Electronic Supplementary Information for

Shooting short-wavelength nonlinear optical materials with targeted balance performances in hydroxyborates through first-principles high-throughput screening

Chenxu Li,^{‡a,b,c} Abudukadi Tudi,^{‡a,b} Huanhuan Cheng,^{a,b} Qingyu Liu,^{a,b} Zhihua Yang^{*a,b} and Shilie Pan ^{*a,b}

^aResearch Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China.

E-mails: slpan@ms.xjb.ac.cn (S. Pan), zhyang@ms.xjb.ac.cn (Z. Yang)

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

^c School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China.

‡ These authors contributed equally to this work.

Contents

Table S1 The ICSD code, crystal system, space group, and chemical formula of 222 hydroxyborates crystals with non-centrosymmetric(NCS) structures collected from ICSD.

Table S2 The basic information of hydroxyborates with 0D isolated B-O/OH clusters.

Table S3 The basic information of hydroxyborates with 1D infinite B-O/OH chains.

Table S4 The basic information of hydroxyborates with 2D B-O/OH layered configurations.

Table S5 The basic information of hydroxyborates with 3D B-O/OH frameworks.

Table S6 The ICSD collection numbers, chemical formula, space group, GGA and HSE06 band gaps, second harmonic generation (SHG) coefficients, and birefringence Δn at 1064 nm of 60 screening hydroxyborates crystals. Note that SHG coefficients, and birefringence Δn have been corrected with scissors operators.

Table S7 Calculated band gaps (E_g) by hybrid HSE06, the maximum SHG coefficients (d_{ij}), birefringence at 1064 nm (Δn), UV cutoff wavelengths (λ_{cutoff}), shortest phase-matching wavelengths (λ_{PM}), dimensionality of B–O/OH anionic framework, and (A + OH)/B ratio of screened hydroxyborate crystals.

Table S8 Calculated band gaps (E_g) by hybrid HSE06, the maximum SHG coefficients (d_{ij}), birefringence at 1064 nm (Δn), UV cutoff wavelengths (λ_{cutoff}), shortest phase-matching wavelengths (λ_{PM}), dimensionality of B–O/OH anionic framework, and (A + OH)/B ratio of screened hydroxyborate crystals.

Table S9 The investigation of ratio (A + OH)/B = 0.636, dimensionality of B–O/OH anionic framework, birefringence at 1064 nm (cal.), and [BO₃] & [B(OH)₃] & [BO₂(OH)] density among hydroxyborates involving the screened compounds.

Table S10 Bonding electron difference ($\Delta \rho$) and contribution percent *w* (%) of different units in KCa₄(B₂₂O₃₂(OH)₁₀Cl)·4H₂O calculated by the REDA model.

Figure S1 (a) Band structures by the HSE06 functional. (b) Total and partial density of states (PDOS) and band-resolved NLO coefficients. (c) SHG-weighted density of occupied and unoccupied states in virtual-electron (VE) progress of $KCa_4(B_{22}O_{32}(OH)_{10}Cl)\cdot 4H_2O$. Here, $\chi_{122} = 2d_{12}$.

Notes and references

ICSD code	Crystal system	Space group	Formula
39637	Triclinic	<i>P</i> 1	KCa4(B22O32)(OH)10Cl·4H2O
187776	Triclinic	<i>P</i> 1	KCa ₄ (B ₂₂ O ₃₂ (OH) ₁₀ Cl)·4H ₂ O
172480	Triclinic	<i>P</i> 1	Bi(B ₄ O ₆ (OH) ₂)(OH)
76888	Triclinic	<i>P</i> 1	$Ca_9B_{26}O_{34}(OH)_{24}Cl_4 \cdot 13H_2O$
172482	Triclinic	<i>P</i> 1	$Bi_3(B_6O_{13}(OH))$
174161	Triclinic	<i>P</i> 1	$Ba_3Na(OH)(B_9O_{16})(B(OH)_4)$
182942	Triclinic	<i>P</i> 1	$Tl((UO_2)(B_5O_8)(OH)F)$
261299	Triclinic	<i>P</i> 1	$(NH_4)_8(Co_2B_4P_8O_{30}(OH)_4)$
409327	Triclinic	<i>P</i> 1	$Mg_2(BP_2O_7(OH)_3)$
420549	Triclinic	<i>P</i> 1	$Ca_2(B_5O_8(OH))_2B(OH)_3$ ·H ₂ O
134988	Triclinic	<i>P</i> 1	$Ca_{2}(B_{5}O_{8}(OH))_{2}(OH)_{3})\cdot H_{2}O$
137621	Triclinic	<i>P</i> 1	$Na_{0.7/1}(Al_{1.315}Fe_{1.685})Al_6(BO_3)_3Si_6O_{18}O(OH)_3$
137622	Triclinic	<i>P</i> 1	$Na_{0.889}(Al_{2.078}Fe_{0.922})Al_6(BO_3)_3Si_6O_{18}O(OH)_3$
42570	Triclinic	<i>P</i> 1	$Ba_2B_{13}O_{19}(OH)_5 \cdot 5H_2O$
91539	Monoclinic	P2	$Ba_{5}(B_{20}O_{33}(OH)_{4}) \cdot H_{2}O$
28426	Monoclinic	$P2_1$	CaB ₃ O ₄ (OH) ₃ ·H ₂ O
28427	Monoclinic	$P2_1$	$Ca(B_3O_4(OH)_3) \cdot H_2O$
171019	Monoclinic	$P2_1$	$CaB_8O_{11}(OH)_4$
250323	Monoclinic	$P2_1$	$Ca(B_8O_{11}(OH)_4)$
256908	Monoclinic	$P2_1$	$Ba_3(B_6O_{10}(OH)_2)(CO_3)$
262502	Monoclinic	$P2_1$	$Ba_2(B_6O_9(OH)_4)$
263504	Monoclinic	$P2_1$	CaB ₃ O ₄ (OH) ₃ ·H ₂ O
263505	Monoclinic	$P2_1$	CaB ₃ O ₄ (OH) ₃ ·H ₂ O
263506	Monoclinic	$P2_1$	CaB ₃ O ₄ (OH) ₃ ·H ₂ O
263507	Monoclinic	$P2_1$	CaB ₃ O ₄ (OH) ₃ ·H ₂ O
263508	Monoclinic	$P2_1$	CaB ₃ O ₄ (OH) ₃ ·H ₂ O
263509	Monoclinic	$P2_1$	CaB ₃ O ₄ (OH) ₃ ·H ₂ O
263510	Monoclinic	$P2_1$	CaB ₃ O ₄ (OH) ₃ ·H ₂ O
415082	Monoclinic	$P2_1$	Ca(B ₈ O ₁₁ (OH) ₄)
432814	Monoclinic	$P2_1$	$Ca_2(B_5O_8(OH))_2(B(OH)_3)\cdot H_2O$
4228	Monoclinic	$P2_1$	Sr(B ₈ O ₁₁ (OH) ₄)
20074	Monoclinic	$P2_1$	$Sr_2(B_5O_8(OH))_2(B(OH)_3)\cdot H_2O$
20963	Monoclinic	$P2_1$	LiNd(BO ₃ (OH))
22336	Monoclinic	$P2_1$	Na(B(OH) ₂ Si ₂ O ₅)
28014	Monoclinic	$P2_1$	$Sr_2(B_5O_8(OH))_2(B(OH)_3)\cdot H_2O$
100400	Monoclinic	$P2_1$	(NH ₄) ₂ (B ₄ O ₅ (OH) ₄)·2H ₂ O
237586	Monoclinic	$P2_1$	Eu(B ₈ O ₁₁ (OH) ₄)
248128	Monoclinic	$P2_1$	$(UO_2)_2(B_9O_{14}(OH)_4)$
254204	Monoclinic	$P2_1$	$K_5(UO_2)_2(B_2P_3O_{12}(OH))_2(OH) \cdot 2H_2O$
49364	Monoclinic	$P2_1$	$(NH_4)_2B_4O_5(OH)_4(H_2O)_2$
49365	Monoclinic	$P2_1$	$(NH_4)_2B_4O_5(OH)_4(H_2O)_2$
17641	Monoclinic	$P2_1$	La ₃ B ₆ O ₁₃ (OH)
19922	Monoclinic	$P2_1$	$Ba_2(B_5O_8(OH))_2(B(OH)_3)\cdot H_2O$

Table S1 The ICSD code, crystal system, space group, and chemical formula of 222 hydroxyborates crystals with non-centrosymmetric (NCS) structures collected from ICSD.

