N(1)-C(1)-C(2)	114.8(3)
C(5)-C(6)	1.537(6)	C(4)-C(1)-C(2)	107.8(3)
C(6)-C(7)	1.536(6)	N(1)-C(1)-C(3)	111.3(3)
C(7)-C(8)	1.532(6)	C(4)-C(1)-C(3)	107.6(3)
C(8)-C(9)	1.527(6)	C(2)-C(1)-C(3)	107.6(3)
C(9)-C(10)	1.539(6)	C(9)-C(2)-C(1)	111.2(3)
		C(5)-C(3)-C(1)	111.7(3)

C(7)-C(4)-C(1)	111.5(3)	C(4)-C(7)-C(6)	109.3(3)
C(10)-C(5)-C(6)	109.2(3)	C(9)-C(8)-C(7)	108.9(3)
C(10)-C(5)-C(3)	109.6(3)	C(8)-C(9)-C(2)	109.8(4)
C(6)-C(5)-C(3)	109.0(4)	C(8)-C(9)-C(10)	109.4(4)
C(7)-C(6)-C(5)	109.2(3)	C(2)-C(9)-C(10)	109.7(3)
C(8)-C(7)-C(4)	109.7(3)	C(5)-C(10)-C(9)	109.5(3)
C(8)-C(7)-C(6)	109.8(4)		

Reaction of $^{Mes}TerSn\{N(Si(CH_3)_3)_2\}$ (1) and DippNP(CH₃)₃ (2a) – Synthesis of $^{Mes}TerSnCH_2P(CH_3)_2NDipp$ (3a)

DippNP(CH₃)₃ (**2a**) (0.021 g, 0.084 mmol) in 0.2 mL of C₆D₆ was added to a solution of ^{Mes}TerSn{N(Si(CH₃)₃)₂} (**1**) (0.050 g, 0.084 mmol) in 0.3 mL of C₆D₆. The reaction progress was monitored by ¹H and ³¹P{¹H} NMR spectroscopy. The reaction slowly starts at room temperature. Therefore, the reaction mixture was heated to 70 °C which results in a colour change from orange-red to yellow-orange over time and heating was continued till all starting materials were consumed. All volatile components were removed under vacuum. The yellow amorphous material was dissolved in 1 mL of *n*-hexane, filtered and stored at -30 °C to give ^{Mes}TerSnCH₂P(CH₃)₂NDipp (**3a**) as a yellow crystalline material. In certain instances, the solvent was gradually allowed to evaporate at -30 °C, resulting in the achievement of identical results. Crystals obtained through this method were suitable for single crystal X-ray diffraction.

Yield: 0.049 g (0.072 mmol; 86%).

¹**H NMR** (400 MHz, C₆D₆, 298 K): $\delta = 0.24$ (d, ²*J*_{P,H} = 6.5 Hz, 2H, CH₂), 0.72 (d, ²*J*_{P,H} = 11.9 Hz, 6H, P(CH₃)₂), 0.95 (m(br), 12H, CH(C*H*₃)₂)*, 2.07 (s, 12H, CH₃)**, 2.24 (s, 6H, CH₃), 3.39 (hept, ³*J*_{H,H} = 6.8 Hz, C*H*(CH₃)₂), 6.78 (m, 4H, CH_{Aryl}), 6.95-7.01 (m, 5H, CH_{Aryl})**, 7.19-7.23 (m, 1H, CH_{Aryl}) ppm.

¹**H NMR** (400 MHz, C₇D₈, 243 K): 0.14 (d, ²J_{P,H} = 11.3 Hz, 1H, CH₂), 0.28 (d, ²J_{P,H} = 12.5 Hz, 1H, CH₂), 0.58 (d, ²J_{P,H} = 12.1 Hz, 6H, P(CH₃)₂), 0.81 (d, ³J_{H,H} = 6.5 Hz, 3H, CH(CH₃)₂), 0.88 (m, 3H, CH(CH₃)₂), 1.07-1.10 (m, 6H, CH(CH₃)₂), 1.86 (s, 6H, CH₃), 2.28 (s, 6H, CH₃), 2.41 (s, 6H, CH₃), 3.34 (hept, ³J_{H,H} = 6.4 Hz, 1H, CH(CH₃)₂), 3.42 (hept, ³J_{H,H} = 6.4 Hz, 1H, CH(CH₃)₂), 6.74 (m, 2H, CH_{Aryl}), 6.86 (m, 2H, CH_{Aryl}), 6.92-6.93 (m, 1H, CH_{Aryl}), 6.98-7.01 (m, 2H, CH_{Aryl})**, 7.05-7.07 (m, 2H, CH_{Aryl})**, 7.23-7.25 (m, 1H, CH_{Aryl}) ppm.

* = overlap with signal of residual *n*-hexane

 $** = overlap with C_7D_7H signal(s)$

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 8.5 (d, ¹*J*_{P,C} = 74.2 Hz, CH₂), 20.3 (P(CH₃)₂)***, 21.2 (CH₃), 22.0 (CH₃), 25.2 (br, CH(<u>C</u>H₃)₂), 27.3 (<u>C</u>H(CH₃)₂), 124.0 (d, *J*_{P,C} = 3.9 Hz, CH_{Aryl}), 124.2 (d, *J*_{P,C} = 3.5 Hz, CH_{Aryl}), 127.5 (CH_{Aryl})***, 128.1 (CH_{Aryl})***, 128.2 (CH_{Aryl})***, 135.7 (C_{q,Aryl}), 136.7 (C_{q,Aryl}), 140.2 (d, *J*_{P,C} = 9.1 Hz, C_{q,Aryl}), 142.9 (C_{q,Aryl}), 146.3 (d, *J*_{P,C} = 6.1 Hz, C_{q,Aryl}), 139.0 (C_{q,Aryl}), 172.9 (C_{q,Aryl}Sn) ppm.

*** = overlap with C_7D_8 signal(s) and assigned by $^1H/^{13}C$ HMBC

¹**H**/¹⁵**N HMBC NMR** (51 MHz, C₆D₆, 298 K): δ = -354.5 ppm.

³¹**P**{¹**H**} **NMR** (203 MHz, C₆D₆, 298 K): δ = 40.4 (Sn satellites: $J_{119/117Sn,P}$ = 163.6 Hz (average value)) ppm.

³¹**P NMR** (203 MHz, C₆D₆, 298 K): δ = 40.4 (m) ppm.

¹¹⁹Sn{¹H} NMR (187 MHz, C₆D₆, 298 K): δ = 422.0 (d, ²J_{119Sn,P} = 165.9 Hz) ppm.

MS (LIFDI): m/z calcd. for C₃₉H₅₀NPSn: 683.2703; found: 683.3.

EA: Anal. calcd. for C₃₉H₅₀NPSn: C, 68.63; H, 7.38; N, 2.05; Found: C, 68.09; H, 7.37; N, 2.02.

Figure S16. ¹³C{¹H} NMR spectrum of ^{Mes}TerSnCH₂P(CH₃)₂NDipp (**3a**) (126 MHz, C₆D₆, 298 K); 14.3, 23.0, 32.0 ppm: *n*-hexane.

		Mun
		M/I_M_h
r/Mm		
	M	
	~	M
		MM

Figure S20. VT ¹H NMR spectrum of ^{Mes}TerSnCH₂P(CH₃)₂NDipp (**3a**) from 193 K (top) to 293 K (bottom) in steps of 10 K (600 MHz, C_7D_8); 0.88, 1.22 ppm: *n*-hexane, 0.10 ppm: HN(SiMe₃)₂.

⁴⁹⁵ ⁴⁹⁰ ⁴⁸⁵ ⁴⁸⁰ ⁴⁷⁵ ⁴⁷⁰ ⁴⁶⁵ ⁴⁶⁰ ⁴⁵⁵ ⁴⁵⁰ ⁴⁴⁵ ⁴⁴⁰ ⁴³⁵ ⁴³⁰ ⁴²⁵ ⁴²⁰ ⁴¹⁵ ⁴¹⁰ ⁴⁰⁵ ⁴⁰⁰ ³⁹⁵ ³⁹⁰ ³⁸⁵ ³⁸⁰ ³⁷⁵ ³⁷⁰ ³⁶⁵ **Figure S22**. VT ¹¹⁹Sn{¹H} NMR spectrum of ^{Mes}TerSnCH₂P(CH₃)₂NDipp (**3a**) from 193 K (bottom) to 353 K (top) in steps of 20 K (187 MHz, C₇D₈).

Figure S24. Asymmetric unit of the crystal structure of ^{Mes}TerSnCH₂P(CH₃)₂NDipp (**3a**). Anisotropic displacement parameters are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Sn1–C1 2.2527(16), Sn1•••N1 2.2877(14), P1–N1 1.6143(13), Sn1–C25 2.3220(17), P1–C25 1.7503(17), P1–C26 1.8001(17), P1–C27 1.8050(17), N1–C28 1.426(2), C1–Sn1–C25 106.05(6), P1–C25–Sn1 91.90(7), C25–P1–N1 100.92(7), P1–N1–C28 127.42(11).

The data were collected on a split crystal. The integration was performed with two orientation matrices. The data were detwinned using a fractional contribution of the minor domain of 0.4159. The asymmetric unit contains one molecule of hexane disordered over two positions. The disorder was treated with distance restraints and restraints for the anisotropic displacement parameters. The occupancy of the minor component refined to 0.206(5). Two methyl groups (C15 and C23) showed rotational disorder over two positions. Occupations of the minor components refined to 0.48(2) and 0.45(3), respectively.

 Table S3. Bond lengths [Å] and angles [°] for 3a.

2.2527(16)	C(3)-C(4)	1.383(2)
2.2876(14)	C(4)-C(5)	1.383(2)
2.3220(17)	C(5)-C(6)	1.400(2)
2.9537(8)	C(6)-C(16)	1.501(2)
1.6143(13)	C(7)-C(12)	1.406(2)
1.7503(17)	C(7)-C(8)	1.410(2)
1.8001(17)	C(8)-C(9)	1.389(2)
1.8050(17)	C(8)-C(13)	1.507(2)
1.426(2)	C(9)-C(10)	1.390(2)
1.412(2)	C(10)-C(11)	1.387(2)
1.413(2)	C(10)-C(14)	1.508(2)
1.398(2)	C(11)-C(12)	1.395(2)
1.506(2)	C(12)-C(15)	1.506(2)
	2.2527(16) 2.2876(14) 2.3220(17) 2.9537(8) 1.6143(13) 1.7503(17) 1.8001(17) 1.8050(17) 1.426(2) 1.412(2) 1.413(2) 1.398(2) 1.506(2)	2.2527(16) $C(3)-C(4)$ $2.2876(14)$ $C(4)-C(5)$ $2.3220(17)$ $C(5)-C(6)$ $2.9537(8)$ $C(6)-C(16)$ $1.6143(13)$ $C(7)-C(12)$ $1.7503(17)$ $C(7)-C(8)$ $1.8001(17)$ $C(8)-C(9)$ $1.8050(17)$ $C(8)-C(13)$ $1.426(2)$ $C(9)-C(10)$ $1.412(2)$ $C(10)-C(11)$ $1.413(2)$ $C(10)-C(14)$ $1.398(2)$ $C(11)-C(12)$ $1.506(2)$ $C(12)-C(15)$

C(16)-C(21)	1.406(2)	N(1)-P(1)-C(25)	100.92(7)
C(16)-C(17)	1.407(2)	N(1)-P(1)-C(26)	115.94(8)
C(17)-C(18)	1.392(2)	C(25)-P(1)-C(26)	112.17(9)
C(17)-C(22)	1.511(2)	N(1)-P(1)-C(27)	113.00(8)
C(18)-C(19)	1.388(3)	C(25)-P(1)-C(27)	112.69(8)
C(19)-C(20)	1.389(2)	C(26)-P(1)-C(27)	102.58(9)
C(19)-C(23)	1.512(2)	N(1)-P(1)-Sn(1)	50.26(5)
C(20)-C(21)	1.392(2)	C(25)-P(1)-Sn(1)	51.79(6)
C(21)-C(24)	1.512(2)	C(26)-P(1)-Sn(1)	138.65(6)
C(28)-C(33)	1.414(2)	C(27)-P(1)-Sn(1)	118.74(6)
C(28)-C(29)	1.415(2)	C(28)-N(1)-P(1)	127.42(11)
C(29)-C(30)	1.395(2)	C(28)-N(1)-Sn(1)	132.24(10)
C(29)-C(34)	1.517(2)	P(1)-N(1)-Sn(1)	96.88(6)
C(30)-C(31)	1.379(3)	C(6)-C(1)-C(2)	117.39(14)
C(31)-C(32)	1.386(2)	C(6)-C(1)-Sn(1)	129.55(11)
C(32)-C(33)	1.394(2)	C(2)-C(1)-Sn(1)	113.05(11)
C(33)-C(37)	1.519(2)	C(3)-C(2)-C(1)	120.95(14)
C(34)-C(36)	1.531(2)	C(3)-C(2)-C(7)	116.85(14)
C(34)-C(35)	1.533(2)	C(1)-C(2)-C(7)	121.94(13)
C(37)-C(39)	1.528(2)	C(4)-C(3)-C(2)	120.70(15)
C(37)-C(38)	1.530(2)	C(3)-C(4)-C(5)	119.23(15)
C(1A)-C(2A)	1.511(6)	C(4)-C(5)-C(6)	121.16(15)
C(2A)-C(3A)	1.501(4)	C(5)-C(6)-C(1)	120.46(15)
C(3A)-C(4A)	1.527(5)	C(5)-C(6)-C(16)	117.04(14)
C(4A)-C(5A)	1.509(4)	C(1)-C(6)-C(16)	122.36(14)
C(5A)-C(6A)	1.504(5)	C(12)-C(7)-C(8)	119.13(14)
C(1B)-C(2B)	1.504(13)	C(12)-C(7)-C(2)	122.33(14)
C(2B)-C(3B)	1.516(13)	C(8)-C(7)-C(2)	118.32(14)
C(3B)-C(4B)	1.513(14)	C(9)-C(8)-C(7)	119.53(14)
C(4B)-C(5B)	1.478(13)	C(9)-C(8)-C(13)	119.10(14)
C(5B)-C(6B)	1.513(15)	C(7)-C(8)-C(13)	121.37(14)
		C(8)-C(9)-C(10)	121.92(15)
C(1)-Sn(1)-N(1)	95.43(5)	C(11)-C(10)-C(9)	117.98(15)
C(1)-Sn(1)-C(25)	106.05(6)	C(11)-C(10)-C(14)	121.18(15)
N(1)-Sn(1)-C(25)	68.55(5)	C(9)-C(10)-C(14)	120.83(15)
C(1)-Sn(1)-P(1)	107.55(4)	C(10)-C(11)-C(12)	122.08(15)
N(1)-Sn(1)-P(1)	32.86(3)	C(11)-C(12)-C(7)	119.28(14)
C(25)-Sn(1)-P(1)	36.32(4)	C(11)-C(12)-C(15)	118.70(14)