ICSD code	Crystal system	Space group	Formula
141235	Monoclinic	$P2_1$	NaRb ₃ B ₆ O ₉ (OH) ₃ (HCO ₃)
145071	Monoclinic	$P2_1$	Zn(NH ₂ CH ₂ CH ₂ NH ₂) ₂ Al(B ₅ O ₉ (OH))(BO(OH) ₂)
95447	Monoclinic	<i>C</i> 2	Na ₂ Ba ₂ (B ₁₀ O ₁₇ (OH) ₂)
403149	Monoclinic	<i>C</i> 2	$Ba_3(B_{10}O_{17}(OH)_2)$
92819	Monoclinic	<i>C</i> 2	$Sr_2(B_5O_9(OH)) \cdot H_2O$
182000	Monoclinic	<i>C</i> 2	(NH ₄) ₆ (Mn ₃ B ₆ P ₉ O ₃₆ (OH) ₃)·4H ₂ O
250334	Monoclinic	<i>C</i> 2	Pb ₂ (B ₄ O ₅ (OH) ₆)·H ₂ O
261799	Monoclinic	<i>C</i> 2	$Pb_2(B_4O_5(OH)_4)(OH)_2 \cdot H_2O$
131283	Monoclinic	<i>C</i> 2	$B_5DyH_2O_{10}$
11600	Monoclinic	Pm	Mn ₅ (BO ₃) ₃ (OH)
76661	Monoclinic	Pc	Ca ₃ (B ₅ O ₆ (OH) ₆)(OH)Cl ₂ ·8H ₂ O
89259	Monoclinic	Pc	Ca ₃ (B ₅ O ₆ (OH) ₆)(OH)Cl ₂ ·8H ₂ O
262542	Monoclinic	Pc	$Ba_3B_6O_{11}(OH)_2$
154523	Monoclinic	Pc	$Na_4(B_{10}O_{16}(OH)_2) \cdot 4H_2O$
26380	Monoclinic	Pc	NH ₄ (B ₅ O ₆ (OH) ₄)·2H ₂ O
110994	Monoclinic	Cm	(Cu(NH ₃) ₄ (H ₂ O) ₂)(B ₄ O ₅ (OH) ₄)·2H ₂ O
124825	Monoclinic	Cm	Pr ₃ Mo ₄ B ₆ O ₂₄ (OH) ₃
2942	Monoclinic	Сс	Sr ₂ (B5O8(OH)) ₂ (B(OH) ₃)·H ₂ O
16921	Monoclinic	Сс	$Sr_2(B_5O_8(OH))_2(B(OH)_3)$ ·H ₂ O
251872	Monoclinic	Сс	$La_2(CH_3CO_2)_2(B_5O_9(OH)) \cdot H_2O$
251873	Monoclinic	Сс	$Ce_2(CH_3CO_2)_2(B_5O_9(OH)) \cdot H_2O$
251874	Monoclinic	Сс	$Pr_2(CH_3CO_2)_2(B_5O_9(OH)) \cdot H_2O$
251875	Monoclinic	Сс	La ₂ (CH ₃ CO ₂) ₂ (B ₅ O ₉ (OH))
251876	Monoclinic	Cc	Ce ₂ (CH ₃ CO ₂) ₂ (B ₅ O ₉ (OH))
251877	Monoclinic	Cc	Pr ₂ (CH ₃ CO ₂) ₂ (B ₅ O ₉ (OH))
260879	Monoclinic	Cc	Na ₃ (B ₃ O ₄ (OH) ₄)
262373	Monoclinic	Сс	Ce(B ₄ O ₆ (OH) ₂)Cl
425058	Monoclinic	Сс	$Cu_{3}(B_{2}(PO_{4})_{3}(OH)_{3})$
426915	Monoclinic	Сс	$Ca_2(B_5O_9)(OH) \cdot H_2O$
760166	Monoclinic	Сс	LaB ₄ O ₆ (OH) ₂ Cl
760167	Monoclinic	Сс	CeB ₄ O ₆ (OH) ₂ Cl
95909	Monoclinic	Сс	$Pr(B_4O_6(OH)_2)Cl$
95910	Monoclinic	Сс	Nd(B ₄ O ₆ (OH) ₂)Cl
151307	Monoclinic	Сс	(Ru ₂ ((CH ₃)COO) ₄ (H ₂ O) ₂)(BF ₄)
182938	Monoclinic	Сс	$Na(UO_2)(B_5O_8)(OH)F \cdot H_2O$
182941	Monoclinic	Сс	$Rb((UO_2)(B_5O_8)(OH)F)$
182943	Monoclinic	Сс	$Na((NpO_2)(B_5O_8)(OH)F) \cdot H_2O$
253445	Monoclinic	Сс	Co ₃ (BPO ₄) ₂ (PO ₄)(OH) ₃
261402	Monoclinic	Сс	Ba ₃ (Ge ₂ B ₇ O ₁₆ (OH) ₂)(OH)·H ₂ O
261422	Monoclinic	Сс	$(UO_2)(B_8O_{11}(OH)_4)$
261423	Monoclinic	Сс	(NpO ₂)(B ₈ O ₁₁ (OH) ₄)
261424	Monoclinic	Сс	$(PuO_2)(B_8O_{11}(OH)_4)$
262913	Monoclinic	Сс	$La(B_4O_6(OH)_2Cl)$
262914	Monoclinic	Сс	$Ce(B_4O_6(OH)_2Cl)$
262918	Monoclinic	Сс	$Pu(B_4O_6(OH)_2Cl)$

ICSD code	Crystal system	Space group	Formula
420984	Monoclinic	Сс	Na(UO ₂)(B ₆ O ₁₀ (OH))·2H ₂ O
420987	Monoclinic	Сс	PuO ₂ (B ₈ O ₁₁ (OH) ₄)
423058	Monoclinic	Сс	$Pu(B_4O_6(OH)_2Cl)$
124040	Monoclinic	Сс	$Ba_2B_{10}O_{16}(OH)_2(H_3BO_3)\cdot H_2O$
34648	Orthorhombic	$P2_{1}2_{1}2_{1}$	K ₂ (B ₄ O ₅ (OH) ₄)·2H ₂ O
59278	Orthorhombic	$P2_{1}2_{1}2_{1}$	$(NH_4)_2Ca(B_4O_5(OH)_4)_2\cdot 8H_2O$
81193	Orthorhombic	$P2_{1}2_{1}2_{1}$	$(B(C_2H_6N_5))(OH)_2 \cdot H_2O$
155932	Orthorhombic	$P2_{1}2_{1}2_{1}$	$(Mg_2(H_2O))(BP_3O_9(OH)_4)$
425065	Orthorhombic	$P2_{1}2_{1}2_{1}$	$LiCu_2(BP_2O_8(OH)_2)$
4229	Orthorhombic	$P2_{1}2_{1}2_{1}$	$Rb_2Sr(B_4O_5(OH)_4)_2 \cdot 8H_2O$
35090	Orthorhombic	$P2_{1}2_{1}2_{1}$	CaK ₂ (B ₄ O ₅ (OH) ₄) ₂ ·8H ₂ O
80648	Orthorhombic	$P2_{1}2_{1}2_{1}$	(NH ₄) ₂ Ca(B ₄ O ₅ (OH) ₄) ₂ ·8H ₂ O
93005	Orthorhombic	$P2_{1}2_{1}2_{1}$	K ₂ Ca(B ₄ O ₅ (OH) ₄) ₂ ·8H ₂ O
98351	Orthorhombic	$P2_{1}2_{1}2_{1}$	$Rb_2Ca(B_4O_5(OH)_4)_2 \cdot 8H_2O$
99219	Orthorhombic	$P2_{1}2_{1}2_{1}$	$Cs_2Ca(B_4O_5(OH)_4)_2 \cdot 8H_2O$
100670	Orthorhombic	$P2_{1}2_{1}2_{1}$	$Tl_2(B_4O_6(OH)_2) \cdot 2H_2O$
192187	Orthorhombic	$P2_{1}2_{1}2_{1}$	K ₂ Ca(B ₄ O ₅ (OH) ₄) ₂ ·8H ₂ O
200950	Orthorhombic	$P2_{1}2_{1}2_{1}$	$K_2Ca(B_4O_5(OH)_4)_2 \cdot 8H_2O$
263926	Orthorhombic	$P2_{1}2_{1}2_{1}$	RbSe ₃ B ₂ O ₉ (OH)
263927	Orthorhombic	$P2_{1}2_{1}2_{1}$	CsSe ₃ B ₂ O ₉ (OH)
57297	Orthorhombic	$P2_{1}2_{1}2_{1}$	Ba(BO ₂ (OH))
13423	Orthorhombic	C222	$Li_2CsB_7O_{10}\cdot 4H_2O$
431106	Orthorhombic	$Pca2_1$	Na(B ₅ O ₇ (OH) ₂)·H ₂ O
250215	Orthorhombic	Pnc2	CaLi ₄ (B ₅ O ₈ (OH) ₂) ₂
36431	Orthorhombic	Pnc2	Li ₃ (B ₅ O ₈ (OH) ₂)
413627	Orthorhombic	$Pmn2_1$	$K_7((BO_3)Mn(B_{12}O_{18}(OH)_6)) \cdot H_2O$
70514	Orthorhombic	$Pmn2_1$	K ₇ ((BO ₃)Co(B ₁₂ O ₁₈ (OH) ₆))·H ₂ O
145793	Orthorhombic	$Pmn2_1$	Tb ₃ B ₁₀ O ₁₇ (OH) ₅
22192	Orthorhombic	$Pna2_1$	CaB ₃ O ₅ (OH)
23880	Orthorhombic	$Pna2_1$	CaB ₃ O ₅ (OH)
1973	Orthorhombic	$Pna2_1$	$(Na(H_2O))_2(B_5O_8(OH))$
34700	Orthorhombic	$Pna2_1$	$K_2(B_5O_8(OH)) \cdot 2H_2O$
59277	Orthorhombic	$Pna2_1$	$K_2Sr(B_4O_5(OH)_4)_2 \cdot 10H_2O$
249876	Orthorhombic	$Pna2_1$	Na ₂ B ₅ O ₈ (OH)·2H ₂ O
252381	Orthorhombic	$Pna2_1$	CaB ₃ O ₅ (OH)
426601	Orthorhombic	$Pna2_1$	$Mg(B_6O_9(OH)_2)$ ·4H ₂ O
4220	Orthorhombic	$Pna2_1$	K ₃ (B ₃ O ₄ (OH) ₄)·2H ₂ O
4221	Orthorhombic	$Pna2_1$	$Rb_3(B_3O_4(OH)_4)$ ·2H ₂ O
200266	Orthorhombic	$Pna2_1$	K ₃ (B ₃ O ₄ (OH) ₄)·2H ₂ O
408211	Orthorhombic	$Pna2_1$	$Na_2(BP_2O_7(OH))$
133088	Orthorhombic	$Pna2_1$	KHC ₂ O ₄ B(OH) ₃
117561	Orthorhombic	$Pna2_1$	$La_2B_3O_4(OH)_3(SO_4)_2$
253012	Orthorhombic	$Cmc2_1$	K ₃ B ₃ O ₄ (OH) ₄ ·2H ₂ O
138088	Orthorhombic	$Cmc2_1$	Na ₈ Li ₂ (B ₆ O ₁₀) ₄ (B(OH) ₃) ₂ (OH) ₂
113334	Orthorhombic	$Cmc2_1$	$(NH_4)_2(B_4O_5(OH)_4)\cdot 2H_2O$