C(7)-C(12)-C(15)	122.02(14)	C(28)-C(29)-C(34)	122.12(14)
C(21)-C(16)-C(17)	119.02(15)	C(31)-C(30)-C(29)	121.45(15)
C(21)-C(16)-C(6)	120.99(14)	C(30)-C(31)-C(32)	119.38(16)
C(17)-C(16)-C(6)	119.91(14)	C(31)-C(32)-C(33)	121.61(16)
C(18)-C(17)-C(16)	119.33(15)	C(32)-C(33)-C(28)	118.78(15)
C(18)-C(17)-C(22)	118.73(15)	C(32)-C(33)-C(37)	118.34(15)
C(16)-C(17)-C(22)	121.93(15)	C(28)-C(33)-C(37)	122.88(14)
C(19)-C(18)-C(17)	122.20(16)	C(29)-C(34)-C(36)	111.65(14)
C(18)-C(19)-C(20)	117.90(16)	C(29)-C(34)-C(35)	111.47(14)
C(18)-C(19)-C(23)	120.69(17)	C(36)-C(34)-C(35)	110.37(14)
C(20)-C(19)-C(23)	121.39(17)	C(33)-C(37)-C(39)	112.09(14)
C(19)-C(20)-C(21)	121.70(16)	C(33)-C(37)-C(38)	111.69(14)
C(20)-C(21)-C(16)	119.81(15)	C(39)-C(37)-C(38)	110.47(14)
C(20)-C(21)-C(24)	118.77(15)	C(3A)-C(2A)-C(1A)	113.4(3)
C(16)-C(21)-C(24)	121.41(15)	C(2A)-C(3A)-C(4A)	114.0(3)
P(1)-C(25)-Sn(1)	91.90(7)	C(5A)-C(4A)-C(3A)	113.4(3)
C(33)-C(28)-C(29)	119.77(14)	C(6A)-C(5A)-C(4A)	113.7(3)
C(33)-C(28)-N(1)	119.87(14)	C(1B)-C(2B)-C(3B)	112.6(12)
C(29)-C(28)-N(1)	120.22(14)	C(4B)-C(3B)-C(2B)	110.5(12)
C(30)-C(29)-C(28)	119.02(15)	C(5B)-C(4B)-C(3B)	116.7(12)
C(30)-C(29)-C(34)	118.84(14)	C(4B)-C(5B)-C(6B)	114.7(14)

UV-vis spectrum and extinction coefficient of 3a

The UV-vis spectrum of **3a** was recorded in benzene. The UV-vis cuvette was filled in the glovebox and sealed with a PTFE cap. Saturation below 350 nm was reached even at low concentrations. Therefore, we focused on characteristic absorptions in the visible region and observed a maximum at 387 nm (Figure S25).

Figure S25. UV-vis spectrum of 3a (c = 0.33 mg/mL) in benzene at room temperature with ε = 17·10² L·mol⁻¹·cm⁻¹ at λ_{max} = 387 nm.

Reaction of $^{Mes}TerSn\{N(Si(CH_3)_3)_2\}$ (1) and $XyINP(CH_3)_3$ (2b) – Synthesis of $^{Mes}TerSnCH_2P(CH_3)_2NXyI$ (3b)

XyINP(CH₃)₃ (**2b**) (0.013 g, 0.068 mmol) in 0.2 mL of C_6D_6 was added to a solution of ^{Mes}TerSn{N(Si(CH₃)₃)₂} (**1**) (0.040 g, 0.068 mmol) in 0.3 mL of C_6D_6 . The reaction progress was monitored by ¹H and ³¹P{¹H} NMR spectroscopy, revealing the clean formation of ^{Mes}TerSnCH₂P(CH₃)₂NXyI (**3b**) over the course of a couple of hours. All volatile components were removed under vacuum. The remaining solid was dissolved in 0.5 mL of *n*-hexane, filtered, and stored at -30 °C to give **3b** as a slightly orange microcrystalline solid.

Yield: 0.031 g (0.049 mmol; 74%).

¹**H NMR** (500 MHz, C₇D₈, 298 K): δ = 0.39 (dd, ²J_{H,H} = 12.7 Hz, ²J_{P,H} = 4.7 Hz, 1H, CH₂), 0.47 (dd, ²J_{H,H} = 12.7 Hz, ²J_{P,H} = 6.2 Hz, 1H, CH₂), 0.63 (d, ²J_{P,H} = 12.0 Hz, 3H, P(CH₃)₂), 1.00 (d, ²J_{P,H} = 12.5 Hz, 3H, P(CH₃)₂), 2.14 (s, 6H, CH₃,xyl), 2.15 (s, 6H, CH₃), 2.32 (s, 6H, CH₃), 2.42 (s, 6H, CH₃), 5.99 (s, 2H, *o*-CH_{Aryl}N), 6.38 (s, 1H, *p*-CH_{Aryl}N), 6.56 (s, 2H, CH_{Aryl}), 6.86 (s, 2H, CH_{Aryl}), 7.04-7.06 (m, 2H, CH_{Aryl}), 7.29-7.31 (m, 1H, CH_{Aryl}) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 3.7 (d, ¹J_{P,C} = 74.4 Hz, CH₂), 15.4 (d, ¹J_{P,C} = 47.8 Hz, P(CH₃)₂), 21.3 (CH₃), 21.6 (CH_{3,Xyl}), 21.7 (d, ¹J_{P,C} = 50.9 Hz, P(CH₃)₂), 22.0 (CH₃), 22.1 (CH₃), 119.2 (d, ^{TS}J_{P,C} = 12.3 Hz, *o*-CH_{Aryl}N), 121.7 (*p*-CH_{Aryl}N), 127.2 (CH_{Aryl}), 128.4 (CH_{Aryl}), 128.5 (CH_{Aryl}), 129.1 (CH_{Aryl}), 135.2 (C_{q,Aryl}), 135.8 (C_{q,Aryl}), 135.9 (C_{q,Aryl}), 137.4 (*m*-C_{q,Aryl}N), 141.3 (C_{q,Aryl}), 146.7 (d, ²J_{P,C} = 4.8 Hz, NC_{q,Aryl}), 148.5 (C_{q,Aryl}), 169.2 (C_{q,Aryl}Sn) ppm.

¹**H**/¹⁵**N HMBC NMR** (51 MHz, C₆D₆, 298 K): δ = -318.7 ppm.

³¹**P**{¹**H**} **NMR** (203 MHz, C₆D₆, 298 K): δ = 42.1 (Sn satellites: $J_{119/117Sn,P}$ = 142.3 Hz (average value)) ppm.

³¹**P NMR** (203 MHz, C₆D₆, 298 K): δ = 42.1 (m) ppm.

¹¹⁹Sn{¹H} NMR (187 MHz, C₆D₆, 298 K): δ = 217.6 (d, ²J_{119Sn,P} = 145.7 Hz) ppm.

EA: Anal. calcd. for $C_{35}H_{42}NPSn \cdot 0.5 C_6H_{14}$: C, 67.11; H, 6.76; N, 2.24; Found: C, 66.45; H, 6.34; N, 2.11.

²⁴⁰ ²³⁰ ²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁴ **Figure S27**. ¹³C{¹H} NMR spectrum of ^{Mes}TerSnCH₂P(CH₃)₂NXyI (**3b**) (126 MHz, C₆D₆, 298 K); 14.3, 23.0, 32.0 ppm: *n*-hexane.

Reaction of Mes TerSn{N(Si(CH₃)₃)₂} (1) and AdNP(CH₃)₃ (2c) – Synthesis of Mes TerSnCH₂P(CH₃)₂NAd (3c)

AdNP(CH₃)₃ (**2c**) (0.015 g, 0.068 mmol) in 0.2 mL of C_6D_6 was added to a solution of ^{Mes}TerSn{N(Si(CH₃)₃)₂} (**1**) (0.040 g, 0.068 mmol) in 0.3 mL of C_6D_6 . The reaction progress was monitored by ¹H and ³¹P{¹H} NMR spectroscopy, revealing the clean formation of ^{Mes}TerSnCH₂P(CH₃)₂NAd (**3c**) over the course of a couple of hours. All volatile components were removed under vacuum, the colourless solid was dissolved in 0.5 mL of *n*-hexane, filtered, and stored at -30 °C to give **3c** as a colourless crystalline material. Crystals obtained through this method were suitable for single crystal X-ray diffraction.

Yield: 0.028 g (0.043 mmol; 63%).

¹**H NMR** (400 MHz, C₆D₆, 298 K): δ = 0.39 (dd, *J* = 12.3 Hz, *J* = 4.3 Hz, 1H, PCH₂), 0.62 (dd, *J* = 12.3 Hz, *J* = 6.4 Hz, 1H, PCH₂), 0.74 (d, ²*J*_{P,H} = 11.8 Hz, 3H, P(CH₃)₂), 0.86-0.88 (m, 3H, CH_{2,Ad}), 0.89 (d, ²*J*_{P,H} = 12.4 Hz, 3H, P(CH₃)₂), 1.21-1.25 (m, 3H, CH_{2,Ad}), 1.43-1.51 (m, 6H, CH_{2,Ad}), 1.81-1.84 (m, 3H, CH_{Ad}), 2.25 (s, 6H, CH₃), 2.39 (s, 6H, CH₃), 2.41 (s, 6H, CH₃), 6.89 (s, 4H, CH_{Ary}), 6.99-7.01 (m, 2H, CH_{Ary}), 7.28-7.31 (m, 1H, CH_{Ary}) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 6.9 (d, ¹J_{P,C} = 76.2 Hz, PCH₂), 21.3 (CH₃), 22.16 (CH₃), 22.22 (CH₃), 23.2 (d, ¹J_{P,C} = 41.2 Hz, P(CH₃)₂), 24.0 (d, ¹J_{P,C} = 50.0 Hz, P(CH₃)₂), 30.4 (CH_{Ad}), 36.4 (CH_{2,Ad}), 45.8 (d, ³J_{P,C} = 8.2 Hz, CH_{2,Ad}), 50.7 (d, ²J_{P,C} = 5.9 Hz, NC_q) 126.9 (CH_{Aryl}), 128.8 (CH_{Aryl}), 128.9 (CH_{Aryl}), 135.8 (C_{q,Aryl}), 136.5 (C_{q,Aryl}), 136.7 (C_{q,Aryl}), 142.4 (C_{q,Aryl}), 148.4 (C_{q,Aryl}), 171.6 (C_{q,Aryl}Sn) ppm.

¹**H**/¹⁵**N HMBC NMR** (51 MHz, C₆D₆, 298 K): δ = -308.8 ppm.

³¹**P**{¹**H**} **NMR** (203 MHz, C₆D₆, 298 K): δ = 33.8 (Sn satellites: $J_{119/117Sn,P}$ = 137.6 Hz (average value)) ppm.

³¹**P NMR** (203 MHz, C₆D₆, 298 K): δ = 33.8 (m) ppm.

¹¹⁹**Sn**{¹**H**} **NMR** (187 MHz, C₆D₆, 298 K): δ = 213.3 (d, ²J_{119Sn,P} = 138.6 Hz) ppm.

EA: Anal. calcd. for C₃₇H₄₈NPSn: C, 67.70; H, 7.37; N, 2.13; Found: C, 67.35; H, 7.33; N, 2.14.

²⁴⁰ ²³⁰ ²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴¹ **Figure S32**. ¹³C{¹H} NMR spectrum of ^{Mes}TerSnCH₂P(CH₃)₂NAd (**3c**) (126 MHz, C₆D₆, 298 K); 14.3, 23.0, 32.0 ppm: *n*-hexane.

Figure S36. Asymmetric unit of the crystal structure of ^{Mes}TerSnCH₂P(CH₃)₂NAd (**3c**). Anisotropic displacement parameters are drawn at the 50% probability level (hydrogen atoms have been omitted for clarity). Selected bond lengths (Å) and angles (deg): Sn1–C1 2.284(2), Sn1•••N1 2.269(2), P1–N1 1.6116(17), Sn1–C25 2.303(2), Sn1–N1–P1 32.94(4), C25–P1–N1 100.15(9), C25–Sn1–N1 68.84(6), P1–C25–Sn1 91.87(9).

Table S4. Bond lengths [Å] and angles [°] for 3c.

Sn(1)-N(1)	2.269(2)	C(8)-C(9)	1.395(3)
Sn(1)-C(1)	2.284(2)	C(8)-C(13)	1.510(3)
Sn(1)-C(25)	2.303(2)	C(9)-C(10)	1.391(3)
Sn(1)-P(1)	2.9414(14)	C(10)-C(11)	1.389(3)
P(1)-N(1)	1.6116(17)	C(10)-C(14)	1.511(3)
P(1)-C(25)	1.756(2)	C(11)-C(12)	1.393(3)
P(1)-C(26)	1.809(2)	C(12)-C(15)	1.517(3)
P(1)-C(27)	1.811(2)	C(16)-C(21)	1.403(3)
N(1)-C(28)	1.476(2)	C(16)-C(17)	1.411(3)
C(1)-C(6)	1.416(3)	C(17)-C(18)	1.398(3)
C(1)-C(2)	1.418(3)	C(17)-C(22)	1.503(3)
C(2)-C(3)	1.396(3)	C(18)-C(19)	1.389(3)
C(2)-C(7)	1.502(3)	C(19)-C(20)	1.387(3)
C(3)-C(4)	1.382(3)	C(19)-C(23)	1.517(3)
C(4)-C(5)	1.390(3)	C(20)-C(21)	1.404(3)
C(5)-C(6)	1.400(3)	C(21)-C(24)	1.510(3)
C(6)-C(16)	1.503(3)	C(28)-C(33)	1.534(3)
C(7)-C(12)	1.407(3)	C(28)-C(29)	1.537(3)
C(7)-C(8)	1.408(3)	C(28)-C(34)	1.546(3)

C(29)-C(30)	1.540(3)	C(5)-C(6)-C(1)	120.98(16)
C(30)-C(36)	1.532(3)	C(5)-C(6)-C(16)	114.49(16)
C(30)-C(31)	1.534(3)	C(1)-C(6)-C(16)	124.31(16)
C(31)-C(32)	1.530(3)	C(12)-C(7)-C(8)	119.46(17)
C(32)-C(37)	1.533(3)	C(12)-C(7)-C(2)	119.90(17)
C(32)-C(33)	1.538(3)	C(8)-C(7)-C(2)	120.50(16)
C(34)-C(35)	1.542(3)	C(9)-C(8)-C(7)	119.49(18)
C(35)-C(37)	1.533(3)	C(9)-C(8)-C(13)	119.32(18)
C(35)-C(36)	1.535(3)	C(7)-C(8)-C(13)	121.19(17)
		C(10)-C(9)-C(8)	121.44(19)
N(1)-Sn(1)-C(1)	105.96(7)	C(11)-C(10)-C(9)	118.27(18)
N(1)-Sn(1)-C(25)	68.84(6)	C(11)-C(10)-C(14)	121.3(2)
C(1)-Sn(1)-C(25)	96.62(7)	C(9)-C(10)-C(14)	120.4(2)
N(1)-Sn(1)-P(1)	32.94(4)	C(10)-C(11)-C(12)	122.12(18)
C(1)-Sn(1)-P(1)	98.61(6)	C(11)-C(12)-C(7)	119.03(18)
C(25)-Sn(1)-P(1)	36.64(5)	C(11)-C(12)-C(15)	119.37(18)
N(1)-P(1)-C(25)	100.15(9)	C(7)-C(12)-C(15)	121.59(17)
N(1)-P(1)-C(26)	115.17(10)	C(21)-C(16)-C(17)	119.41(17)
C(25)-P(1)-C(26)	108.41(10)	C(21)-C(16)-C(6)	121.04(16)
N(1)-P(1)-C(27)	116.22(9)	C(17)-C(16)-C(6)	118.93(16)
C(25)-P(1)-C(27)	113.63(10)	C(18)-C(17)-C(16)	119.25(19)
C(26)-P(1)-C(27)	103.42(11)	C(18)-C(17)-C(22)	120.09(18)
N(1)-P(1)-Sn(1)	49.96(6)	C(16)-C(17)-C(22)	120.64(17)
C(25)-P(1)-Sn(1)	51.49(7)	C(19)-C(18)-C(17)	122.07(19)
C(26)-P(1)-Sn(1)	115.90(8)	C(20)-C(19)-C(18)	117.98(18)
C(27)-P(1)-Sn(1)	140.52(8)	C(20)-C(19)-C(23)	120.9(2)
C(28)-N(1)-P(1)	129.07(12)	C(18)-C(19)-C(23)	121.1(2)
C(28)-N(1)-Sn(1)	133.31(11)	C(19)-C(20)-C(21)	122.03(19)
P(1)-N(1)-Sn(1)	97.11(7)	C(16)-C(21)-C(20)	119.25(18)
C(6)-C(1)-C(2)	116.15(16)	C(16)-C(21)-C(24)	121.57(17)
C(6)-C(1)-Sn(1)	128.06(13)	C(20)-C(21)-C(24)	119.17(18)
C(2)-C(1)-Sn(1)	115.30(13)	P(1)-C(25)-Sn(1)	91.87(9)
C(3)-C(2)-C(1)	121.85(17)	N(1)-C(28)-C(33)	112.10(15)
C(3)-C(2)-C(7)	116.54(16)	N(1)-C(28)-C(29)	108.39(14)
C(1)-C(2)-C(7)	121.54(16)	C(33)-C(28)-C(29)	108.35(15)
C(4)-C(3)-C(2)	120.84(17)	N(1)-C(28)-C(34)	111.23(15)
C(3)-C(4)-C(5)	118.60(17)	C(33)-C(28)-C(34)	108.83(15)
C(4)-C(5)-C(6)	121.44(18)	C(29)-C(28)-C(34)	107.79(15)

C(28)-C(29)-C(30)	110.80(15)	C(28)-C(33)-C(32)	110.67(15)
C(36)-C(30)-C(31)	109.13(17)	C(35)-C(34)-C(28)	110.82(16)
C(36)-C(30)-C(29)	109.54(17)	C(37)-C(35)-C(36)	109.48(17)
C(31)-C(30)-C(29)	109.59(16)	C(37)-C(35)-C(34)	109.02(16)
C(32)-C(31)-C(30)	109.50(17)	C(36)-C(35)-C(34)	109.50(16)
C(31)-C(32)-C(37)	109.45(17)	C(30)-C(36)-C(35) C(35)-C(37)-C(32)	109.40(16) 109.49(16)
C(31)-C(32)-C(33)	109.06(16)		
C(37)-C(32)-C(33)	109.96(16)		
Reaction of Mes TerSnCH₂P(CH₃)₂NDipp (3a) and IMe₄ – Synthesis of Mes TerSn(IMe₄)CH₂P(CH₃)₂NDipp (4a)

To a solution of ^{Mes}TerSnCH₂PNDipp (**3a**) (0.030 g, 0.044 mmol) in 0.3 mL of C_6D_6 was added a solution of IMe₄ (0.005 g, 0.044 mmol) in 0.3 mL of C_6D_6 , leading to an immediate but slight observable colour change. Subsequent analysis by ¹H NMR spectroscopy reveals complete consumption of **3a** and formation of ^{Mes}TerSn(IMe₄)CH₂PNDipp (**4a**). All volatiles were removed under vacuum to yield **4a** as a colourless solid. Crystal suitable for single crystal Xray diffraction were obtained by slow diffusion of *n*-hexane into a solution of **4a** in toluene at -30 °C.

Yield: 0.031 g (0.038 mmol; 86%).

¹**H NMR** (500 MHz, C₆D₆, 298 K): δ = -0.45 (dd, ²*J*_{H,H} = 12.4 Hz, ²*J*_{P,H} = 7.7 Hz, 1H, CH₂), 0.93 (d, ²*J*_{H,H} = 12.0 Hz, 1H, CH₂), 1.07-1.10 (m, 9H, P(CH₃)₂, CH(CH₃)₂), 1.24 (d, ³*J*_{H,H} = 6.9 Hz, 6H, CH(CH₃)₂), 1.31-1.33 (m, 9H, P(CH₃)₂, NC_qCH₃), 1.99 (s, 6H, CH₃), 2.15 (s, 6H, CH₃), 2.43 (s, 6H, CH₃), 3.48 (hept, ³*J*_{H,H} = 7.0 Hz, 2H, C*H*(CH₃)₂), 6.55 (m, 2H, CH_{Aryl}), 6.84 (m, 2H, CH_{Aryl}), 6.88-6.92 (m, 1H, CH_{Aryl}), 6.98-6.99 (m, 2H, CH_{Aryl}), 7.08-7.10 (m, 2H, CH_{Aryl}), 7.24-7.27 (m, 1H, CH_{Aryl}) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 8.4 (NC_qCH₃), 16.2 (d, ¹J_{P,C} = 75.0 Hz, CH₂), 19.2 (d, ¹J_{P,C} = 56.2 Hz, P(CH₃)₂), 19.5 (d, ¹J_{P,C} = 64.6 Hz, P(CH₃)₂), 21.1 (CH₃), 21.2 (CH₃), 21.9 (CH₃), 24.28 (CH(CH₃)₂), 24.31 (CH(CH₃)₂), 28.1 (CH(CH₃)₂), 35.4 (NCH₃), 117.8 (d, J_{P,C} = 3.9 Hz, CH_{Aryl}), 122.5 (d, J_{P,C} = 3.9 Hz, CH_{Aryl}), 124.3 (NC_qCH₃), 126.4 (CH_{Aryl}), 127.8 (CH_{Aryl})*, 127.9 (CH_{Aryl})*, 128.6 (CH_{Aryl}), 135.2 (C_{q,Aryl}), 136.1 (C_{q,Aryl}), 136.5 (C_{q,Aryl}), 142.35 (C_{q,Aryl}), 142.40 (C_{q,Aryl}), 143.3 (C_{q,Aryl}), 147.9 (d, J_{P,C} = 3.6 Hz, C_{q,Aryl}), 149.5 (C_{q,Aryl}), 161.2 (d, ³J_{P,C} = 7.6 Hz, C_{q,Aryl}Sn) 173.6 (C_{NHC}) ppm.

* = overlap with C_6D_6 signal(s) and assigned by ${}^{1}H/{}^{13}C$ HMBC

¹H/¹⁵N HMBC NMR (51 MHz, C₆D₆, 298 K): δ = -303.3 (PN), -201.6 (NHC) ppm.

³¹**P**{¹**H**} **NMR** (203 MHz, C₆D₆, 298 K): δ = 5.6 (Sn satellites: $J_{119/117Sn,P}$ = 129.1 Hz (average value)) ppm.

³¹**P NMR** (203 MHz, C₆D₆, 298 K): δ = 5.6 (m) ppm.

¹¹⁹Sn{¹H} NMR (187 MHz, C₆D₆, 298 K): δ = -175.1 (d, ²J_{119Sn,P} = 131.9 Hz) ppm.

MS (LIFDI): m/z calcd. for C₄₆H₆₂N₃PSn: 807.3703; found: 807.3.

EA: Anal. calcd. for $C_{46}H_{62}N_3PSn$: C, 68.49; H, 7.75; N, 5.21; Found: C, 69.21; H, 7.92; N, 5.43.

²⁴⁰ ²³⁰ ²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴ ⁴¹ **Figure S38**. ¹³C{¹H} NMR spectrum of ^{Mes}TerSn(IMe₄)CH₂PNDipp (**4a**) (126 MHz, C₆D₆, 298 K); 14.3, 23.0, 32.0 ppm: *n*-hexane.

Figure S40. ³¹P NMR spectrum of ^{Mes}TerSn(IMe4)CH₂PNDipp (4a) (203 MHz, C₆D₆, 298 K).

Figure S42. Asymmetric unit of the crystal structure of $^{\text{Mes}}$ TerSn(IMe₄)CH₂PNDipp (**4a**). Anisotropic displacement parameters are drawn at the 50% probability level (hydrogen atoms have been omitted for clarity). Selected bond lengths (Å) and angles (deg): Sn1•••N1 3.571(3), Sn1–C1 2.269(3), Sn1–C25 2.263(3), Sn1–C40 2.287(3), N1–P1 1.573(3), P1–C25 1.766(3), C1–Sn1–C25 104.10(11), C1–Sn1–C40 92.65(11), C25–Sn1–C40 90.49(11).

Table S5. Bond lengths [Å	A] and angles [°] for 4a .
---------------------------	-----------------------------------

C(2)-C(3)	1.396(4)	P(2)-C(73)	1.819(3)
C(2)-C(1)	1.410(4)	P(2)-C(72)	1.824(3)
C(2)-C(7)	1.505(4)	N(3)-C(40)	1.353(4)
C(1)-C(6)	1.415(4)	N(3)-C(44)	1.386(4)
C(1)-Sn(1)	2.269(3)	N(3)-C(46)	1.459(4)
N(1)-C(28)	1.388(4)	N(4)-C(74)	1.403(4)
N(1)-P(1)	1.573(3)	N(5)-C(86)	1.345(4)
P(1)-C(25)	1.766(3)	N(5)-C(88)	1.389(4)
P(1)-C(27)	1.813(3)	N(5)-C(87)	1.461(4)
P(1)-C(26)	1.816(3)	N(6)-C(86)	1.343(4)
N(2)-C(40)	1.346(4)	N(6)-C(90)	1.397(4)
N(2)-C(42)	1.385(4)	N(6)-C(92)	1.463(4)
N(2)-C(41)	1.456(4)	Sn(1)-C(25)	2.263(3)
P(2)-N(4)	1.564(3)	Sn(1)-C(40)	2.287(3)
P(2)-C(71)	1.769(3)	Sn(2)-C(71)	2.261(3)

Sn(2)-C(47)	2.267(3)	C(44)-C(45)	1.486(5)
Sn(2)-C(86)	2.282(3)	C(47)-C(48)	1.411(4)
C(3)-C(4)	1.384(5)	C(47)-C(52)	1.413(4)
C(4)-C(5)	1.378(5)	C(48)-C(49)	1.397(4)
C(5)-C(6)	1.398(4)	C(48)-C(53)	1.498(4)
C(6)-C(16)	1.502(4)	C(49)-C(50)	1.389(5)
C(7)-C(8)	1.405(5)	C(50)-C(51)	1.383(5)
C(7)-C(12)	1.406(5)	C(51)-C(52)	1.402(4)
C(8)-C(9)	1.395(5)	C(52)-C(62)	1.503(4)
C(8)-C(13)	1.507(5)	C(53)-C(54)	1.403(4)
C(9)-C(10)	1.379(5)	C(53)-C(58)	1.406(4)
C(10)-C(11)	1.387(5)	C(54)-C(55)	1.394(5)
C(10)-C(14)	1.516(5)	C(54)-C(59)	1.512(4)
C(11)-C(12)	1.395(5)	C(55)-C(56)	1.390(5)
C(12)-C(15)	1.506(5)	C(56)-C(57)	1.382(5)
C(16)-C(17)	1.396(4)	C(56)-C(60)	1.509(5)
C(16)-C(21)	1.407(4)	C(57)-C(58)	1.392(5)
C(17)-C(18)	1.399(5)	C(58)-C(61)	1.506(5)
C(17)-C(22)	1.512(4)	C(62)-C(67)	1.405(5)
C(18)-C(19)	1.389(5)	C(62)-C(63)	1.406(5)
C(19)-C(20)	1.390(5)	C(63)-C(64)	1.393(5)
C(19)-C(23)	1.514(5)	C(63)-C(68)	1.503(5)
C(20)-C(21)	1.397(5)	C(64)-C(65)	1.394(5)
C(21)-C(24)	1.504(4)	C(65)-C(66)	1.383(5)
C(28)-C(29)	1.419(4)	C(65)-C(69)	1.509(5)
C(28)-C(33)	1.424(4)	C(66)-C(67)	1.391(5)
C(29)-C(30)	1.396(4)	C(67)-C(70)	1.511(5)
C(29)-C(34)	1.523(4)	C(74)-C(75)	1.413(4)
C(30)-C(31)	1.384(4)	C(74)-C(79)	1.422(4)
C(31)-C(32)	1.381(4)	C(75)-C(76)	1.394(5)
C(32)-C(33)	1.394(4)	C(75)-C(80)	1.519(4)
C(33)-C(37)	1.513(4)	C(76)-C(77)	1.385(5)
C(34)-C(36)	1.525(5)	C(77)-C(78)	1.391(5)
C(34)-C(35)	1.528(4)	C(78)-C(79)	1.390(4)
C(37)-C(38)	1.528(4)	C(79)-C(83)	1.526(4)
C(37)-C(39)	1.534(4)	C(80)-C(82)	1.528(5)
C(42)-C(44)	1.354(5)	C(80)-C(81)	1.531(4)
C(42)-C(43)	1.488(5)	C(83)-C(84)	1.532(5)

C(83)-C(85)	1.532(4)	C(25)-Sn(1)-C(40)	90.49(11)
C(88)-C(90)	1.347(5)	C(1)-Sn(1)-C(40)	92.65(11)
C(88)-C(89)	1.483(5)	C(71)-Sn(2)-C(47)	103.93(11)
C(90)-C(91)	1.476(5)	C(71)-Sn(2)-C(86)	90.28(11)
		C(47)-Sn(2)-C(86)	92.33(11)
C(3)-C(2)-C(1)	121.3(3)	C(4)-C(3)-C(2)	120.3(3)
C(3)-C(2)-C(7)	117.1(3)	C(5)-C(4)-C(3)	119.7(3)
C(1)-C(2)-C(7)	121.6(3)	C(4)-C(5)-C(6)	120.8(3)
C(2)-C(1)-C(6)	117.1(3)	C(5)-C(6)-C(1)	120.8(3)
C(2)-C(1)-Sn(1)	115.7(2)	C(5)-C(6)-C(16)	118.0(3)
C(6)-C(1)-Sn(1)	126.4(2)	C(1)-C(6)-C(16)	121.1(3)
C(28)-N(1)-P(1)	131.7(2)	C(8)-C(7)-C(12)	119.7(3)
N(1)-P(1)-C(25)	108.87(14)	C(8)-C(7)-C(2)	120.4(3)
N(1)-P(1)-C(27)	115.86(15)	C(12)-C(7)-C(2)	119.9(3)
C(25)-P(1)-C(27)	105.69(16)	C(9)-C(8)-C(7)	119.1(3)
N(1)-P(1)-C(26)	115.36(15)	C(9)-C(8)-C(13)	119.2(3)
C(25)-P(1)-C(26)	109.53(15)	C(7)-C(8)-C(13)	121.6(3)
C(27)-P(1)-C(26)	100.91(16)	C(10)-C(9)-C(8)	121.9(3)
C(40)-N(2)-C(42)	111.6(3)	C(9)-C(10)-C(11)	118.3(3)
C(40)-N(2)-C(41)	123.9(3)	C(9)-C(10)-C(14)	120.6(4)
C(42)-N(2)-C(41)	124.5(3)	C(11)-C(10)-C(14)	121.1(4)
N(4)-P(2)-C(71)	109.58(14)	C(10)-C(11)-C(12)	122.1(3)
N(4)-P(2)-C(73)	115.77(15)	C(11)-C(12)-C(7)	118.7(3)
C(71)-P(2)-C(73)	108.80(16)	C(11)-C(12)-C(15)	119.7(3)
N(4)-P(2)-C(72)	116.01(16)	C(7)-C(12)-C(15)	121.5(3)
C(71)-P(2)-C(72)	104.78(16)	C(17)-C(16)-C(21)	119.6(3)
C(73)-P(2)-C(72)	101.04(17)	C(17)-C(16)-C(6)	121.7(3)
C(40)-N(3)-C(44)	111.7(3)	C(21)-C(16)-C(6)	118.8(3)
C(40)-N(3)-C(46)	123.6(3)	C(16)-C(17)-C(18)	119.4(3)
C(44)-N(3)-C(46)	124.7(3)	C(16)-C(17)-C(22)	122.2(3)
C(74)-N(4)-P(2)	131.4(2)	C(18)-C(17)-C(22)	118.4(3)
C(86)-N(5)-C(88)	112.0(3)	C(19)-C(18)-C(17)	121.8(3)
C(86)-N(5)-C(87)	123.8(3)	C(18)-C(19)-C(20)	118.1(3)
C(88)-N(5)-C(87)	124.2(3)	C(18)-C(19)-C(23)	120.9(3)
C(86)-N(6)-C(90)	111.8(3)	C(20)-C(19)-C(23)	121.0(3)
C(86)-N(6)-C(92)	124.2(3)	C(19)-C(20)-C(21)	121.7(3)
C(90)-N(6)-C(92)	123.9(3)	C(20)-C(21)-C(16)	119.3(3)
C(25)-Sn(1)-C(1)	104.10(11)	C(20)-C(21)-C(24)	119.3(3)