ICSD code	Crystal system	Space group	Formula
63014	Orthorhombic	Amm2	$Tl_4Cu(Cu_2B_{18}O_{28}(OH)_8)\cdot 10H_2O$
241953	Orthorhombic	Ama2	K((UO ₂)B ₆ O ₁₀ (OH))
6292	Orthorhombic	Aba2	$K(B_5O_6(OH)_4) \cdot 2H_2O$
29406	Orthorhombic	Aba2	RbB ₅ O ₆ (OH) ₄ ·2H ₂ O
90001	Orthorhombic	Aba2	$(NH_4)(B_5O_6(OH)_4)\cdot 2H_2O$
410811	Orthorhombic	Aba2	$(NH_4)(B_5O_6(OH)_4)\cdot 2H_2O$
21332	Orthorhombic	Aba2	LiNaRbB ₅ O ₈ (OH) ₂
4481	Orthorhombic	Fdd2	K ₃ B ₅ O ₈ (OH) ₂
425727	Orthorhombic	Fdd2	Ba ₃ Al ₂ (B ₃ O ₆ (OH)) ₂ (B ₄ O ₇ (OH) ₂)
425867	Orthorhombic	Fdd2	Ba ₃ Ga ₂ (B ₃ O ₆ (OH)) ₂ (B ₄ O ₇ (OH) ₂)
264389	Orthorhombic	Fdd2	InB ₆ O ₉ (OH) ₃
20662	Tetragonal	$P4_2$	$Mg(B_2O(OH)_6)$
24920	Tetragonal	$P4_2$	$Mg(B_2O(OH)_6)$
4222	Tetragonal	I ⁴	$Cs(B(OH)_4) \cdot 2H_2O$
27527	Tetragonal	ĪĀ	Ca ₂ BAsO ₄ (OH) ₄
142127	Tetragonal	ĪĀ	$H_2Na_2K_2(OCu_4B_{20}O_{32}(OH)_8)\cdot 21H_2O$
142128	Tetragonal	I ⁴	$H_2Rb_{1.6}K_{2.4}(OCu_4B_{20}O_{32}(OH)_8) \cdot 15H_2O$
20155	Tetragonal	$P4_{1}2_{1}2$	$Li_3(B_5O_8(OH)_2)$
20173	Tetragonal	$P4_{1}2_{1}2$	$Li_3(B_5O_8(OH)_2)$
418166	Tetragonal	$P4_{3}2_{1}2$	$Li_3(B_5O_8(OH)_2)$
34580	Tetragonal	$P^{\bar{4}}2_{1}c$	K ₆ Al ₄ Si ₆ BH ₄ O ₂₄ Cl
79472	Trigonal	<i>P</i> 3	$(Li(H_2O)_4)(B(OH)_4) \cdot 2H_2O$
430533	Trigonal	<i>P</i> 3	Li(H ₂ O) ₄ B(OH) ₄ ·2H ₂ O
431212	Trigonal	$P3_{2}$	Pb ₆ B ₁₂ O ₂₁ (OH) ₆
240324	Trigonal	<i>P</i> 3 ₁ 21	Co(BPO ₄ (OH) ₂)
416089	Trigonal	P3 ₁ 21	Mg(BPO ₄ (OH) ₂)
416129	Trigonal	<i>P</i> 3 ₁ 21	Ni(BPO ₄ (OH) ₂)
431536	Trigonal	P3 ₁ 21	$Ba_2(B_4O_7(OH)_2)$
240322	Trigonal	P3 ₂ 21	Mn(BPO ₄ (OH) ₂)
240323	Trigonal	P3 ₂ 21	Fe(BPO ₄ (OH) ₂)
10266	Trigonal	R32	$Na_2(B_4O_5(OH)_4) \cdot 3H_2O$
70998	Trigonal	R32	NaRb ₆ (B ₄ O ₅ (OH) ₄) ₃ (BO ₂)
70999	Trigonal	<i>R</i> 32	NaRb ₆ (B ₄ O ₅ (OH) ₄) ₃ (BO ₂)
4493	Trigonal	P31c	$Pb_{3}(OH)(B_{9}O_{16})(B(OH)_{3})$
4494	Trigonal	P31c	Ba ₃ (OH)(B ₉ O ₁₆)(B(OH) ₃)
428677	Trigonal	P31c	LiBa ₃ (OH)(B ₉ O ₁₆)(B(OH) ₄)
94525	Trigonal	<i>P</i> 31 <i>c</i>	$Pb_{3}(OH)(B_{9}O_{16})(B(OH)_{3})$
261808	Trigonal	<i>P</i> 31 <i>c</i>	$Pb_{3}(OH)(B_{9}O_{16})(B(OH)_{3})$
42341	Trigonal	R3m	$NaAl_9(BO_3)_3(Si_6O_{21})(OH)$
136829	Trigonal	R3m	$(Na_{0.479}Li_{0.024})Al_{2.976}Al_6(Si_{5.676}B_{0.324}O_{18})(BO_3)_3(OH)_3O$
136830	Trigonal	R3m	$(Na_{0.617}Li_{0.165})Al_{2\cdot835}Al_6(Si_{5\cdot718}B_{0\cdot282}O_{18})(BO_3)_3(OH)_3O$
112290	Trigonal	R3m	$(Na_{0.44}Ca_{0.56})(Mg_{1.56}Fe_{1.55}Al_{5.89})(Si_6O_{18})(BO_3)_3(OH)_3O$
112291	Trigonal	R3m	$(Na_{0\cdot095}Ca_{0\cdot905})(Mg_{2\cdot30}Fe_{0\cdot83}Al_{5\cdot86})(Si_6O_{18})(BO_3)_3(OH)_3O$
137133	Trigonal	R3m	$Na_{0.768}(Mn_{1.032}Al_{1.878}Fe_{0.09})Al_6(Si_6O_{18})(BO_3)_3(OH)_3O$
127049	Trigonal	R3m	$Na_{0\cdot824}K_{0\cdot176}Fe_3(Fe_{2\cdot397}Mg_{0\cdot681}Al_{2\cdot922})(Si_6O_{18})(BO_3)_3(OH)_3O$