C(16)-C(21)-C(24)	121.3(3)	C(51)-C(52)-C(47)	121.1(3)
P(1)-C(25)-Sn(1)	108.54(14)	C(51)-C(52)-C(62)	117.5(3)
N(1)-C(28)-C(29)	120.6(3)	C(47)-C(52)-C(62)	121.3(3)
N(1)-C(28)-C(33)	120.9(3)	C(54)-C(53)-C(58)	119.3(3)
C(29)-C(28)-C(33)	118.3(3)	C(54)-C(53)-C(48)	121.9(3)
C(30)-C(29)-C(28)	119.8(3)	C(58)-C(53)-C(48)	118.8(3)
C(30)-C(29)-C(34)	120.8(3)	C(55)-C(54)-C(53)	119.3(3)
C(28)-C(29)-C(34)	119.3(3)	C(55)-C(54)-C(59)	118.8(3)
C(31)-C(30)-C(29)	121.5(3)	C(53)-C(54)-C(59)	121.8(3)
C(32)-C(31)-C(30)	119.1(3)	C(56)-C(55)-C(54)	121.8(3)
C(31)-C(32)-C(33)	121.8(3)	C(57)-C(56)-C(55)	118.0(3)
C(32)-C(33)-C(28)	119.6(3)	C(57)-C(56)-C(60)	121.0(3)
C(32)-C(33)-C(37)	119.6(3)	C(55)-C(56)-C(60)	120.9(3)
C(28)-C(33)-C(37)	120.8(3)	C(56)-C(57)-C(58)	122.1(3)
C(29)-C(34)-C(36)	110.6(3)	C(57)-C(58)-C(53)	119.3(3)
C(29)-C(34)-C(35)	114.2(3)	C(57)-C(58)-C(61)	119.5(3)
C(36)-C(34)-C(35)	110.9(3)	C(53)-C(58)-C(61)	121.1(3)
C(33)-C(37)-C(38)	112.6(3)	C(67)-C(62)-C(63)	119.1(3)
C(33)-C(37)-C(39)	110.6(3)	C(67)-C(62)-C(52)	120.9(3)
C(38)-C(37)-C(39)	109.5(3)	C(63)-C(62)-C(52)	119.9(3)
N(2)-C(40)-N(3)	104.2(3)	C(64)-C(63)-C(62)	119.2(3)
N(2)-C(40)-Sn(1)	131.7(2)	C(64)-C(63)-C(68)	119.4(3)
N(3)-C(40)-Sn(1)	123.4(2)	C(62)-C(63)-C(68)	121.3(3)
C(44)-C(42)-N(2)	106.5(3)	C(63)-C(64)-C(65)	121.9(3)
C(44)-C(42)-C(43)	131.1(3)	C(66)-C(65)-C(64)	117.9(3)
N(2)-C(42)-C(43)	122.3(3)	C(66)-C(65)-C(69)	121.1(3)
C(42)-C(44)-N(3)	106.0(3)	C(64)-C(65)-C(69)	121.0(3)
C(42)-C(44)-C(45)	130.6(3)	C(65)-C(66)-C(67)	121.9(3)
N(3)-C(44)-C(45)	123.2(3)	C(66)-C(67)-C(62)	119.6(3)
C(48)-C(47)-C(52)	117.0(3)	C(66)-C(67)-C(70)	119.3(3)
C(48)-C(47)-Sn(2)	125.7(2)	C(62)-C(67)-C(70)	121.1(3)
C(52)-C(47)-Sn(2)	116.6(2)	P(2)-C(71)-Sn(2)	109.63(15)
C(49)-C(48)-C(47)	121.2(3)	N(4)-C(74)-C(75)	121.4(3)
C(49)-C(48)-C(53)	117.9(3)	N(4)-C(74)-C(79)	119.6(3)
C(47)-C(48)-C(53)	120.8(3)	C(75)-C(74)-C(79)	118.8(3)
C(50)-C(49)-C(48)	120.7(3)	C(76)-C(75)-C(74)	119.5(3)
C(51)-C(50)-C(49)	119.3(3)	C(76)-C(75)-C(80)	119.1(3)
C(50)-C(51)-C(52)	120.6(3)	C(74)-C(75)-C(80)	121.4(3)

C(77)-C(76)-C(75)	121.5(3)	C(84)-C(83)-C(85)	110.1(3)
C(76)-C(77)-C(78)	119.4(3)	N(6)-C(86)-N(5)	104.0(3)
C(79)-C(78)-C(77)	121.0(3)	N(6)-C(86)-Sn(2)	131.6(2)
C(78)-C(79)-C(74)	119.8(3)	N(5)-C(86)-Sn(2)	124.0(2)
C(78)-C(79)-C(83)	120.5(3)	C(90)-C(88)-N(5)	106.2(3)
C(74)-C(79)-C(83)	119.6(3)	C(90)-C(88)-C(89)	130.7(3)
C(75)-C(80)-C(82)	111.9(3)	N(5)-C(88)-C(89)	123.0(3)
C(75)-C(80)-C(81)	112.1(3)	C(88)-C(90)-N(6)	105.9(3)
C(82)-C(80)-C(81)	109.3(3)	C(88)-C(90)-C(91)	131.3(3)
C(79)-C(83)-C(84)	110.4(3)	N(6)-C(90)-C(91)	122.7(3)
C(79)-C(83)-C(85)	114.1(3)		

Reaction of Mes TerSnCH₂P(CH₃)₂NXyI (3b) and IMe₄ – Synthesis of Mes TerSn(IMe₄)CH₂P(CH₃)₂NXyI (4b)

To a solution of ^{Mes}TerSnCH₂PNXyl (**3b**) (0.030 g, 0.048 mmol) in 0.3 mL of C_6D_6 was added a solution of IMe₄ (0.006 g, 0.048 mmol) in 0.3 mL of C_6D_6 , leading to an immediate but slight observable colour change. Subsequent analysis by ¹H NMR spectroscopy reveals complete consumption of **3b** and formation of ^{Mes}TerSn(IMe₄)CH₂PNXyl (**4b**). Multinuclear NMR data was collected at that point. All volatiles were removed under vacuum to yield **4b** as a slightly orange solid.

Yield: 0.032 g (0.043 mmol; 90%).

¹**H NMR** (500 MHz, C₆D₆, 298 K): δ = -0.77 (dd, ²J_{H,H} = 12.7 Hz, ²J_{P,H} = 9.2 Hz, 1H, CH₂), 1.20 (d, ²J_{P,H} = 11.2 Hz, 3H, P(CH₃)₂), 1.37 (s, 6H, NC_qCH₃), 1.40 (d, ²J_{P,H} = 12.4 Hz, 3H, P(CH₃)₂), 1.48-1.53 (m, 1H, CH₂), 2.00 (s, 6H, CH_{3,Ter}), 2.10 (s, 6H, *m*-CH₃N), 2.15 (s, 6H, CH_{3,Ter}), 2.45 (s, 6H, CH_{3,Ter}), 3.04 (s, 6H, NCH₃), 6.03 (s, 2H, *o*-CH_{Aryl}N), 6.09 (s, 1H, *p*-CH_{Aryl}N), 6.54 (s, 2H, *m*-CH_{Aryl}C₆H₃), 6.85 (s, 2H, *m*-CH_{Aryl}C₆H₃), 7.01 (d, ³J_{H,H} = 7.5 Hz, 2H, *m*-CH_{Aryl}Sn), 7.27 (t, ³J_{H,H} = 7.5 Hz, 1H, *p*-CH_{Aryl}Sn) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): $\delta = 8.4$ (NC_qCH₃), 14.9 (d, ¹J_{P,C} = 55.2 Hz, PCH₂), 17.7 (d, ¹J_{P,C} = 49.5 Hz, P(CH₃)₂), 17.8 (d, ¹J_{P,C} = 84.0 Hz, P(CH₃)₂), 21.1 (CH_{3,Ter}), 21.2 (CH_{3,Ter}), 21.8 (CH_{3,Ter}), 22.1 (*m*-CH₃N), 35.3 (NCH₃), 115.8 (*p*-CH_{AryI}N), 119.3 (*m*-CH_{AryI}C₆H₃), 119.5 (*o*-CH_{AryI}N), 124.1 (NC_qCH₃), 126.4 (*p*-CH_{AryI}Sn), 128.0 (*m*-CH_{AryI}Sn)*, 128.6 (*m*-CH_{AryI}C₆H₃), 135.2 (C_{q,AryI}), 136.2 (C_{q,AryI}), 136.6 (d, J_{P,C} = 2.2 Hz, C_{q,AryI}), 136.7 (C_{q,AryI}), 143.2 (C_{q,AryI}), 149.5 (C_{q,AryI}), 155.3 (d, J_{P,C} = 3.2 Hz, C_{q,AryI}), 161.2 (d, ³J_{P,C} = 8.1 Hz, C_{q,AryI}Sn) 172.4 (C_{NHC}) ppm. * = overlap with C₆D₆ signal(s) and assigned by ¹H/¹³C HMBC

¹H/¹⁵N HMBC NMR (51 MHz, C₆D₆, 298 K): δ = -282.9 (PN), -201.8 (NHC) ppm.

³¹**P**{¹**H**} **NMR** (203 MHz, C₆D₆, 298 K): δ = 17.4 (Sn satellites: $J_{119/117Sn,P}$ = 123.7 Hz (average value)) ppm.

³¹**P NMR** (203 MHz, C_6D_6 , 298 K): $\delta = 17.4$ (m) ppm.

¹¹⁹Sn{¹H} NMR (187 MHz, C₆D₆, 298 K): δ = -184.8 (d, ²J_{119Sn,P} = 128.2 Hz) ppm.

EA: Anal. calcd. for C₄₂H₅₄N₃PSn: C, 67.21; H, 7.25; N, 5.60; Found: C, 66.30; H, 6.92; N, 4.80.

 $\frac{1}{260} \frac{240}{240} \frac{220}{200} \frac{200}{180} \frac{1}{160} \frac{1}{140} \frac{1}{120} \frac{100}{100} \frac{80}{60} \frac{60}{40} \frac{40}{20} \frac{20}{0} \frac{1}{200} \frac{1}{40} \frac{1}{60} \frac{1}{60}$

Reaction of Mes TerSnCH₂P(CH₃)₂NAd (3c) and IMe₄ – Synthesis of Mes TerSn(IMe₄)CH₂P(CH₃)₂NAd (4c)

To a solution of ^{Mes}TerSnCH₂PNAd (**3c**) (0.010 g, 0.015 mmol) in 0.3 mL of C₆D₆ was added a solution of IMe₄ (0.002 g, 0.015 mmol) in 0.3 mL of C₆D₆, leading to an immediate but slight observable colour change. Subsequent analysis by ¹H NMR spectroscopy reveals complete consumption of **3c** and formation of ^{Mes}TerSn(IMe₄)CH₂PNAd (**4c**). Multinuclear NMR data was collected at that point.

¹**H NMR** (500 MHz, C₆D₆, 298 K): δ = 1.00 (d, ²*J*_{P,H} = 12.0 Hz, PCH₂), 1.18-1.33 (m, 7H, P(CH₃)₂, PCH₂)*, 1.44 (s, 6H, NC_qCH₃), 1.48 (s, 6H, CH_{2,Ad}), 1.62-1.73 (m, 6H, CH_{2,Ad}), 2.04 (s, 3H, CH_{Ad}), 2.08 (s, 6H, CH₃), 2.21 (s, 6H, CH₃), 2.48 (s, 6H, CH₃), 3.16 (s, 6H, NCH₃), 6.62 (s, 2H, CH_{Aryl}), 6.88 (s, 2H, CH_{Aryl}), 6.99-7.01 (m, 2H, CH_{Aryl}), 7.25-7.28 (m, 1H, CH_{Aryl}) ppm. * = overlap with *n*-hexane signal

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 8.5 (NC_qCH₃), 20.9 (d, ¹J_{P,C} = 65.3 Hz, PCH₂), 21.2 (CH₃), 21.4 (CH₃), 22.0 (CH₃), 24.3 (d, ¹J_{P,C} = 43.4 Hz, P(CH₃)₂), 31.2 (CH_{Ad}), 35.6 (NCH₃), 37.6 (CH_{2,Ad}), 49.9 (CH_{2,Ad}), 51.2 (d, ²J_{P,C} = 6.7 Hz, NC_{q,Ad}), 123.9 (NC_qCH₃), 126.3 (CH_{Aryl}), 127.7 (CH_{Aryl})*, 127.8 (CH_{Aryl})*, 128.7 (CH_{Aryl}), 135.1 (C_{q,Aryl}), 136.2 (C_{q,Aryl}), 136.6 (C_{q,Aryl}), 143.6 (C_{q,Aryl}), 149.5 (C_{q,Aryl}) ppm.

Note: The signal of the C_{NHC} was not observed.

 $* = overlap with C_6D_6 signal$

³¹**P NMR** (203 MHz, C₆D₆, 298 K): δ = -0.2 (m) ppm.

¹¹⁹**Sn**{¹**H**} **NMR** (187 MHz, C₆D₆, 298 K): δ = -169.4 ppm.

²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁵⁰ ¹⁰ ¹⁰ ¹⁰⁰ ¹

Reaction of DippNP(CH₃)₃ (2a) with Li{N(Si(CH₃)₃)₂} – Synthesis of the "LiCH₂P(CH₃)₂NDipp source 6"

DippNP(CH₃)₃ (2a) (0.020 g, 0.080 mmol) was dissolved in either 0.3 mL of benzene or C_6D_6 , followed by the addition of Li{N(Si(CH₃)₃)₂} (0.017 g, 0.080 mmol) in 0.3 mL of benzene or C₆D₆. Subsequent analysis by ¹H NMR spectroscopy revealed complete consumption of **2a**. Attempts to perform the reaction in THF- d_8 as a solvent did not yield any reaction, even when heated to 90 °C for 8 hours (Figure S52). Adamantane (0.005 g, 0.037 mmol) was added as an internal standard for ECC-1H-DOSY NMR spectroscopy (Figure S53 and details on page S59). The sample was further analyzed by multinuclear NMR spectroscopy, which showed that 2a is converted to an approximately 3:1 mixture of seemingly two species. The minor component was assigned to be "LiCH₂P(CH₃)₂NDipp" with equimolar amounts of HN(Si(CH₃)₃)₂ observed in the ¹H NMR spectrum (Figure S53), and the other initially as a "DippNP(CH₃)₃•Li{N(Si(CH₃)₃)₂} adduct" (Figure S54). At lower temperatures, the broad signals initially assigned to the above-mentioned, initially assigned, adduct split into separate signals, overall showing the same integral ratios of the respective signals when assuming adduct formation (Figure S58-S60). Despite multiple attempts, crystalline material suitable for single crystal X-ray diffraction could not be obtained, and all attempts to separate the species by washing or recrystallization failed. Nevertheless, the obtained mixture perfectly converts to 7 using both synthetic protocols reported herein, thus can be regarded as a source of "LiCH₂P(CH₃)₂NDipp" (6).

Characteristic NMR chemical shift of "LiCH₂P(CH₃)₂NDipp":

¹**H NMR** (400 MHz, C₆D₆, 298 K): $\delta = -0.76$ (d, ²*J*_{P,H} = 11.9 Hz, 2H, CH₂), 0.98 (d, ²*J*_{P,H} = 11.1 Hz, 6H, P(CH₃)₂), 1.31 (d, ³*J*_{H,H} = 6.9 Hz, 12H, CH(CH₃)₂), 3.82 (hept, ³*J*_{H,H} = 6.9 Hz, 2H, C*H*(CH₃)₂), 7.00-7.07 (m, 1H, CH_{Aryl})*, 7.17-7.18 (m, 2H, CH_{Aryl})** ppm. * = overlap with CH_{Aryl} signal of the other species ** = overlap with C₆D₅H signal

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 6.7 (CH₂)***, 20.1 (d, ¹J_{P,C} = 50.4 Hz, P(CH₃)₂), 24.1 (br, CH(CH₃)₂), 27.3 (br, CH(<u>C</u>H₃)₂), 28.3 (<u>C</u>H(CH₃)₂), 121.7 (d, J_{P,C} = 4.4 Hz, CH_{Aryl}), 122.9 (br, CH_{Aryl}), 145.1 (d, J_{P,C} = 6.9 Hz, C_{q,Aryl}), 146.7 (d, J_{P,C} = 9.4 Hz, C_{q,Aryl}) ppm. *** = overlap with Si(CH₃)₃ signal of the other species

⁷Li{¹H} NMR (140 MHz, C₆D₆, 298 K): δ = 2.5 ppm.

³¹**P**{¹**H**} **NMR** (203 MHz, C₆D₆, 298 K): δ = 25.9 ppm.

Characteristic NMR chemical shift of the remaining signals at 298 K:

¹**H NMR** (400 MHz, C₆D₆, 298 K): δ = 0.30-0.36 (m, 18H, Si(CH₃)₃), 0.91 (d, ²J_{P,H} = 12.1 Hz, 6H, P(CH₃)₂), 1.23 (d, ³J_{H,H} = 6.9 Hz, 12H, CH(CH₃)₂), 3.35-3.42 (hept, ³J_{H,H} = 6.8 Hz, 2H, CH(CH₃)₂), 7.00-7.07 (m, 1H, CH_{Aryl})****, 7.09-7.10 (m, 2H, CH_{Aryl}) ppm. ***** = overlap with CH_{Aryl} signal of "LiCH₂NP(CH₃)₂NDipp

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 6.8 (Si(CH₃)₃), 17.1 (d, ¹J_{P,C} = 68.1 Hz, P(CH₃)₂), 25.4 (CH(<u>C</u>H₃)₂), 28.7 (<u>C</u>H(CH₃)₂), 123.7 (d, J_{P,C} = 4.0 Hz, CH_{Aryl}), 124.3 (d, J_{P,C} = 4.1 Hz, CH_{Aryl}), 143.8 (br, C_{q,Aryl}), 144.7 (br d, J_{P,C} = 7.3 Hz, C_{q,Aryl}) ppm.

⁷Li{¹H} NMR (140 MHz, C₆D₆, 298 K): δ = 1.5 ppm.

³¹**P**{¹**H**} **NMR** (203 MHz, C₆D₆, 298 K): δ = 11.3 (br) ppm.

"LiCH₂P(CH₃)₂NDipp" being picked (400 MHz, C₆D₆, 298 K); 0.10 ppm: HN(SiMe₃)₂; 1.74 and 1.86 ppm: adamantane.

Figure S55. ¹³C{¹H} NMR spectrum of of the "LiCH₂P(CH₃)₂NDipp source" 6 (126 MHz, C₆D₆, 298 K); 3.2 ppm: H(NSiMe₃)₂; 29.3 and 38.6 ppm: adamantane.

— 2.53 — 1.51

 $[\]frac{1}{4.4}$ $\frac{1}{4.2}$ $\frac{1}{4.0}$ $\frac{1}{3.8}$ $\frac{1}{3.6}$ $\frac{1}{3.4}$ $\frac{1}{3.2}$ $\frac{1}{3.0}$ $\frac{1}{2.8}$ $\frac{1}{2.4}$ $\frac{1}{2.2}$ $\frac{1}{2.0}$ $\frac{1}{1.8}$ $\frac{1}{1.6}$ $\frac{1}{1.4}$ $\frac{1}{1.2}$ $\frac{1}{1.0}$ $\frac{1}{0.8}$ $\frac{1}{0.6}$ $\frac{1}{0.4}$ $\frac{1}{0.2}$ $\frac{1}{0.0}$ $\frac{1}{0.0}$ $\frac{1}{0.2}$ $\frac{1}{0.0}$ $\frac{1}$

ECC-¹H-DOSY NMR experiment

The experiment was conducted using the pulse program *dstebpgp3s* at ambient temperature (298 K) on a *Bruker Avance III* HD 500 MHz spectrometer. Gradient pulses ranging from 0.65 ms to 1.0 ms were applied with a diffusion time of 0.075 s. Phases and baselines were corrected, and the T1/T2 software on *Topspin 4.4.0* was utilized to derive the diffusion coefficients. These coefficients were then correlated to molecular weights (MW) using an external calibration curve (ECC) with shape optimization for dissipated spheres and ellipsoids (DSE).

For the experiment, DippNP(CH₃)₃ (**2a**) (0.020 g, 0.080 mmol) and Li{N(Si(CH₃)₃)₂} (0.017 g, 0.080 mmol) were dissolved in 0.4 mL of C₆D₆, and 1H-DOSY NMR experiments were performed. The ¹H-DOSY NMR spectrum with adamantane as the internal standard is depicted in Figure S59.

The correlation of the results from the ¹H-DOSY NMR experiment with the molecular weights of the proposed products "LiCH₂P(CH₃)₂NDipp" and "DippNP(CH₃)₃•Li{N(Si(CH₃)₃)₂}" shows overall good agreement and suggests a dimeric structure in solution for "LiCH₂P(CH₃)₂NDipp" (Table S1). Despite the product mixture being more complex, it can still be utilized quantitatively for the formation of the stannylenoid **7** reported herein, thus serving as a clean source of "LiCH₂P(CH₃)₂NDipp".

Table S6. Measured logarithmic diffusion coefficients $Log(D_x)$ from the ¹H-DOSY NMR experiment and their normalized logarithmic diffusion coefficient $log(D_{x,norm})$ by normalization with adamantane as internal standard with an experimental logarithmic diffusion coefficient of $log(D_{ref}) = -8.8854$. Molecular weights MW_{det} were determined with an external calibration curve (ECC), with shape optimization for dissipated spheres and ellipsoids (DSE).^[S7] Aggregation tendencies were proposed based on the deviation in molecular weight, expressed as a percentage (MW_{diff}), between the determined molecular weight MW_{det} and the theoretical molecular weight.

Äggregate	log(<i>D</i> _x)	log(D _{x,norm})	MW _{det} [g•mol ⁻¹]	Proposed Aggregation	MW _{diff} [%]
HN{Si(CH ₃) ₃ } ₂	-8.8976	-8.8147	154	HN{Si(CH ₃) ₃ } ₂	10
1	-9.2635	-9.1806	563	[LiCH ₂ P(CH ₃) ₂ NDipp] ₂	-9
2	-9.1672	-9.0843	394	DippNP(CH ₃) ₃ •Li{N(Si(CH ₃) ₃) ₂ }	6

Figure S61. ¹H-DOSY NMR spectrum of the obtained product mixture from the reaction of DippNP(CH₃)₃ (**2a**) with Li{N(Si(CH₃)₃)₂}.

Reaction of ^{Mes}TerSn{N(Si(CH₃)₃)₂} (1), LiN(Si(CH₃)₃)₂ and DippNP(CH₃)₃ (2a) / Reaction of ^{Mes}TerSnCH₂P(CH₃)₂NDipp, LiN(Si(CH₃)₃)₂ and DippNP(CH₃)₃ (2a) – Synthesis of ^{Mes}TerSn(CH₂P(CH₃)₂NDipp)₂Li (7)

A) DippNP(CH₃)₃ (**2a**) (0.025 g, 0.099 mmol) and LiN(Si(CH₃)₃)₂ (0.017 g, 0.099 mmol) were dissolved in 0.4 mL of C₆D₆, leading to the immediate formation of the "LiCH₂P(CH₃)₂NDipp source" described on page 41 as verified by ¹H NMR spectroscopy. ^{Mes}TerSn{N(Si(CH₃)₃)₂} (**1**) (0.029 g, 0.050 mmol) in 0.2 mL of C₆D₆ was added which results in a clear yellow solution and the corresponding ³¹P NMR indicates full consumption of the starting material and formation of one main product. All volatiles were removed from the reaction mixture, the bright yellow residue was suspended in 1 mL of *n*-hexane, filtered and stored at -30 °C to give ^{Mes}TerSn(CH₂P(CH₃)₂NDipp)₂Li (**7**) as colourless crystals. These crystals were suitable for single crystal X-ray diffraction.

B) DippNP(CH₃)₃ (**2a**) (0.011 g, 0.044 mmol) and LiN(Si(CH₃)₃)₂ (0.007 g, 0.044 mmol) were dissolved in 0.3 mL of C₆D₆, leading to the immediate formation of the mixture described on page 41 as verified by ¹H NMR spectroscopy. ^{Mes}TerSnCH₂P(CH₃)₂NDipp (**3a**) (0.030 g, 0.044 mmol) in 0.3 mL of C_6D_6 was added and subsequent analysis by ³¹P NMR spectroscopy reveals full consumption of the starting material formation and of ^{Mes}TerSn(CH₂P(CH₃)₂NDipp)₂Li (7). All volatile components were removed under vacuum to give crude Mes TerSn(CH₂P(CH₃)₂NDipp)₂Li (**7**) as a colourless solid.

Yield: 0.028 g (0.030 mmol; 60% (A)); 0.037 g (0.039 mmol; 89% (B)).

¹**H NMR** (500 MHz, C₆D₆, 298 K): δ = 0.43 (dd, ²*J*_{P,H} = 12.4 Hz, *J* = 5.0 Hz, 2H, CH₂), 0.75 (d, ³*J*_{H,H} = 6.7 Hz, 6H, CH(C*H*₃)₂), 0.85-0.89 (m, 12H, P(CH₃)₂, CH(C*H*₃)₂), 0.93-1.03 (m, 2H, CH₂), 1.04 (d, ²*J*_{P,H} = 11.8 Hz, 6H, PCH₃), 1.18 (d, ³*J*_{H,H} = 6.9 Hz, 6H, CH(C*H*₃)₂), 1.22 (d, ³*J*_{H,H} = 7.0 Hz, 6H, CH(C*H*₃)₂), 2.23 (s, 6H, CH₃), 2.30 (s, 12H, CH₃), 3.36 (hept, ³*J*_{H,H} = 6.9 Hz, 2H, C*H*(CH₃)₂), 3.69 (hept, ³*J*_{H,H} = 6.8 Hz, 2H, C*H*(CH₃)₂), 6.85 (m, 4H, CH_{Aryl}), 6.91-6.95 (m, 2H, CH_{Aryl}), 6.99-7.01 (m, 4H, CH_{Aryl}), 7.03-7.04 (m, 2H, CH_{Aryl}), 7.31-7.34 (m, 1H, CH_{Aryl}) ppm. ¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 14.9 (dd, ¹*J*_{P,C} = 80.5 Hz, *J* = 4.4 Hz, CH₂), 16.2 (d, ¹*J*_{P,C} = 62.3 Hz, P(CH₃)₂), 17.0 (d, ¹*J*_{P,C} = 52.4 Hz, P(CH₃)₂), 21.2 (CH₃), 22.1 (CH₃), 22.7 (CH(CH₃)₂), 23.4 (CH(CH₃)₂), 25.4 (CH(CH₃)₂), 26.1 (CH(CH₃)₂), 27.4 (CH(CH₃)₂), 27.9 (CH(CH₃)₂), 122.5 (d, *J*_{P,C} = 4.3 Hz, CH_{Aryl}), 123.5 (dd, *J* = 8.2 Hz, *J* = 3.8 Hz, CH_{Aryl}), 127.3 (CH_{Aryl}), 127.9 (CH_{Aryl})*, 128.4 (CH_{Aryl})*, 135.7 (C_{q,Aryl}), 136.6 (C_{q,Aryl}), 143.1 (d, *J*_{P,C} = 9.4 Hz, C_{q,Aryl}), 143.9 (C_{q,Aryl}), 143.9 (C_{q,Aryl}), 145.0 (dd, *J* = 23.7 Hz, *J* = 6.6 Hz, C_{q,Aryl}), 150.2 (C_{q,Aryl}) 157.6 (pt, *J* = 8.3 Hz, C_{q,Aryl}) ppm.

* = overlap with C_6D_6 signal and assigned by ¹H/¹³C HMBC

⁷Li{¹H} NMR (140 MHz, C₆D₆, 298 K): δ = 1.3 ppm.

¹**H**/¹⁵**N HMBC NMR** (51 MHz, C₆D₆, 298 K): δ = -322.8 ppm.

³¹**P**{¹**H**} **NMR** (203 MHz, C₆D₆, 298 K): δ = 30.5 (Sn satellites: $J_{119Sn,P}$ = 182.7 Hz, $J_{117Sn,P}$ = 173.7 Hz) ppm.

³¹**P NMR** (203 MHz, C₆D₆, 298 K): δ = 30.5 (m) ppm.

¹¹⁹Sn{¹H} NMR (187 MHz, C₆D₆, 298 K): δ = 437.9 (d, ²J_{119Sn,P} = 167.0 Hz) ppm.