ICSD code	Crystal system	Space group	Formula
27822	Trigonal	D 3 m	$Na_{0\cdot42}(Mn_{1\cdot39}Fe_{0\cdot16}Mg_{0\cdot01}Al_{1\cdot14}Fe_{0\cdot01}Li_{0\cdot28}Ti_{0\cdot01})Al_6((Si_{5\cdot99}Al_{0\cdot01})O_{18})$
57855	Ingonal	KSm	$(BO_3)_3(OH)_3((OH)_{0.65}F_{0.03}O_{0.32})$
37834	Trigonal	R3m	$Na_{0\cdot49}Mn_{0\cdot49}(Mn_{0\cdot90}Fe_{0\cdot50}Al_{1\cdot36}Fe_{0\cdot04}Li_{0\cdot17}Zn_{0\cdot04})(Al_{5\cdot91}Mn_{0\cdot09})$
57854	Ingonal	KSm	$((Si_{5\cdot75}B_{0\cdot25})O_{18})(BO_3)_3(OH)_3((OH)_{0\cdot35}F_{0\cdot17}O_{0\cdot48})$
138/178	Trigonal	R3m	$Ca_{0\cdot 589}Na_{0\cdot 354}Mg_{1\cdot 196}Fe_{0\cdot 912}Al_{0\cdot 892}(Al_5Mg)(Si_6O_{18})$
150470	Ingonal	K3m	$(BO_3)_3(OH)_3(OH)_{0.945}F_{0.055}$
112348	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot124})_3(Al_{1\cdot047})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112349	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot173})_3(Al_{1\cdot022})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112350	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot169})_3(Al_{1\cdot024})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112351	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot175})_3(Al_{1\cdot021})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112352	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot176})_3(Al_{1\cdot021})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112353	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot181})_3(Al_{1\cdot018})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112354	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot184})_3(Al_{1\cdot016})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112355	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot185})_3(Al_{1\cdot016})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112356	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot180})_3(Al_{1\cdot019})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112357	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot186})_3(Al_{1\cdot015})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112358	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot183})_3(Al_{1\cdot017})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112359	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot183})_3(Al_{1\cdot017})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112360	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot176})_3(Al_{1\cdot021})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112361	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot175})_3(Al_{1\cdot021})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112362	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot169})_3(Al_{1\cdot024})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112363	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot127})_3(Al_{1\cdot045})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112364	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot109})_3(Al_{1\cdot054})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
112365	Trigonal	R3m	$Na_{0\cdot854}(Al_{1\cdot109})_3(Al_{1\cdot054})_6Si_6B_3O_{27}(OH)_3(F_{0\cdot58}(OH)_{0\cdot42})$
143071	Trigonal	R3m	$(Na_{0\cdot 40}Ca_{0\cdot 26})(Al_{2\cdot 04}Li_{0\cdot 78}Mn_{0\cdot 18})Al_6(Si_{5\cdot 5}B_{0\cdot 5})O_{18}$
1150/1	Ingonar	11311	$(BO_3)_3(OH)_3((OH)_{0.38}F_{0.13}O_{0.49})$
120219	Trigonal	R3m	$Na_{0.781}(Fe_{0.697}Al_{0.303})_{3}(Al_{0.912}Fe_{0.088})_{6}(Si_{6}O_{18})$
120219	Ingonar	11311	(BO ₃) ₃ (OH) ₃ ((OH) _{0.591} F _{0.409})
125271	Trigonal	R3m	$Na_{0.790}Mg_{1.329}Fe_{2.025}Ca_{0.210}Al_{5\cdot646}(Si_6O_{18})(BO_3)_3(OH)_3O$
125066	Trigonal	R3m	$(Ca_{0.56}Na_{0.44})(Mg_{1.515}Fe_{1.485})Al_6(BO_3)_3(Si_6O_{18})(OH)_3(O_{0.79}F_{0.21})$
125067	Trigonal	R3m	$(Na_{0.95}Ca_{0.05})(Mg_{1.71}Fe_{1.29})Al_6(Si_6O_{18})(BO_3)_3(OH)_3O$
127050	Trigonal	R3m	$Na_{0\cdot 767}K_{0\cdot 233}Fe_3(Fe_{3\cdot 786}Mg_{0\cdot 336}Al_{1\cdot 878})(Si_6O_{18})(BO_3)_3(OH)_3O$
127051	Trigonal	R3m	$Na_{0.90}K_{0.10}Fe_{3}(Fe_{3.54}Mg_{0.402}Al_{2.058})(Si_{6}O_{18})(BO_{3})_{3}(OH)_{3}O$
127052	Trigonal	R3m	$Na_{0.85}K_{0.15}Fe_{3}(Fe_{3.41}Mg_{0.43}Al_{2.17})(Si_{6}O_{18})(BO_{3})_{3}(OH)_{3}O$
127053	Trigonal	R3m	$Na_{0.78}K_{0.22}Fe_3(Fe_{4\cdot002}Mg_{0\cdot276}Al_{1\cdot722})(Si_6O_{18})(BO_3)_3(OH)_3O$
421260	Trigonal	R3c	$Y(B_2O_3(OH))_3$
250161	Trigonal	R3c	$Ho(B_6O_9(OH)_3)$
250162	Trigonal	R3c	$Gd(B_6O_9(OH)_3)$
112337	Hexagonal	$P6_{3}$	$Ca_{3}(Si_{0\cdot 64}Al_{0\cdot 36})((B(OH)_{4})_{0\cdot 64}(CO_{3})_{1\cdot 08}(AsO_{3})_{0\cdot 28})(OH)_{6}\cdot 12H_{2}O$
50539	Hexagonal	$P6_3cm$	$Pb_5(B_3O_8(OH)_3) \cdot H_2O$
238716	Hexagonal	$P\overline{6}_{2m}$	KGd(B ₆ O ₁₀ (OH) ₂)
432932	Hexagonal	$P\overline{6}_{2m}$	$Ni_3B_{18}O_{28}(OH)_4$ ·4H ₂ O
403324	Hexagonal	<i>p</i> 62 <i>c</i>	K ₉ (B ₄ O ₅ (OH) ₄) ₃ (CO ₃)Br·7H ₂ O
403325	Hexagonal	<i>p</i> 62 <i>c</i>	K ₉ (B ₄ O ₅ (OH) ₄) ₃ (CO ₃)Cl·7H ₂ O
425207	Hexagonal	<i>p</i> 62 <i>c</i>	Li ₃ (B ₈ O ₁₂ (OH) ₃)

ICSD code	Crystal system	Space group	Formula
429622	Hexagonal	P62c	K ₉ (B ₄ O ₅ (OH) ₄) ₃ (CO ₃)(BH ₄)·7H ₂ O
14601	Hexagonal	$p\bar{6}_{2c}$	NaK ₁₅ (B ₄ O ₅ (OH) ₄) ₆ (NO ₂) ₂ (CO ₃)·7H ₂ O
56497	Cubic	$P^{\overline{4}}3m$	$Na_8(Al_6Si_6O_{24})(B(OH)_4)_2$
428956	Cubic	$F\overline{4}3c$	Na ₄ Ga ₃ B ₄ O ₁₂ (OH)

No.	ICSD code	Compounds	(A+OH)/B ratio	Anionic units	FBB units	Anionic cluster
1	100400	$(NH_4)_2(B_4O_5(OH)_4)\cdot 2H_2O$	1.5	[BO ₂ (OH)], [BO ₃ (OH)]	[B ₄ O ₅ (OH) ₄]	[B ₄ O ₅ (OH) ₄]
2	49364	$(NH_4)_2B_4O_5(OH)_4\cdot 2H_2O$	1.5	[BO ₂ (OH)], [BO ₃ (OH)]	[B ₄ O ₅ (OH) ₄]	[B ₄ O ₅ (OH) ₄]
3	49365	$(NH_4)_2B_4O_5(OH)_4\cdot 2H_2O$	1.5	[BO ₂ (OH)], [BO ₃ (OH)]	[B ₄ O ₅ (OH) ₄]	[B ₄ O ₅ (OH) ₄]
4	26380	$NH_4(B_5O_6(OH)_4)$ ·2 H_2O	1	[BO ₂ (OH)], [BO ₄]	[B ₅ O ₆ (OH) ₄]	[B ₅ O ₆ (OH) ₄]
5	260879	Na ₃ (B ₃ O ₄ (OH) ₄)	2.333	[BO ₃], [BO ₂ (OH) ₂]	[B ₃ O ₄ (OH) ₄]	$[B_3O_4(OH)_4]$
6	34648	$K_2(B_4O_5(OH)_4)\cdot 2H_2O$	1.5	[BO ₂ (OH)], [BO ₄], [BO ₃ (OH)]	[B ₄ O ₅ (OH) ₄]	[B ₄ O ₅ (OH) ₄]
7	57297	Ba(BO ₂ (OH))	2	[BO ₂ (OH)]	[BO ₂ (OH)]	[BO ₂ (OH)]
8	253012	$K_3B_3O_4(OH)_4$ ·2 H_2O	2.333	[BO ₃], [BO ₂ (OH) ₂]	[B ₃ O ₄ (OH) ₄]	$[B_3O_4(OH)_4]$
9	113334	$(NH_4)_2(B_4O_5(OH)_4) \cdot 2H_2O$	1.5	[BO ₂ (OH)], [BO ₃ (OH)]	[B ₄ O ₅ (OH) ₄]	$[B_4O_5(OH)_4]$
10	6292	$K(B_5O_6(OH)_4) \cdot 2H_2O$	1	[BO ₂ (OH)], [BO ₄]	$[B_5O_6(OH)_4]$	$[B_5O_6(OH)_4]$
11	29406	RbB5O6(OH)4·2H2O	1	[BO ₂ (OH)], [BO ₄]	$[B_5O_6(OH)_4]$	$[B_5O_6(OH)_4]$
12	90001	(NH ₄)(B ₅ O ₆ (OH) ₄) ·2H ₂ O	1	[BO ₂ (OH)], [BO ₄]	[B ₅ O ₆ (OH) ₄]	[B ₅ O ₆ (OH) ₄]
13	410811	$(NH_4)(B_5O_6(OH)_4)$ $\cdot 2H_2O$	1	[BO ₂ (OH)], [BO ₄]	[B ₅ O ₆ (OH) ₄]	[B ₅ O ₆ (OH) ₄]
14	4481	K ₃ B ₅ O ₈ (OH) ₂	1	[BO ₃], [BO ₂ (OH)], [BO ₄]	[B ₅ O ₈ (OH) ₂]	$[B_5O_8(OH)_2]$
15	20662	$Mg(B_2O(OH)_6)$	3.5	[BO(OH) ₃]	$[B_2O(OH)_6]$	$[B_2O(OH)_6]$
16	24920	$Mg(B_2O(OH)_6)$	3.5	[BO(OH) ₃]	$[B_2O(OH)_6]$	$[B_2O(OH)_6]$
17	10266	Na ₂ (B ₄ O ₅ (OH) ₄)·3H ₂ O	1.5	[BO ₂ (OH)], [BO ₃ (OH)]	[B ₄ O ₅ (OH) ₄]	[B ₄ O ₅ (OH) ₄]
18	70998	$NaRb_6(B_4O_5(OH)_4)_3$ (BO_2)	1.462	[BO ₂], [BO ₂ (OH)], [BO ₃ (OH)]	[B ₄ O ₅ (OH) ₄], [BO ₂]	[B ₄ O ₅ (OH) ₄], [BO ₂]
19	70999	$NaRb_6(B_4O_5(OH)_4)_3$ (BO ₂)	1.462	[BO ₂], [BO ₂ (OH)], [BO ₃ (OH)]	[B ₄ O ₅ (OH) ₄], [BO ₂]	[B ₄ O ₅ (OH) ₄], [BO ₂]