EA: Anal. calcd. for C₅₄H₇₅LiN₂P₂Sn: C, 69.01; H, 8.04; N, 2.98; Found: C, 68.77; H, 8.18; N, 2.87.

Figure S68. Asymmetric unit of the crystal structure of ^{Mes}TerSn(CH₂P(CH₃)₂NDipp)₂Li (**7**). Anisotropic displacement parameters are drawn at the 50% probability level (hydrogen atoms have been omitted for clarity). Selected bond lengths (Å) and angles (deg): Sn1–C1 2.242(3), Sn1–C25 2.293(3), Sn1–C28 2.288(3), N1–P1 1.598(2), N2–P2 1.596(2), Sn1•••Li1 2.913(5), Li1–N1 1.921(5), Li1–N2 1.924(6), P1–C25 1.766(3), P2–C28 1.773(3), P1–C26 1.822(3), P1–C27 1.800(3), P2–C29 1.807(3), P2–C30 1.804(3), N1–C31 1.429(4), N2–C43 1.428(3), C1–Sn1–C25 106.51(10), C1–Sn1–C28 100.13(10), C25–Sn1–C28 91.72(11), N1–P1–C25 108.65(13), N2–P2–C28 109.55(13), N1–Li1–N2 147.1(3).

The data were collected on a non-merohedral twin with the twin law -0.670.640.000.870.6600.440.84-1.00. The fractional contribution of the minor component refined to 0.4996(15). The difference density maps showed signs of positional disorder involving Sn1. The disorder was modelled involving only Sn1 and the neighboring methyl and methylene groups, because the occupancy of the minor component refined to only 0.0483(9). The disorder was treated with distance restraints and restraints for the anisotropic displacement parameters.

 Table S7. Bond lengths [Å] and angles [°] for 7.

Sn(1)-C(1)	2.242(3)	Li(1)-N(2)	1.924(6)
Sn(1)-C(28)	2.288(3)	Li(1)-C(43)	2.735(6)
Sn(1)-C(25)	2.293(3)	Li(1)-P(1)	2.962(5)
Sn(1)-Li(1)	2.913(5)	Li(1)-P(2)	3.097(5)
Sn(1')-C(25')	2.264(17)	C(1)-C(6)	1.412(4)
Sn(1')-C(28')	2.274(17)	C(1)-C(2)	1.417(4)
Sn(1')-C(1)	2.361(5)	C(2)-C(3)	1.400(4)
Li(1)-N(1)	1.921(5)	C(2)-C(7)	1.493(4)

C(3)-C(4)	1.373(4)	C(31)-C(32)	1.411(4)
C(4)-C(5)	1.387(4)	C(31)-C(36)	1.414(4)
C(5)-C(6)	1.399(4)	C(32)-C(33)	1.393(4)
C(6)-C(16)	1.502(4)	C(32)-C(37)	1.523(4)
C(7)-C(8)	1.403(4)	C(33)-C(34)	1.382(5)
C(7)-C(12)	1.413(4)	C(34)-C(35)	1.377(5)
C(8)-C(9)	1.381(4)	C(35)-C(36)	1.390(4)
C(8)-C(13)	1.507(4)	C(36)-C(40)	1.517(5)
C(9)-C(10)	1.389(4)	C(37)-C(38)	1.523(4)
C(10)-C(11)	1.389(5)	C(37)-C(39)	1.525(4)
C(10)-C(14)	1.510(5)	C(40)-C(42)	1.523(4)
C(11)-C(12)	1.386(4)	C(40)-C(41)	1.540(4)
C(12)-C(15)	1.503(4)	C(43)-C(48)	1.409(4)
C(16)-C(21)	1.403(4)	C(43)-C(44)	1.416(4)
C(16)-C(17)	1.411(4)	C(44)-C(45)	1.393(4)
C(17)-C(18)	1.396(4)	C(44)-C(49)	1.508(4)
C(17)-C(22)	1.498(4)	C(45)-C(46)	1.378(4)
C(18)-C(19)	1.386(5)	C(46)-C(47)	1.382(4)
C(19)-C(20)	1.381(5)	C(47)-C(48)	1.397(4)
C(19)-C(23)	1.510(4)	C(48)-C(52)	1.513(4)
C(20)-C(21)	1.398(4)	C(49)-C(51)	1.522(5)
C(21)-C(24)	1.495(5)	C(49)-C(50)	1.532(5)
N(1)-C(31)	1.429(4)	C(52)-C(53)	1.520(4)
N(1)-P(1)	1.598(2)	C(52)-C(54)	1.532(5)
P(1)-C(25)	1.766(3)		
P(1)-C(26')	1.770(14)	C(1)-Sn(1)-C(28)	100.13(10)
P(1)-C(25')	1.790(15)	C(1)-Sn(1)-C(25)	106.51(10)
P(1)-C(27)	1.800(3)	C(28)-Sn(1)-C(25)	91.72(11)
P(1)-C(27')	1.814(14)	C(1)-Sn(1)-Li(1)	173.15(12)
P(1)-C(26)	1.822(3)	C(28)-Sn(1)-Li(1)	84.45(13)
N(2)-C(43)	1.428(3)	C(25)-Sn(1)-Li(1)	68.05(13)
N(2)-P(2)	1.596(2)	C(25')-Sn(1')-C(28')	104.2(16)
P(2)-C(28')	1.772(15)	C(25')-Sn(1')-C(1)	84.3(6)
P(2)-C(28)	1.773(3)	C(28')-Sn(1')-C(1)	93.1(5)
P(2)-C(29')	1.777(14)	N(1)-Li(1)-N(2)	147.1(3)
P(2)-C(30)	1.804(3)	N(1)-Li(1)-C(43)	131.2(3)
P(2)-C(29)	1.807(3)	N(2)-Li(1)-C(43)	29.68(12)
P(2)-C(30')	1.823(15)	N(1)-Li(1)-Sn(1)	95.7(2)

90.7(2)	C(7)-C(12)-C(15)	120.7(3)
120.27(19)	C(21)-C(16)-C(17)	119.6(3)
29.44(11)	C(21)-C(16)-C(6)	123.1(3)
129.1(3)	C(17)-C(16)-C(6)	116.7(3)
133.2(2)	C(18)-C(17)-C(16)	119.4(3)
70.91(12)	C(18)-C(17)-C(22)	119.8(3)
152.0(3)	C(16)-C(17)-C(22)	120.7(3)
25.61(11)	C(19)-C(18)-C(17)	121.6(3)
54.62(11)	C(20)-C(19)-C(18)	118.1(3)
66.82(11)	C(20)-C(19)-C(23)	121.7(3)
123.28(18)	C(18)-C(19)-C(23)	120.2(3)
116.9(3)	C(19)-C(20)-C(21)	122.7(3)
113.80(19)	C(20)-C(21)-C(16)	118.5(3)
127.8(2)	C(20)-C(21)-C(24)	119.3(3)
131.2(2)	C(16)-C(21)-C(24)	122.1(3)
107.7(2)	C(31)-N(1)-P(1)	124.07(18)
120.6(3)	C(31)-N(1)-Li(1)	119.6(2)
115.2(2)	P(1)-N(1)-Li(1)	114.3(2)
124.1(3)	N(1)-P(1)-C(25)	108.65(13)
121.3(3)	N(1)-P(1)-C(26')	120.4(14)
119.2(3)	N(1)-P(1)-C(25')	102.8(13)
120.6(3)	C(26')-P(1)-C(25')	109.8(14)
121.1(3)	N(1)-P(1)-C(27)	114.36(14)
114.9(3)	C(25)-P(1)-C(27)	109.87(15)
123.6(2)	N(1)-P(1)-C(27')	111.3(14)
118.9(3)	C(26')-P(1)-C(27')	105.7(16)
120.8(3)	C(25')-P(1)-C(27')	106.1(14)
120.1(3)	N(1)-P(1)-C(26)	114.38(14)
119.7(3)	C(25)-P(1)-C(26)	108.09(15)
119.1(3)	C(27)-P(1)-C(26)	101.17(16)
121.2(3)	N(1)-P(1)-Li(1)	36.21(13)
122.4(3)	C(25)-P(1)-Li(1)	72.50(14)
117.5(3)	C(26')-P(1)-Li(1)	110.4(15)
121.5(3)	C(25')-P(1)-Li(1)	74.4(12)
121.0(3)	C(27)-P(1)-Li(1)	126.74(16)
122.2(3)	C(27')-P(1)-Li(1)	141.3(14)
119.4(3)	C(26)-P(1)-Li(1)	129.59(16)
119.9(3)	C(43)-N(2)-P(2)	125.94(19)
	90.7(2) 120.27(19) 29.44(11) 129.1(3) 133.2(2) 70.91(12) 152.0(3) 25.61(11) 54.62(11) 66.82(11) 123.28(18) 116.9(3) 113.80(19) 127.8(2) 131.2(2) 107.7(2) 120.6(3) 115.2(2) 124.1(3) 121.3(3) 119.2(3) 120.6(3) 121.1(3) 121.1(3) 123.6(2) 118.9(3) 120.8(3) 120.1(3) 119.7(3) 119.1(3) 119.1(3) 121.2(3) 121.2(3) 121.2(3) 121.5(3) 121.5(3) 121.2(3) 122.2(3) 119.4(3) 119.9(3)	90.7(2) $C(7)-C(12)-C(15)$ $120.27(19)$ $C(21)-C(16)-C(17)$ $29.44(11)$ $C(21)-C(16)-C(6)$ $129.1(3)$ $C(17)-C(16)-C(6)$ $133.2(2)$ $C(18)-C(17)-C(12)$ $152.0(3)$ $C(16)-C(17)-C(22)$ $25.61(11)$ $C(19)-C(18)-C(17)$ $54.62(11)$ $C(20)-C(19)-C(18)$ $66.82(11)$ $C(20)-C(19)-C(23)$ $123.28(18)$ $C(18)-C(19)-C(23)$ $116.9(3)$ $C(19)-C(20)-C(21)$ $113.80(19)$ $C(20)-C(21)-C(24)$ $127.8(2)$ $C(20)-C(21)-C(24)$ $107.7(2)$ $C(31)-N(1)-P(1)$ $120.6(3)$ $C(31)-N(1)-Li(1)$ $115.2(2)$ $P(1)-N(1)-Li(1)$ $115.2(2)$ $P(1)-N(1)-Li(25)$ $121.3(3)$ $N(1)-P(1)-C(25)$ $121.3(3)$ $N(1)-P(1)-C(25)$ $120.6(3)$ $C(25)-P(1)-C(27)$ $123.6(2)$ $N(1)-P(1)-C(27)$ $114.9(3)$ $C(25)-P(1)-C(27)$ $122.4(3)$ $C(25)-P(1)-C(27)$ $122.4(3)$ $C(25)-P(1)-C(26)$ $119.7(3)$ $C(25)-P(1)-C(26)$ $119.7(3)$ $C(25)-P(1)-C(26)$ $119.7(3)$ $C(25)-P(1)-Li(1)$ $121.2(3)$ $N(1)-P(1)-Li(1)$ $122.2(3)$ $C(27)-P(1)-Li(1)$ $122.2(3)$ $C(27)-P(1)-Li(1)$ $122.2(3)$ $C(27)-P(1)-Li(1)$ $119.9(3)$ $C(24)-P(2)$

C(43)-N(2)-Li(1)	108.5(2)	C(35)-C(34)-C(33)	119.6(3)
P(2)-N(2)-Li(1)	123.0(2)	C(34)-C(35)-C(36)	121.7(3)
N(2)-P(2)-C(28')	104.5(13)	C(35)-C(36)-C(31)	118.9(3)
N(2)-P(2)-C(28)	109.55(13)	C(35)-C(36)-C(40)	120.2(3)
N(2)-P(2)-C(29')	118.0(14)	C(31)-C(36)-C(40)	120.7(3)
C(28')-P(2)-C(29')	113.2(15)	C(32)-C(37)-C(38)	110.7(3)
N(2)-P(2)-C(30)	114.84(14)	C(32)-C(37)-C(39)	113.1(3)
C(28)-P(2)-C(30)	105.19(15)	C(38)-C(37)-C(39)	110.9(3)
N(2)-P(2)-C(29)	111.88(14)	C(36)-C(40)-C(42)	113.5(3)
C(28)-P(2)-C(29)	112.26(15)	C(36)-C(40)-C(41)	109.4(3)
C(30)-P(2)-C(29)	102.87(15)	C(42)-C(40)-C(41)	111.1(3)
N(2)-P(2)-C(30')	109.3(13)	C(48)-C(43)-C(44)	119.1(3)
C(28')-P(2)-C(30')	108.2(19)	C(48)-C(43)-N(2)	120.5(3)
C(29')-P(2)-C(30')	103.4(15)	C(44)-C(43)-N(2)	120.1(3)
N(2)-P(2)-Li(1)	31.41(13)	C(48)-C(43)-Li(1)	124.2(2)
C(28')-P(2)-Li(1)	73.2(13)	C(44)-C(43)-Li(1)	97.2(2)
C(28)-P(2)-Li(1)	88.40(13)	N(2)-C(43)-Li(1)	41.84(16)
C(29')-P(2)-Li(1)	134.6(14)	C(45)-C(44)-C(43)	119.2(3)
C(30)-P(2)-Li(1)	100.34(15)	C(45)-C(44)-C(49)	118.2(3)
C(29)-P(2)-Li(1)	143.14(15)	C(43)-C(44)-C(49)	122.7(3)
C(30')-P(2)-Li(1)	117.5(13)	C(46)-C(45)-C(44)	121.9(3)
P(1)-C(25)-Sn(1)	113.61(14)	C(45)-C(46)-C(47)	118.9(3)
P(2)-C(28)-Sn(1)	108.66(14)	C(46)-C(47)-C(48)	121.6(3)
P(1)-C(25')-Sn(1')	126.4(12)	C(47)-C(48)-C(43)	119.4(3)
P(2)-C(28')-Sn(1')	108.2(9)	C(47)-C(48)-C(52)	118.3(3)
C(32)-C(31)-C(36)	119.4(3)	C(43)-C(48)-C(52)	122.3(3)
C(32)-C(31)-N(1)	120.2(2)	C(44)-C(49)-C(51)	112.3(3)
C(36)-C(31)-N(1)	120.1(3)	C(44)-C(49)-C(50)	110.5(3)
C(33)-C(32)-C(31)	119.4(3)	C(51)-C(49)-C(50)	110.1(3)
C(33)-C(32)-C(37)	118.7(3)	C(48)-C(52)-C(53)	110.7(3)
C(31)-C(32)-C(37)	121.8(3)	C(48)-C(52)-C(54)	112.1(3)
C(34)-C(33)-C(32)	121.0(3)	C(53)-C(52)-C(54)	111.3(3)

Reactions of ^{Mes}TerSnCH₂P(CH₃)₂NR (3a-c) (R = XyDipp, XyI, Ad) with NH₃ – Formation of [^{Mes}TerSn(μ -NH₂)₂]₂ (5) and the Respective Iminophosphoranes RNP(CH₃)₃ (2a-c)

The complexes ^{Mes}TerSnCH₂P(CH₃)₂NR (**3a-c**) (0.030 g) were dissolved in 0.5 mL of C₆D₆ and transferred to J-Young NMR tubes. After three freeze-pump-thaw cycles, the NMR tubes were backfilled with 1.2 bar of ammonia. The reactions were monitored by ³¹P NMR spectroscopy (Figures S69-S71), which initially indicated the formation of the respective free iminophosphorane **2a-c**. Depending on the substitution pattern, the reaction finished quickly for R = Ad and took longer for the aryl-substituted derivatives. Additionally, in the case of R = Dipp, an additional species was detected ($\delta^{31}P = 16.3$ ppm; Figure S70; for details see page S73). The reactions continued over time until only the signals of the free iminophosphorane **2a-c** remained. The final tin-containing product of all reactions could be identified as the NH₂-bridged dimeric tin complex [^{Mes}TerSn(μ -NH₂)]₂ (**5**) by multinuclear NMR spectroscopy. Crystals suitable for single-crystal X-ray diffraction of **5** were obtained from saturated toluene solutions of the reaction mixtures at -30 °C and match the literature data of previously reported **6**.^[S8]

NMR data of [MesTerSn(NH₂)]₂(5):

¹**H NMR** (500 MHz, C₆D₆, 298 K): δ = 0.11 (s(br), 4H, NH₂), 2.15 (s, 24H, CH₃), 2.24 (s, 12H, CH₃), 6.79 (s, 8H, CH_{Aryl}), 6.94-6.96 (m, 4H, CH_{Aryl}), 7.22-7.25 (m, 2H, CH_{Aryl}) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 298 K): δ = 21.3 (), 21.5 (), 128.0 (CH_{Aryl})*, 128.2 (CH_{Aryl})*, 128.7 (CH_{Aryl}), 136.2 (C_{q,Aryl}), 136.3 (C_{q,Aryl}), 141.0 (C_{q,Aryl}), 147.9 (C_{q,Aryl}), 165.9 (C_{q,Aryl}Sn) ppm. * = overlap with C₆D₆ signal(s) and assigned by ¹H/¹³C HMBC

¹**H**/¹⁵**N HMBC NMR** (51 MHz, C₆D₆, 298 K): δ = -375.4 ppm.

¹¹⁹**Sn**{¹**H**} **NMR** (187 MHz, C₆D₆, 298 K): δ = 313.8 ppm.

after another 24 h at rt

	4
after another 16 h at rt	3
after 30 min at room temperature	
Crystalline sample used for the experiment	2
	1
Figure S69. Monitoring of the reaction of MesTerSnCH ₂ PNXyI (3b) with ammonia by ^{31}P spectroscopy (203 MHz, C ₆ D ₆ , 298 K). after another 24 h at rt	NMR
	4
	3
after 30 min at room temperature	2
Crystalline sample used for the experiment	
	1

Figure S70. Monitoring of the reaction of ^{Mes}TerSnCH₂PNDipp (**3a**) with ammonia by ³¹P NMR spectroscopy (203 MHz, C₆D₆, 298 K).

after 30 min at room temperature

Crystalline sample used for the experiment

Figure S71. Monitoring of the reaction of ^{Mes}TerSnCH₂PNAd (**3c**) with ammonia by ³¹P NMR spectroscopy (203 MHz, C₆D₆, 298 K).

Figure S72. Bottom: ¹H NMR spectrum after the reaction of ^{Mes}TerSnCH₂P(CH₃)₂NXyl (**3b**) with NH₃ to give [^{Mes}TerSn(NH₂)]₂ (**6**) and XyINP(CH₃)₃ (**2b**); Top: ¹H NMR spectrum of isolated [^{Mes}TerSn(μ -NH₂)]₂ (**6**) (300 MHz, C₆D₆, 298 K).

2

Characterisation of the intermediate ^{Mes}TerSn(NH₃)CH₂P(CH₃)NDipp (A2a) by multinuclear NMR spectroscopy

Due to the observation of an intermediate detectable via ³¹P NMR spectroscopy during the reaction of ^{Mes}TerSnCH₂P(CH₃)₂NDipp (**3a**) with NH₃, **3a** (0.030 g, 0.044 mmol) was dissolved in 0.5 mL of toluene-*d*₈ and transferred to a J-Young NMR tube. After three freeze-pump-thaw cycles, the solution was kept frozen, and 1.2 bar of NH₃ was introduced. Subsequently, the still-frozen solution, with NH₃ in the headspace of the J-Young NMR tube, was allowed to equilibrate to room temperature, shaken once, resulting in a colour change to pale yellow, and then transferred to an NMR spectrometer precooled to -80 °C, allowing for the characterization of ^{Mes}TerSn(NH₃)CH₂P(CH₃)₂NDipp (**A1a**) (see Figure S78-S82). As the sample was gradually heated to room temperature in 20 °C increments, the formation of the free iminophosphorane DippNP(CH₃)₃ (**2a**) and [^{Mes}TerSn(μ -NH₂)]₂ (**6**) increased (Figure S76-S77).

¹**H NMR** (600 MHz, C_7D_8 , 193 K): $\delta = 0.10$ (d(br), ${}^2J_{P,H} = 11.9$ Hz, 1H, PCH₂), 0.74 (d, ${}^2J_{P,H} = 12.0$ Hz, 1H, PCH₂), 0.80 (d, ${}^2J_{P,H} = 11.1$ Hz, 3H, P(CH₃)₂), 1.02 (d, ${}^2J_{P,H} = 11.4$ Hz, 3H, P(CH₃)₂), 1.18-1.36 (m(br), 12H, CH(CH₃)₂), 2.15 (s, 6H, CH₃), 2.21 (s, 6H, CH₃), 2.39 (s, 6H, CH₃), 2.74 (s(br), 3H, NH₃), 3.42 (m, 1H, CH(CH₃)₂), 3.70 (m, 1H, CH(CH₃)₂), 6.60 (s, 2H, CH_{Aryl}), 6.72 (s, 2H, CH_{Aryl}), 7.14-7.15 (m, 2H, CH_{Aryl})*, 7.29-7.31 (m, 1H, CH_{Aryl}) ppm. * = overlap with C₇D₇H signal

¹³C{¹H} NMR (151 MHz, C_7D_8 , 193 K): $\delta = 16.4$ (d, ${}^2J = 68.3$ Hz, PCH₂), 17.6 (d, ${}^2J = 47.4$ Hz, P(CH₃)₂), 18.8 (d, ${}^2J = 60.1$ Hz, P(CH₃)₂), 21.0 (CH₃), 21.7 (CH₃), 21.9 (CH₃), 120.2 (CH_{Aryl}), 123.0 (CH_{Aryl}), 127.2 (CH_{Aryl}), 135.9 (C_{q,Aryl}), 136.1 (C_{q,Aryl}), 136.6 (C_{q,Aryl}), 140.9 (C_{q,Aryl}), 143.0 (C_{q,Aryl}), 143.4 (C_{q,Aryl}), 145.3 (d, $J_{P,C} = 7.1$ Hz, C_{q,Aryl}), 148.0 (C_{q,Aryl}), 162.8 (d, $J_{P,C} = 10.4$ Hz, C_{q,Aryl}) ppm.

Note: Due to signal broadening, only the clearly assignable signals are listed

¹H/¹⁵N HSQC NMR (61 MHz, C₆D₆, 298 K): δ = -375.0 (SnNH₃) ppm.

³¹**P**{¹**H**} **NMR** (243 MHz, C₇D₈, 193 K): δ = 15.2 (Sn satellites: $J_{119/117Sn,P}$ = 93.2 Hz (average value)) ppm.

³¹**P NMR** (243 MHz, C₇D₈, 193 K): δ = 15.2 ppm.

¹¹⁹**Sn**{¹**H**} **NMR** (224 MHz, C₇D₈, 193 K): δ = 61.4 ppm.

Figure S76. Excerpts of the VT ¹H NMR spectrum of $^{\text{Mes}}\text{TerSn}(\text{NH}_3)\text{CH}_2\text{P}(\text{CH}_3)_2\text{NDipp}$ (**A1a**) from 193 K (top) to 313 K (bottom) in steps of 20 K (600 MHz, toluene-*d*₈).

¹⁷ ¹⁶ ¹⁵ ¹⁴ ¹³ ¹² ¹¹ ¹⁰ ⁹ ⁸ ⁷ ⁶ ⁵ ⁴ ³ ² ¹ ⁰ ⁻¹ ⁻² ⁻³ ⁻⁴ ⁻⁵ ⁻⁶ ⁻⁷ ⁻⁸ ⁻⁹ ⁻¹⁰ ⁻¹¹ **Figure S77**. Excerpt of the VT ³¹P{¹H} NMR spectrum of ^{Mes}TerSn(NH₃)CH₂P(CH₃)₂NDipp (**A1a**) from 193 K (top) to 313 K (bottom) in steps of 20 K (243 MHz, toluene- d_8).

 $\sum_{\substack{7.31\\7.15}} \sum_{7.15} \frac{7.31}{7.15}$

1.36 1.136 1.103 1.01 0.81 0.75 0.75

€ 0.110.09

Additional analytical data of the starting materials: MesTerSn{N(SiMe₃)₂} (1): ¹¹⁹Sn{¹H} NMR (149 MHz, C₆D₆, 298 K): δ = 1192.3 ppm.

Figure S83. ¹¹⁹Sn{¹H} NMR spectrum of **1** (149 MHz, C₆D₆, 298 K).

Crystallographic Details

Single crystal X-ray data were collected at 100(2) K using an open flow nitrogen stream on a Bruker Smart Apex diffractometer equipped with a Bruker rotating anode (Mo) Incoatec, Incoatec mirror optics and a Photon III detector (2a, 2c, 3a, 4a, 5a) or a Bruker Smart Apex diffractometer equipped with an Incoatec microfocus source (Ag) Incoatec, Incoatec mirror optics and an Apex II CCD detector (3c). The data were integrated with SAINT^[S9]. A multiscan absorption correction was applied using SADABS^[S10] (2c, 3c, 4a) or TWINABS^[S11] (2a, 3a, 7). All structures were solved using the dual-space algorithm in ShelXT^[S12] and refined against F² with the use of SHELXL^[S13] in the graphical user interface SelXle^[S14]. All nonhydrogen atoms were refined using anisotropic displacement parameters. Unless noted otherwise, hydrogen atoms were refined using a riding model with their $U_{\rm iso}$ values constrained to 1.5 U_{eq} of their pivot atoms for terminal sp³ carbon atoms and 1.2 times for all other carbon atoms. Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre under reference numbers 2356897-2356902. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336033; email: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Table S8. Ci	rystal structure	data for com	pounds 2a, 2	2c and 3a.
--------------	------------------	--------------	--------------	------------

	2a	2c	3a
CCDC	2356897	2356898	2356899
empirical formula	$C_{15}H_{26}NP$	$C_{13}H_{24}NP$	C ₃₉ H ₅₀ NPSn •
			C ₆ H ₁₄
formula weight	251.34	225.30	768.63
colour	colourless	colourless	yellow
habit	block	needle	block
cryst. dimens, mm	0.48 x 0.48 x 0.32	0.59 x 0.15 x 0.11	0.29 x 0.20 x 0.16
<i>Т</i> , К	100(2)	100(2)	100(2)
crystal system	monoclinic	triclinic	triclinic
space group	P21/c	PĪ	PĪ
a, Å	14.148(2)	6.537(2)	9.615(2)
b, Å	13.096(2)	9.288(2)	14.658(2)
<i>c</i> , A	17.636 (3)	10.366(3)	15.730(3)
α , deg		96.41(2)	72.09(2)
β , deg	106.84(2)	90.76(2)	83.31(2)
γ, deg		90.69(2)	84.26(2)
<i>V</i> , Å ³	3127.5(9)	625.3(3)	2090.3(7)
Ζ	8	2	2
$D_{\text{calc}}, \mathbf{g} \cdot \mathbf{cm}^{-3}$	1.068	1.197	1.221
μ , mm ⁻¹	0.158	0.190	0.679
radiation	Mo $K\alpha$ (λ =	Mo $K\alpha$ (λ =	Mo $K\alpha$ (λ =
	0.71073)	0.71073)	0.71073)
θ range, deg	1.504 – 25.052	1.977 – 25.213	2.138 – 26.397
no. of rflns collected	202500	34069	338908
no. of indep. reflns.	5542	2246	8548
R(int)	0.0745	0.0916	0.0592
Data / restraints /	5542 / 0 / 322	2246 / 149 / 176	8548 / 235 / 502
parameters			
R indices $(I > 2\sigma(I))$	<i>R</i> 1 = 0.0474	<i>R</i> 1 = 0.0746	<i>R</i> 1 = 0.0227
	w <i>R</i> 2 = 0.1351	w <i>R</i> 2 =0.2015	w <i>R</i> 2 =0.0484
<i>R</i> indices (all data)	R1 = 0.0500	<i>R</i> 1 = 0.0812	<i>R</i> 1 = 0.0249
	w <i>R</i> 2 = 0.1381	w <i>R</i> 2 = 0.2053	w <i>R</i> 2 = 0.0493
GOF on F ²	1.058	1.140	1.078
$\Delta \rho_{max} / \Delta \rho_{min} \in A^{-3}$	0.395/-0.432	0.414/-0.410	0.337/-0.415

	3c	4a	7
CCDC	2356900	2356901	2356902
empirical formula	C ₃₇ H ₄₈ NPSn	$C_{46}H_{62}N_3PSn$	$C_{54}H_{75}LiN_2P_2Sn$
formula weight	656.42	806.64	939.73
colour	yellow	colourless	colourless
habit	block	block	block
cryst. dimens, mm	0.57 x 0.50 x 0.39	0.22 x 0.17 x 0.14	0.27 x 0.18 x 0.16
<i>T</i> , K	100(2)	100(2)	100(2)
crystal system	monoclinic	monoclinic	triclinic
space group	P21/c	P2₁/n	PĪ
a, Å	12.065(8)	9.354(2)	9.533(2)
b, Å	19.678(13)	38.331(3)	12.651(2)
<i>c</i> , Å	14.365(9)	23.653(2)	21.604(3)
α , deg			74.71(2)
β , deg	104.21(2)	98.67(2)	83.26(2)
γ, deg			81.63(2)
V, Å ³	3306(4)	8384(2)	2478.0(8)
Z	4	8	2
D _{calc} , g•cm⁻³	1.319	1.278	1.259
μ , mm ⁻¹	0.454	0.682	0.617
radiation	Ag $K\alpha$ ($\lambda = 0.56086$)	Mo <i>K</i> α (λ = 0.71073)	Mo $K\alpha$ ($\lambda = 0.71073$)
θ range, deg	1.598 – 20.727	1.020 – 25.042	2.148 – 25.062
no. of rflns collected	91982	363908	232510
no. of indep. reflns.	6823	14813	8781
R(int)	0.0736	0.0556	0.1081
Data / restraints /	6823 / 0 / 371	14813 / 0 / 954	
parameters			
R indices ($l>2\sigma(l)$)	<i>R</i> 1 = 0.0232	<i>R</i> 1 = 0.0362	<i>R</i> 1 = 0.0393
	w <i>R</i> 2 = 0.0546	w <i>R</i> 2 = 0.0806	w <i>R</i> 2 = 0.1003
R indices (all data)	<i>R</i> 1 = 0.0286	<i>R</i> 1 = 0.0390	<i>R</i> 1 = 0.0433
	w <i>R</i> 2 = 0.0575	w <i>R</i> 2 = 0.0816	w <i>R</i> 2 = 0.1039
GOF on F ²	1.041	1.215	1.031
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}} e \text{ Å}^{-3}$	0.356/-0.302	1.967/-1.091	0.816/-0.830

Table S9. Crystal structure data for compounds 3c, 4a and 5a.