No.	ICSD code	Compounds	(A+OH)/B ratio	Anionic units	FBB units	Anionic chain
1	172480	Bi(B ₄ O ₆ (OH) ₂)(OH)	0.75	[BO ₃], [BO ₂ (OH)], [BO ₄]	[B ₄ O ₇ (OH) ₂]	${}^1[B_4O_6(OH)_2]_\infty$
2	28426	CaB ₃ O ₄ (OH) ₃ ·H ₂ O	1.333	[BO ₃], [BO ₃ (OH)], [BO ₂ (OH) ₂]	[B ₃ O ₅ (OH) ₃]	${}^{1}[B_{3}O_{4}(OH)_{3}]_{\infty}$
3	28427	CaB ₃ O ₄ (OH) ₃ ·H ₂ O	1.333	[BO ₃], [BO ₃ (OH)], [BO ₂ (OH) ₂]	[B ₃ O ₅ (OH) ₃]	$^{1}[B_{3}O_{4}(OH)_{3}]_{\infty}$
4	141235	NaRb ₃ B ₆ O ₉ (OH) ₃ (HCO ₃)	1.167	[BO ₂ (OH)], [BO ₄]	[B ₆ O ₁₁ (OH) ₃]	$^{1}[B_{6}O_{9}(OH)_{3}]_{\infty}$
5	262542	Ba ₃ B ₆ O ₁₁ (OH) ₂	0.833	[BO ₃], [BO ₄], [BO ₂ (OH) ₂]	$[B_6O_{13}(OH)_2]$	${}^{1}[B_{6}O_{11}(OH)_{2}]_{\infty}$
6	431106	Na(B ₅ O ₇ (OH) ₂)·H ₂ O	0.6	[BO ₃], [BO ₂ (OH)], [BO ₄]	$[B_5O_8(OH)_2]$	${}^{1}[B_{5}O_{7}(OH)_{2}]_{\infty}$
7	431536	$Ba_2(B_4O_7(OH)_2)$	1	[BO ₃], [BO ₄], [BO ₂ (OH) ₂]	$[B_4O_9(OH)_2]$	${}^{1}[B_{4}O_{7}(OH)_{2}]_{\infty}$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.	ICSD code	Compounds	(A+OH)/B ratio	Anionic units	FBB units	Anionic layered configuration
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			KCa ₄ (B ₂₂ O ₃₂)(OH) ₁₀ Cl		[BO ₃], [BO ₂ (OH)],	[B(OH) ₃],	[B(OH) ₃],
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	39637	·4H ₂ O	0.682	[B(OH) ₃], [BO ₄]	[B ₅ O ₁₀ (OH)]	² [B ₅ O ₈ (OH)]∞
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		105554	KCa ₄ (B ₂₂ O ₃₂ (OH) ₁₀ Cl)	0.602	[BO ₃], [BO ₂ (OH)],	[B(OH) ₃],	[B(OH) ₃],
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	18///6	·4H ₂ O	0.682	[B(OH) ₃], [BO ₄]	[B ₅ O ₁₀ (OH)]	² [B ₅ O ₈ (OH)]∞
3 4209^{49} $B(OH)_1, H_0O$ 0.636 $[B(OH)_1], [BO_4]$ $[B_0O_{10}(OH)]$ $2[B_3O_4(OH)]_2$ 4 134988 $Ca_8(B_5O_8(OH))_2$ (B(OH)_3) H_2O 0.636 $[BO_3], [BO_2(OH)], [BO_4], [B_1O_{23}(OH)_2]$ $2[B_1O_1(OH)_2], 2[B_1O_1(OH)_2], 2[B_1O_1(OH)_2]_2$ 5 42570 $Ba_2B_{13}O_{19}(OH)_5, 5H_2O$ 0.539 $[BO_3], [BO_2(OH)_2], [BO_4], [BO_4], [B_1O_{23}(OH)_2]$ $2[B_1O_1(OH)_4]_2$ 6 171019 $CaB_6O_{11}(OH)_4$ 0.625 $[BO_3], [BO_2(OH)_1], [BO_4], [BO_4], [B_5O_{13}(OH)_4]$ $2[B_3O_{11}(OH)_4]_2$ 7 250323 $CaB_6O_{11}(OH)_4$ 0.625 $[BO_3], [BO_2(OH)_1], [BO_4], [BO_4], [B_5O_{13}(OH)_4]$ $2[B_8O_{11}(OH)_4]_2$ 8 262502 $Ba_2(B_5O_4(OH)_2)$ 0.625 $[BO_3], [BO_2(OH)_1], [BO_4], [BO_4], [B_5O_{13}(OH)_4]$ $2[B_8O_{11}(OH)_4]_2$ 9 415082 $Ca(B_5O_{11}(OH)_4)$ 0.625 $[BO_3], [BO_2(OH)_1], [BO_4], [B_5O_{10}(OH)_1]$ $2[B_3O_{11}(OH)_4]_2$ 10 432814 $Ca_2(B_5O_8(OH)_2) \\ (B(OH)_2), H_2O$ 0.636 $[BO_1], [BO_2(OH)_1], [BO_4], [B_2O_{10}(OH)_1], [2B_1O_{10}(OH)_1]_2$ $[2B_1O_{11}(OH)_4]_2$ $[2B_1O_{11}(OH)_4]_2$ $[2B_1O_{11}(OH)_4]_2$ $[2B_1O_{11}(OH)_4]_2$ $[2B_1O_{11}(OH)_4]_2$ </td <td>2</td> <td>120510</td> <td>Ca₂(B₅O₈(OH))₂</td> <td>0.626</td> <td>[BO₃], [BO₂(OH)],</td> <td>[B(OH)₃],</td> <td>[B(OH)₃],</td>	2	120510	Ca ₂ (B ₅ O ₈ (OH)) ₂	0.626	[BO ₃], [BO ₂ (OH)],	[B(OH) ₃],	[B(OH) ₃],
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	420549	$B(OH)_3 \cdot H_2O$	0.636	[B(OH) ₃], [BO ₄]	[B ₅ O ₁₀ (OH)]	$^{2}[B_{5}O_{8}(OH)]_{\infty}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$Ca_{2}(B_{2}O_{2}(OH))_{2}$		[BO ₂] [BO ₂ (OH)]	[B(OH) ₂]	[B(OH) ₂]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	134988	$(B(OH)_3) \cdot H_2O$	0.636	$[B(OH)_3], [BO_4]$	$[B_{10}O_{20}(OH)_2]$	${}^{2}[B_{5}O_{8}(OH)]_{\infty}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$[BO_{2}]$ $[BO_{2}(OH)]$		
$\begin{array}{c c} & 1.011 & 1.012 & 1.011 & 1.0$	5	42570	Ba ₂ B ₁₂ O ₁₀ (OH) ₅ ·5H ₂ O	0.539	$[BO(OH)_2], [BO_4], [BO_4].$	[B12O25(OH)5]	${}^{2}[B_{12}O_{10}(OH)_{c}]_{c}$
$ \begin{array}{c ccccc} & 171019 & CaB_{8}O_{11}(OH)_{4} & 0.625 & [BO_{3}], [BO_{2}(OH)], \\ [BO(OH)_{2}], [BO_{4}] & [B_{8}O_{13}(OH)_{4} & ^{2}[B_{8}O_{11}(OH)_{4}]_{\infty} \\ \end{array} \\ \hline 7 & 250323 & CaB_{8}O_{11}(OH)_{4} & 0.625 & [BO_{3}], [BO_{2}(OH)], \\ [BO(OH)_{2}], [BO_{4}] & [B_{8}O_{13}(OH)_{4} & ^{2}[B_{8}O_{11}(OH)_{4}]_{\infty} \\ \end{array} \\ \hline 8 & 262502 & Ba_{2}(B_{6}O_{9}(OH)_{4}) & 1 & [BO_{3}], [BO_{4}], [BO_{4}], [BO_{4}(OH)], \\ & [BO_{2}(OH)_{2}] & [BO_{4}], [BO_{4}(OH)], \\ & [BO_{2}(OH)_{2}] & [BO_{4}], [BO_{4}], [CH)_{4} & ^{2}[B_{8}O_{11}(OH)_{4}]_{\infty} \\ \end{array} \\ \hline 9 & 415082 & Ca(B_{8}O_{11}(OH)_{4} & 0.625 & [BO_{3}], [BO_{2}(OH)], \\ & [BO_{4}], [BO_{4}], [BO_{4}] & [B_{8}O_{13}(OH)_{4} & ^{2}[B_{8}O_{11}(OH)_{4}]_{\infty} \\ \end{array} \\ \hline 10 & 432814 & Ca_{2}(B_{5}O_{8}(OH))_{2} \\ & (B(OH)_{3})^{+}H_{2}O & 0.636 & [BO_{3}], [BO_{2}(OH)], \\ & [B(OH)_{2}], [BO_{4}] & [B_{5}O_{16}(OH)] & ^{2}[B_{5}O_{8}(OH)]_{\infty} \\ \end{array} \\ \hline 11 & 4228 & Sr(B_{8}O_{11}(OH)_{4} & 0.625 & [BO_{3}], [BO_{2}(OH)], \\ & (B(OH)_{3}], [BO_{4}] & [B_{8}O_{13}(OH)_{4} & ^{2}[B_{8}O_{11}(OH)_{4}]_{\infty} \\ \hline 12 & 20074 & Sr_{2}(B_{5}O_{8}(OH))_{2} \\ & (B(OH)_{3})(H_{2}O) & 0.636 & [BO_{3}], [BO_{2}(OH)], \\ & [B(OH)_{3}], [BO_{4}] & [B_{3}O_{16}(OH)] & ^{2}[B_{5}O_{8}(OH)]_{\infty} \\ \hline 13 & 28014 & (B(OH)_{3})^{+}H_{2}O & 0.636 & [BO_{3}], [BO_{2}(OH)], \\ & (B(OH)_{3}], [BO_{4}] & B_{3}O_{10}(OH)] & ^{2}[B_{5}O_{8}(OH)]_{\infty} \\ \hline 14 & 19922 & Ba_{2}(B_{5}O_{8}(OH))_{2} \\ & (B(OH)_{3})^{+}H_{2}O & 0.636 & [BO_{3}], [BO_{2}(OH)], \\ & [B(OH)_{3}], [BO_{4}] & [B_{1}O_{13}(OH)_{3}] & [B_{1}OH)_{3}], \\ \hline 14 & 19922 & Ba_{2}(B_{5}O_{8}(OH))_{2} \\ & 0.636 & [BO_{3}], [BO_{2}(OH)], \\ & [B(OH)_{3}], [BO_{4}] & [B_{1}O_{2}(OH)] & ^{2}[B_{5}O_{8}(OH)]_{\infty} \\ \hline 15 & 95447 & Na_{2}Ba_{3}(B_{1}O_{17}(OH)_{2}) & 0.6 \\ & [BO_{3}], [BO_{2}(OH)], [BO_{4}] & [B_{1}O_{2}(OH)_{3}] & ^{2}[B_{1}O_{3}(OH)_{3}] \\ \hline 16 & 403149 & Ba_{3}(B_{1}O_{17}(OH)_{2}) & 0.5 \\ & [BO_{3}], [BO_{2}(OH)], [BO_{4}] & [B_{1}O_{2}(OH)_{3}] & ^{2}[B_{1}O_{3}(OH)_{3}] \\ \hline 15 & 95447 & Na_{2}Ba_{3}(B_{1}O_{17}(OH)_{2}) & 0.5 \\ & [BO_{$	-		13 - 19()3		[BO ₃ (OH)]	[= 13 - 25(75]	[1]30]9(011)3]@
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					[BO ₃], [BO ₂ (OH)],		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	171019	$CaB_8O_{11}(OH)_4$	0.625	[BO(OH) ₂], [BO ₄]	$[B_8O_{13}(OH)_4]$	${}^{2}[B_{8}O_{11}(OH)_{4}]_{\infty}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	250323	$C_{2}B_{2}O_{2}(OH)$	0.625	[BO ₃], [BO ₂ (OH)],	$[B_{2}O_{12}(OH)_{1}]$	21P.O. (OH) 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/	230323		0.025	[BO(OH) ₂], [BO ₄]	[1]80[3(011)4]	-[B ₈ O ₁₁ (OΠ) ₄]∞
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	262502	$Ba_2(B_6O_0(OH)_4)$	1	[BO ₃], [BO ₄], [BO ₃ (OH)]	[B ₆ O ₁₃ (OH) ₄]	${}^{2}[B_{c}O_{2}(OH)_{4}]_{-1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ũ	202002	242(2000)(011)4)	-	, [BO ₂ (OH) ₂]	[2000]3(011)4]	[D ₆ O9(O11)4]∞
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	415082	Ca(B ₈ O ₁₁ (OH) ₄)	0.625	[BO ₃], [BO ₂ (OH)],	[B ₈ O ₁₃ (OH) ₄]	${}^{2}[B_{8}O_{11}(OH)_{4}]_{\infty}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$[BO(OH)_2], [BO_4]$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	432814	$Ca_2(B_5O_8(OH))_2$	0.636	[BO ₃], [BO ₂ (OH)],	[B(OH) ₃],	[B(OH) ₃],
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	152011	$(B(OH)_3)$ ·H ₂ O	0.050	[B(OH) ₃], [BO ₄],	[B ₅ O ₁₀ (OH)]	$^2[B_5O_8(OH)]_\infty$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	4220		0.605	[BO ₃], [BO ₂ (OH)],		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	4228	$Sr(B_8O_{11}(OH)_4)$	0.625	[BO(OH) ₂], [BO ₄]	$[B_8O_{13}(OH)_4]$	${}^{2}[B_{8}O_{11}(OH)_{4}]_{\infty}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	20074	$Sr_2(B_5O_8(OH))_2$	0.636	[BO ₃],[BO ₂ (OH)],	[B(OH) ₃],	[B(OH) ₃],
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	20074	$(B(OH)_3)(H_2O)$	0.050	[B(OH) ₃], [BO ₄]	[B ₅ O ₁₀ (OH)]	$^{2}[B_{5}O_{8}(OH)]_{\infty}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	28014	$Sr_2(B_5O_8(OH))_2$	0.636	[BO ₃],[BO ₂ (OH)],	[B(OH) ₃],	[B(OH) ₃],
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	20011	$(B(OH)_3)$ ·H ₂ O	0.050	$[B(OH)_3], [BO_4]$	B ₅ O ₁₀ (OH)]	$^2[B_5O_8(OH)]_\infty$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10000	Ba ₂ (B ₅ O ₈ (OH)) ₂	0.626	[BO ₃], [BO ₂ (OH)],	[B(OH) ₃],	[B(OH) ₃],
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	19922	$(B(OH)_3)$ ·H ₂ O	0.636	[B(OH) ₃], [BO ₄]	[B ₅ O ₁₀ (OH)]	$^{2}[B_{5}O_{8}(OH)]_{\infty}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	95447	Na ₂ Ba ₂ (B ₁₀ O ₁₇ (OH) ₂)	0.6	[BO ₃], [BO ₂ (OH)], [BO ₄]	[B ₁₀ O ₂₁ (OH) ₂]	${}^{2}[B_{10}O_{17}(OH)_{2}]_{\infty}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	403149	Ba ₃ (B ₁₀ O ₁₇ (OH) ₂)	0.5	[BO ₃], [BO ₂ (OH)], [BO ₄]	[B ₁₀ O ₂₃ (OH) ₂]	${}^{2}[B_{10}O_{17}(OH)_{2}]_{\infty}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	154523	Na ₄ (B ₁₀ O ₁₆ (OH) ₂)·4H ₂ O	0.6	[BO ₃], [BO ₂ (OH)], [BO ₄]	[B ₅ O ₁₀ (OH)]	${}^{2}[B_{5}O_{8}(OH)]_{\infty}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	20.42	Sr ₂ (B ₅ O ₈ (OH)) ₂	0.626	[BO ₃], [BO ₂ (OH)],	[B(OH) ₃],	[B(OH) ₃],
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	2942	$(B(OH)_3)$ ·H ₂ O	0.636	[B(OH) ₃], [BO ₄]	[B ₅ O ₁₀ (OH)]	$^{2}[B_{5}O_{8}(OH)]_{\infty}$
$Ba_{2}B_{10}O_{16}(OH)_{2}(H_{3}BO_{3}) \qquad [BO_{3}], [BO_{2}(OH)], \qquad [B(OH)_{3}], \qquad [B(OH)_{3}],$	19	262913	La(B ₄ O ₆ (OH) ₂ Cl)	0.75	[BO ₃], [BO ₃ (OH)]	[B ₄ O ₁₀ (OH) ₂]	$^2[B_4O_6(OH)_2]_\infty$
20 124040 0.510			$Ba_2B_{10}O_{14}(OH)_2(H_2BO_2)$		[BO ₂]. [BO ₂ (OH)]	[B(OH) ₂]	[B(OH) ₂]
H_2O [B(OH) ₃], [BO ₄] [B ₅ O ₁₀ (OH)] ² [B ₅ O ₈ (OH)] _∞	20	124040	·H ₂ O	0.636	$[B(OH)_3], [BO_4]$	[B ₅ O ₁₀ (OH)]	${}^{2}[B_{5}O_{8}(OH)]_{\infty}$