Computational Details

Geometry optimizations, frequency calculations and PCM solvent corrections were run with Gaussian 16 Revision A.03^[S15] using the BP86^[S16,S17] functional. For geometry optimisations, all atoms were described with def2-SVP basis sets of Ahlrichs and Weigand.^[S18] Single point energy calculations were performed on the optimised geometries, at the BP86/def2-TZVP level of theory. Stationary points were fully characterized using analytical frequency calculations as either minima (all positive eigenvalues) or transition states (one negative eigenvalue). IRC calculations and subsequent geometry optimizations were used to confirm the minima linked by the transition states. Energies reported in the text are based on the gas-phase free energies and incorporate a correction for dispersion effects using Grimme's D3 parameter set with Becke-Johnson dampening^[S19,S20] (i.e. BP86-D3BJ) as well as solvation (PCM approach) in benzene. Energies are given in atomic units (a.u.) unless otherwise stated. Natural Bond Orbital (NBO) and Natural Localised Molecular Orbital (NLMO) analysis was performed using NBO-7 using the single point calculations performed at the BP86/def2-TZVP level of theory.^[S21]

Figure S84. Molecular Orbital (BP86/def2-TZVP) diagram of 3a.

Figure S85. Molecular Orbital (BP86/def2-TZVP) diagram of 3b.

Figure S86. Molecular Orbital (BP86/def2-TZVP) diagram of 3c.

Figure S87. Molecular Orbital (BP86/def2-TZVP) diagram of 4a.

Figure S88. Molecular Orbital (BP86/def2-TZVP) diagram of 7.

Figure S89. Selected Natural Bond Orbitals (BP86/def2-TZVP) diagram of 3a.

Figure S92. Selected Natural Bond Orbitals (BP86/def2-TZVP) diagram of 4a.

Figure S93. Selected Natural Bond Orbitals (BP86/def2-TZVP) diagram of **7**.

Energies and Frequencies for the DFT Optimised Geometries

NH3		
SCF =	-56.5089170	0006
H(0 K) =	-56.475756	
H(298 K) =	-56.471943	3
G(298 K) =	-56.494872	2
SCF+D3 =	-56.50989	942691
PCM SCF (B	enzene) =	-56.5111969594
BS2 (def2-tzy	vp) = -56	.5836424941
Low Freq. =	1052.8240 ci	m⁻¹,
1615.0981 cr	m⁻¹	

HHMDS

-873.580513	3276
-873.35024	8
-873.3320	18
-873.3942	00
-873.6272	297014
senzene) =	-873.581289692
vp) = -87	4.125928025
24.9284 cm ⁻	¹ , 32.6687 cm ⁻¹
	-873.580513 -873.35024 -873.3320 -873.3942 -873.6272 Genzene) = vp) = -87 24.9284 cm ⁻¹

2a

SCF = -982.812371112H(0 K) = -982.447201H(298 K) = -982.424500G(298 K) = -982.497792SCF+D3 = -982.898709620PCM SCF (Benzene) = -982.816130584BS2 (def2-tzvp) = -983.635514935Low Freq. = 12.5536cm⁻¹, 35.6827 cm⁻¹

2b		
SCF =	-825.691800)725
H(0 K) =	-825.437052	2
H(298 K) =	-825.41923	36
G(298 K) =	-825.4831	58
SCF+D3 =	-825.7477	44266
PCM SCF (E	3enzene) =	-825.696717373
BS2 (def2-tz	vp) = -82	6.348657288
Low Freq. =	19.1187 cm ⁻¹	, 28.5400 cm ⁻¹

2c

SCF =	-905.46114	3616
H(0 K) =	-905.12152	2
H(298 K) =	-905.1047	80
G(298 K) =	-905.1634	72
SCF+D3 =	-905.5414	445188
PCM SCF (E	Benzene) =	-905.463506081
BS2 (def2-tz	vp) = -90	6.194823599
Low Freq. =	25.1373 cm ⁻	¹ , 57.5116 cm ⁻¹

TS1-3a

SCF =	-2999.1018	31772	
Н(0 К) =	-2998.116	954	
H(298 K) =	-2998.04	8760	
G(298 K) =	-2998.22	3988	
SCF+D3 =	-2999.43	513561	
PCM SCF (E	Benzene) =	-2999.105	599646
BS2 (def2-t	zvp) = -3	3001.44546	113
Low Freq. =	-1425.593	0 cm ⁻¹ , 9.94	53 cm ⁻¹

3a

SCF =	-2125.5914	1191
H(0 K) =	-2124.8343	22
H(298 K) =	-2124.783	982
G(298 K) =	-2124.920	267
SCF+D3 =	-2125.83	545169
PCM SCF (E	senzene) =	-2125.59518286
BS2 (def2-tz	vp) = -21	27.39614646
Low Freq. =	11.7302 cm	¹ , 18.6694 cm ⁻¹

TS1-3b		
SCF =	-2842.01000)546
H(0 K) =	-2841.13519)7
H(298 K) =	-2841.0719	922
G(298 K) =	-2841.2366	625
SCF+D3 =	-2842.313	52108
PCM SCF (B	enzene) =	-2842.01324806
BS2 (def2-tz	vp) = -28-	44.18468222
Low Freq. =	-433.5398 cn	n ⁻¹ , 14.8287 cm ⁻¹

3b

 $\begin{array}{rll} SCF = & -1968.48130383 \\ H(0 \ K) = & -1967.834530 \\ H(298 \ K) = & -1967.789000 \\ G(298 \ K) = & -1967.7917330 \\ SCF+D3 = & -1968.69590466 \\ PCM \ SCF \ (Benzene) = & -1968.48580622 \\ BS2 \ (def2-tzvp) = & -1970.11899164 \\ Low \ Freq. = 12.4990 \ cm^{-1}, \ 15.9098 \ cm^{-1} \end{array}$

TS1-3c

SCF =	-2921.77227	7932
H(0 K) =	-2920.8129	96
H(298 K) =	-2920.750	603
G(298 K) =	-2920.910	490
SCF+D3 =	-2922.101	68759
PCM SCF (E	Benzene) =	-2921.77533185
BS2 (def2-tz	vp) = -29	24.02315481
Low Freq.= -	1256.9256 c	m ⁻¹ , 12.8373 cm ⁻¹

3c

A2a SCF = -2182.13704094H(0 K) = -2181.343108H(298 K) = -2181.290024G(298 K) = -2181.435669SCF+D3 = -2182.38371797PCM SCF (Benzene) = -2182.14126558BS2 (def2-tzvp) = -2184.00805341Low Freq. = 7.5405 cm⁻¹, 9.8021 cm⁻¹

A1a

TSA1a-Ba

 $\begin{array}{rll} SCF = & -2182.08869118 \\ H(0\ K) = & -2181.296116 \\ H(298\ K) = & -2181.243906 \\ G(298\ K) = & -2181.381655 \\ SCF+D3 = & -2182.35537060 \\ PCM\ SCF\ (Benzene) = & -2182.09220259 \\ BS2\ (def2-tzvp) = & -2183.95949666 \\ Low\ Freq. = -114.5604\ cm^{-1},\ 20.8989\ cm^{-1} \end{array}$

С SCF = -1199.29899115 H(0 K) =-1198.873293 H(298 K) = -1198.842652 G(298 K) = -1198.937933 SCF+D3 = -1199.43321587 PCM SCF (Benzene) = -1199.30159514 BS2 (def2-tzvp) = -1200.35605919 Low $Freq. = 18.3496 \text{ cm}^{-1}$, 21.5646 cm⁻¹

H(0 K) =-2024.334428 H(298 K) = -2024.286338 G(298 K) = -2024.422938 SCF+D3 = -2025.23114377 PCM SCF (Benzene) = -2025.02320243 BS2 (def2-tzvp) = Low Freq. = 6.1232 cm⁻¹, 10.7174 cm⁻¹

A2b

SCF =

-2025.01815156

-2026.72241752

5 SCF = -2398.65310649 H(0 K) =-2397.797913 H(298 K) = -2397.737164 G(298 K) = -2397.902183 SCF+D3 = -2398.95454599 PCM SCF (Benzene) = -2398.65710114 BS2 (def2-tzvp) = -2400.75713263 Low Freq. = 8.6842 cm⁻¹, 12.3063 cm⁻¹

A1b SCF = -2024.99862847 H(0 K) =-2024.315718 H(298 K) = -2024.266991 G(298 K) = -2024.402978 -2025.21938739 SCF+D3 = PCM SCF (Benzene) = -2025.00478565 BS2 (def2-tzvp) = -2026.70432140 Low Freq. = 12.6814 cm⁻¹, 15.0776 cm⁻¹

TSA1b-Bb

-2024.98009	9224
-2024.2979	55
-2024.250	416
-2024.382	094
-2025.205	582161
enzene) =	-2024.98385929
vp) = -20	26.68461604
-108.5767cm	n-1, 15.7287cm-1
	-2024.98009 -2024.29799 -2024.2500 -2024.382 -2025.205 enzene) = /p) = -20 -108.5767cm

4a

Bb

SCF =	-2025.0005	3999
H(0 K) =	-2024.3182	43
H(298 K) =	-2024.269	885
G(298 K) =	-2024.404	360
SCF+D3 =	-2025.223	356570
PCM SCF (B	senzene) =	-2025.00561704
BS2 (def2-tzvp) = -2026.70677007		
Low Freq. = 15.5392 cm ⁻¹ , 19.3603 cm ⁻¹		

6 805

 $\begin{array}{rll} SCF = & -3115.39801142 \\ H(0 \ K) = & -3114.283508 \\ H(298 \ K) = & -3114.209011 \\ G(298 \ K) = & -3114.398620 \\ SCF+D3 = & -3115.77024442 \\ PCM \ SCF \ (Benzene) = & -3115.40544354 \\ BS2 \ (def2-tzvp) = & -3118.02036569 \\ Low \ Freq. = 8.4434 \ cm^{-1}, \ 14.5378 \ cm^{-1} \end{array}$

References

[S1] M. Fischer, M. M. D. Roy, L. L. Wales, M. A. Ellwanger, A. Heilmann and S. Aldridge, Structural Snapshots in Reversible Phosphinidene Transfer: Synthetic, Structural, and Reaction Chemistry of a Sn=P Double Bond, *J. Am. Chem. Soc.*, 2022, **144**, 8908-8913.

[S2] a) N. Kuhn and T. Kratz, Synthesis of Imidazol-2-ylidenes by Reduction of Imidazole-2(3*H*)-thiones, *Synthesis*, 1993, 561-562; b) C. Barnett, M. L. Cole and J. B. Harper, Steric Properties of *N*-Heterocyclic Carbenes affect the Performance of Electronic Probes, *Eur. J. Inorg. Chem.*, 2021, **47**, 4954-4958.

[S3] S. K. Chen, W.-Q. Ma, Z.-B. Yan, F.-M. Zhang, S.-H. Wang, Y.-Q. Tu, X.-M. Zhang and J.-M. Tian, Organo-Cation Catalyzed Asymmetric Homo/Heterodialkylation of Bisoxindoles: Construction of Vicinal All-Carbon Quaternary Stereocenters and Total Synthesis of (-)-Chimonanthidine, *J. Am. Chem. Soc.*, 2018, *140*, 10099-10103.

[S4] a) Y. Liu, J. Du and L. Deng, Synthesis, Structure, and Reactivity of Low-Spin Cobalt(II) Imido Complexes [(Me₃P)₃Co(Nar)], *Inorg. Chem.*, 2017, **56**, 8278-8286; b) K. E. Aldrich and A. L. Odom, A photochemical route to a square planar, ruthenium(IV)-bis(imide), *Chem. Commun.*, 2019, **55**, 4403-4406.

[S5] Y. M. Badiei, A. Krishnaswamy, M. M. Melzer and T. H. Warren, Transient Terminal Cu-Nitrene Intermediates from Discrete Dicopper Nitrenes, *J. Am. Chem. Soc.*, 2006, **128**, 15056-15057.

[S6] a) E. Kogut, H. L. Wiencko, L. Zhang, D. E. Cordeau and T. H. Warren, A Terminal Ni(III)-Imide with Diverse Reactivity Pathways, *J. Am. Chem. Soc.*, 2005, **127**, 11248-11249; b) T.
F. C. Cruz, L. F. Veiros and P. T. Gomes, Cobalt(I) Complexes of 5-Aryl-2-iminopyrrolyl Ligands: Synthesis, Spin Isomerism, and Application in Catalytic Hydroboration, *Inorg. Chem.*, 2018, **57**, 14671-14685.

[S7] a) S. Bachmann, B. Gernert and D. Stalke, Solution structures of alkali metal cyclopentadienides in THF estimated by ECC-DOSY NMR-spectroscopy (incl. Software), *Chem. Commun.*, 2016, **52**, 12861-12864; b) S. Bachmann, R. Neufeld, M. Dzemski and D. Stalke, New External Calibration Curves (ECCs) for the Estimation of Molecular Weights in Various Common NMR Solvents, *Chem. Eur. J.*, 2016, **22**, 8462-8465.

[S8] Y. Peng, J.-D. Guo, B. D. Ellis, Z. Zhu, J. C. Fettinger, S. Nagase and P. P. Power, Reaction of Hydrogen or Ammonia with Unsaturated Germanium or Tin Molecules under Ambient Conditions: Oxidative Addition versus Arene Elimination, *J. Am. Chem. Soc.*, 2009, **131**, 16272-16282.

[S9] Bruker AXS Inc., *Bruker Apex CCD, SAINT v8.40B* (Ed.: Bruker AXS Inst. Inc.), WI, USA, Madison, 2019.

[S10] L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination, *J. Appl. Crystallogr.*, 2015, **48**, 3-10.

[S11] M. Sevvana, M. Ruf, I. Usón, G. M. Sheldrick and R. Herbst-Irmer, Non-merohedral twinning: from minerals to proteins, *Acta Crystallogr. D*, 2019, **75**, 1040-1050.

[S12] G. M. Sheldrick, Crystal structure refinement with *SHELXL*, *Acta Crystallogr. A*, 2015, **71**, 3-8.

[S13] G. M. Sheldrick, Crystal structure refinement with *SHELXL*, *Acta Crystallogr. C*, 2015, **71**, 3-8.

[S14] C. B. Hübschle, G. M. Sheldrick and B. Dittrich, *ShelXle*: a Qt graphical user interface for *SHELXL*, *J. Appl. Crystallogr.*, 2011, **44**, 1281-1284.

[S15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, 2016.

[S16] A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, *Phys. Rev. A*, 1988, **38**, 3098-3100.

[S17] J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, *Phys. Rev. B*, 1986, **33**, 8822-8824.

[S18] F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.

[S19] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, 2010, **132**, 154104.

[S20] S. Grimme, S. Ehrlich and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, *J. Comp. Chem.*, 2011, **32**, 1456-1465.

[S21] NBO 7.0, E. D. Glendening, J. K. Badenhoop, A.E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis and F. Weinhold, *Theoretical Chemistry Institute, University of Wisconsin, Madison, WI*, 2018.