Table S4 The basic information of hydroxyborates with 2D anionic layered configurations.

No.	ICSD code	Compounds	(A+OH)/B ratio	Anionic units	FBB units	Anionic layered configuration
21	13423	Li ₂ CsB ₇ O ₁₀ (OH) ₄	1	[BO ₃], [BO ₄], [BO ₂ (OH) ₂]	[B ₇ O ₁₂ (OH) ₄]	${}^{2}[B_{7}O_{10}(OH)_{4}]_{\infty}$
22	250215	CaLi ₄ (B ₅ O ₈ (OH) ₂) ₂	0.9	[BO ₃], [BO ₄], [BO ₃ (OH)]	$[B_5O_{10}(OH)_2]$	$^2[B_5O_8(OH)_2]_\infty$
23	36431	Li ₃ (B ₅ O ₈ (OH) ₂)	1	[BO ₃], [BO ₄], [BO ₃ (OH)]	$[B_5O_{10}(OH)_2]$	$^{2}[B_{5}O_{8}(OH)_{2}]_{\infty}$
24	22192	CaB ₃ O ₅ (OH)	0.667	[BO ₃], [BO ₄], [BO ₃ (OH)]	[B ₃ O ₇ (OH)]	$^{2}[B_{3}O_{5}(OH)]_{\infty}$
25	23880	CaB ₃ O ₅ (OH)	0.667	[BO ₃], [BO ₄], [BO ₃ (OH)]	[B ₃ O ₇ (OH)]	$^{2}[B_{3}O_{5}(OH)]_{\infty}$
26	1973	$(Na(H_2O))_2(B_5O_8(OH))$	0.6	[BO ₃], [BO ₂ (OH)], [BO ₄]	[B ₅ O ₁₀ (OH)]	$^{2}[B_{5}O_{8}(OH)]_{\infty}$
27	249876	$Na_2B_5O_8(OH) \cdot 2H_2O$	0.6	[BO ₃], [BO ₂ (OH)], [BO ₄]	[B ₅ O ₁₀ (OH)]	$^{2}[B_{5}O_{8}(OH)]_{\infty}$
28	252381	CaB ₃ O ₅ (OH)	0.667	[BO ₃], [BO ₄], [BO ₃ (OH)]	[B ₃ O ₉ (OH)]	$^{2}[B_{3}O_{5}(OH)]_{\infty}$
29	425207	Li ₃ (B ₈ O ₁₂ (OH) ₃)	0.75	[BO ₂ (OH)], [BO ₄]	[B ₈ O ₁₈ (OH) ₃]	${}^{2}[B_{8}O_{12}(OH)_{3}]_{\infty}$

 Table S5 The basic information of hydroxyborates with 3D anionic frameworks.

No	ICSD code	Compounds	(A+OH)/B	(A+OH)/B Anionic units		Anionic
110.	ICSD coue	Compounds	ratio	Amonic units	TDD units	framework
1	76888	Ca ₉ B ₂₆ O ₃₄ (OH) ₂₄ Cl ₄	1 260	[BO ₃], [BO ₂ (OH)], [BO ₄],		$^{3}[B_{26}O_{34}(OH)_{24}]$
1	70888	·13H ₂ O	1.209	[BO ₂ (OH) ₂], [BO ₃ (OH)]	$[D_{26}O_{47}(OII)_2]$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2	20155	$Li_3(B_5O_8(OH)_2)$	1	[BO ₃], [BO ₄], [BO ₃ (OH)]	$[B_5O_{10}(OH)_2]$	${}^3[\mathrm{B}_5\mathrm{O}_8(\mathrm{OH})_2]_\infty$
3	20173	$Li_{3}(B_{5}O_{8}(OH)_{2})$	1	[BO ₃], [BO ₄], [BO ₃ (OH)]	$[B_5O_{10}(OH)_2]$	${}^3[B_5O_8(OH)_2]_{\infty}$
4	418166	$Li_3(B_5O_8(OH)_2)$	1	[BO ₃], [BO ₄], [BO ₃ (OH)]	$[B_5O_{10}(OH)_2]$	${}^3[B_5O_8(OH)_2]_\infty$
5	421260	$Y(B_2O_3(OH))_3$	0.667	[BO ₃], [BO ₃ (OH)]	[B ₂ O ₅ (OH)]	${}^{3}[B_{2}O_{3}(OH)]_{\infty}$

Table S6 The ICSD collection numbers, chemical formula, space group, GGA and HSE06 band gaps, second harmonic generation (SHG) coefficients, and birefringence Δn at 1064 nm of 60 screening hydroxyborates crystals. Note that SHG coefficients, and birefringence Δn have been corrected with scissors operators.

No ICSD			Space	Band gap (eV)			Δn at
N0.	code	Compounds	group	GGA	HSE06	SHG coefficients (pm/v)	1064 nm
1	39637	KCa4(B22O32)(OH)10Cl·4H2O	<i>P</i> 1	5.49	7.02	$d_{11} = 0.54, d_{12} = -0.57$ $d_{16} = 0.48, d_{22} = -0.56$	0.064
2	187776	KCa4(B22O32(OH)10Cl)·4H2O	<i>P</i> 1	5.48	7.08	$d_{11} = -0.55, d_{12} = 0.59$ $d_{16} = 0.50, d_{22} = -0.55$	0.065
3	172480	Bi(B ₄ O ₆ (OH) ₂)(OH)	<i>P</i> 1	4.69	5.59	0	0.110
						$d_{11} = -0.09, d_{15} = 0.41,$	
4	76888	$Ca_{9}B_{26}O_{34}(OH)_{24}Cl_{4}{\cdot}13H_{2}O$	<i>P</i> 1	5.36	6.65	$d_{23} = 0.12, d_{24} = -0.41, d_{33}$ $= 0.09$	0.031
5	420549	Ca ₂ (B ₅ O ₈ (OH)) ₂ B(OH) ₃ ·H ₂ O	<i>P</i> 1	5.52	7.08	$d_{11} = -0.59, d_{12} = 0.67,$ $d_{13} = 0.12, d_{14} = -0.14,$ $d_{16} = -0.56, d_{22} = 0.51,$ $d_{24} = -0.17, d_{33} = 0.10$	0.060
6	134988	$Ca_2(B_5O_8(OH))_2(B(OH)_3)\cdot H_2O$	<i>P</i> 1	5.90	7.38	$d_{11} = 0.66, d_{12} = -0.67,$ $d_{16} = 0.60, d_{22} = -0.55$	0.071
7	42570	$Ba_{2}B_{13}O_{19}(OH)_{5}$.5H2O	<i>P</i> 1	5.15	6.58	$d_{16} = -0.29, d_{22} = -0.49,$ $d_{23} = 0.65$	0.035
8	28426	CaB ₃ O ₄ (OH) ₃ ·H ₂ O	$P2_1$	5.59	7.28	$d_{11} = 0.13$	0.011
9	28427	$Ca(B_3O_4(OH)_3) \cdot H_2O$	$P2_1$	5.67	7.20	$d_{22} = 0.15, d_{23} = -0.05$	0.028
10	171019	$CaB_8O_{11}(OH)_4$	$P2_1$	5.56	6.71	$d_{22} = 0.65, d_{23} = -0.66$	0.091
11	250323	CaB ₈ O ₁₁ (OH) ₄	$P2_{1}$	5.59	6.81	$d_{14} = -0.07, d_{16} = 0.10,$ $d_{22} = 0.62, d_{23} = -0.64$	0.061
12	262502	$Ba_2(B_6O_9(OH)_4)$	$P2_1$	5.22	7.14	$d_{16} = -0.43, d_{22} = 1.07$	0.037
13	415082	Ca(B ₈ O ₁₁ (OH) ₄)	<i>P</i> 2 ₁	5.58	6.80	$d_{14} = -0.07, d_{16} = 0.12,$ $d_{22} = 0.63, d_{23} = -0.64$	0.091
14	432814	$Ca_2(B_5O_8(OH))_2(B(OH)_3)\cdot H_2O$	<i>P</i> 2 ₁	5.89	7.54	$d_{16} = -0.06, d_{22} = 0.13,$ $d_{23} = -0.08$	0.076
15	4228	Sr(B ₈ O ₁₁ (OH) ₄)	<i>P</i> 2 ₁	5.06	6.45	$d_{16} = -0.88, d_{22} = 0.57, \\ d_{23} = 0.47$	0.076
16	20074	Sr ₂ (B ₅ O ₈ (OH)) ₂ (B(OH) ₃)·H ₂ O	$P2_1$	5.85	7.36	$d_{22} = 0.08, d_{23} = -0.07$	0.040
17	28014	$Sr_2(B_5O_8(OH))_2(B(OH)_3)\cdot H_2O$	$P2_1$	5.35	6.77	$d_{22} = 0.21, d_{23} = -0.03$	0.050
18	100400	$(NH_4)_2(B_4O_5(OH)_4) \cdot 2H_2O$	<i>P</i> 2 ₁	4.97	6.30	$d_{14} = 0.18, d_{16} = 0.32,$ $d_{22} = -0.62, d_{23} = 0.25$	0.014
19	49364	$(NH_4)_2B_4O_5(OH)_4{\cdot}2H_2O$	<i>P</i> 2 ₁	5.18	6.68	$d_{14} = -0.20, d_{16} = -0.37,$ $d_{22} = 0.80, d_{23} = -0.42$	0.016
20	49365	$(NH_4)_2B_4O_5(OH)_4\cdot 2H_2O$	<i>P</i> 2 ₁	5.17	6.47	$d_{14} = -0.10, d_{16} = -0.24,$ $d_{22} = 0.55, d_{23} = -0.28$	0.041
21	19922	$Ba_2(B_5O_8(OH))_2(B(OH)_3)\cdot H_2O$	<i>P</i> 2 ₁	5.83	6.76	$d_{16} = -0.07, d_{22} = -0.16,$ $d_{23} = 0.10$	0.070
22	141235	NaRb ₃ B ₆ O ₉ (OH) ₃ (HCO ₃)	<i>P</i> 2 ₁	4.19	5.40	$d_{14} = 0.08, d_{16} = 0.06,$ $d_{22} = 0.11, d_{23} = 0.16$	0.017

N	ICED	Common la	Space	Band g	gap (eV)		Δn at
N0.	code	Compounds	group GGA H		HSE06	SE06	
23	95447	Na ₂ Ba ₂ (B ₁₀ O ₁₇ (OH) ₂)	<i>C</i> 2	4.70	6.12	$d_{16} = 0.38, d_{22} = -1.08$	0.027
24	403149	Ba ₃ (B ₁₀ O ₁₇ (OH) ₂)	<i>C</i> 2	4.62	5.95	$d_{22} = 0.33, d_{23} = -0.18$	0.033
25	262542	Ba ₃ B ₆ O ₁₁ (OH) ₂	Pc	4.76	6.12	$d_{11} = -0.67, d_{33} = 0.33$	0.010
						$d_{11} = 0.65, d_{12} = -0.25,$	
26	154523	$Na_4(B_{10}O_{16}(OH)_2) \cdot 4H_2O$	Pc	4.79	6.42	$d_{13} = -0.38, d_{15} = -0.08,$	0.030
						$d_{33} = 0.21$	
						$d_{11} = 0.29, d_{12} = -0.39,$	
27	26380	NH ₄ (B ₅ O ₆ (OH) ₄)·2H ₂ O	Pc	4.98	6.47	$d_{13} = 0.06, d_{15} = 0.10,$	0.050
						$d_{33} = 0.07$	
20	20.42		C	5.01	7.40	$d_{11} = 0.07, d_{13} = 0.06,$	0.005
28	2942	$Sr_2(B_5O_8(OH))_2(B(OH)_3) \cdot H_2O$	Cc	5.91	7.49	$d_{24} = -0.08, d_{33} = 0.12$	0.005
29	260879	Na ₃ (B ₃ O ₄ (OH) ₄)	Сс	4.64	5.92	$d_{15} = 0.26, d_{24} = -0.34$	0.037
						$d_{11} = -0.79, d_{12} = 0.77,$	
30	262913	La(B ₄ O ₆ (OH) ₂ Cl)	Сс	6.17	7.14	$d_{13} = 0.34, d_{15} = -0.38,$	0.030
						$d_{24} = -0.39, d_{33} = 0.93$	
31	124040	$Ba_2B_{10}O_{16}(OH)_2(H_3BO_3)\cdot H_2O$	Сс	5.48	7.29	$d_{24} = 0.10, d33 = -0.11$	0.069
32	34648	$K_2(B_4O_5(OH)_4) \cdot 2H_2O$	$P2_{1}2_{1}2_{1}$	5.12	6.67	$d_{14} = -0.13$	0.008
33	57297	Ba(BO ₂ (OH))	$P2_{1}2_{1}2_{1}$	4.10	5.88	$d_{14} = 0.07$	0.082
34	13423	$Li_2CsB_7O_{10}(OH)_4$	C222	5.20	7.26	$d_{14} = 0.70$	0.023
35	431106	$Na(B_5O_7(OH)_2) \cdot H_2O$	$Pca2_1$	5.79	7.29	$d_{24} = -0.14, d_{33} = -0.09$	0.059
36	250215	CaLi ₄ (B ₅ O ₈ (OH) ₂) ₂	Pnc2	5.08	6.75	$d_{24} = -0.11, d_{33} = 0.29$	0.033
37	36431	$Li_3(B_5O_8(OH)_2)$	Pnc2	5.60	6.26	$d_{24} = -0.05$	0.037
38	22102	$C_{2}B_{2}O_{2}(OH)$	$P_{ma}\gamma$	5 50	636	$d_{15} = -0.65, d_{24} = 0.48,$	0.043
50	22192	CaD ₃ O ₅ (OII)	$I n u z_1$	5.50	0.50	$d_{33} = 0.82$	0.045
39	23880	$C_{2}B_{2}O_{2}(OH)$	Pna?	5 50	6.96	$d_{15} = 0.41, d_{24} = -0.57,$	0.040
57	25000	000303(011)	1 ////21	5.50	0.90	$d_{33} = 0.72$	0.010
40	1973	$(Na(H_2O))_2(B_2O_2(OH))$	Pna21	5.00	6.47	$d_{15} = 0.34, d_{24} = 0.33, $	0.023
	1970		11	2.00	0117	$d_{33} = -0.68$	0.020
41	249876	Na ₂ B ₅ O ₈ (OH)·2H ₂ O	$Pna2_1$	5.00	6.62	$d_{15} = -0.35, d_{24} = -0.34,$	0.023
		2 5 6() 2				$d_{33} = 0.70$	
42	252381	CaB ₃ O ₅ (OH)	$Pna2_1$	5.74	7.15	$d_{15} = -0.50, d_{24} = 0.70,$	0.037
						$d_{33} = -0.77$	
43	253012	$K_3B_3O_4(OH)_4$ ·2H ₂ O	$Cmc2_1$	4.45	5.77	$a_{15} = 0.01, a_{24} = -0.39,$ $a_{22} = 0.33$	0.036
						$d_{15} = 0.61$ $d_{24} = -0.20$	
44	113334	$(NH_4)_2(B_4O_5(OH)_4)\cdot 2H_2O$	$Cmc2_1$	5.19	6.71	$d_{33} = -0.50$	0.016
45	(202		11-2	5 57	7.02	$d_{15} = 0.116, d_{24} = -0.085,$	0.050
43	0292	$K(B_5O_6(OH)_4) \cdot 2H_2O$	ADaZ	5.57	7.02	$d_{33} = 0.082$	0.030
16	20406	PhB-O-(OH)-2H-O	1ha?	5 50	7 22	$d_{15} = 0.08, d_{24} = -0.08, $	0.050
70	27400	100506(011)4 21120	AUU2	5.50	1.22	$d_{33} = 0.07$	0.050
	00000				<i>c</i> = -	$d_{15} = -0.18, d_{24} = 0.15,$	0.017
47	90001	$(NH_4)(B_5O_6(OH)_4)\cdot 2H_2O$	Aba2	5.58	6.91	$d_{33} = 0.26$	0.049
46 47	29406 90001	$RbB_5O_6(OH)_4 \cdot 2H_2O$ $(NH_4)(B_5O_6(OH)_4) \cdot 2H_2O$	Aba2 Aba2	5.50 5.58	7.22 6.91	$d_{15} = 0.08, d_{24} = -0.08,$ $d_{33} = 0.07$ $d_{15} = -0.18, d_{24} = 0.15,$ $d_{33} = 0.26$	0.050 0.049

No.	ICSD	Compounds	Space	Band g	gap (eV)	SHG coefficients (pm/V)	Δn at
	code		group	GGA	HSE06		1064 nm
48	410811	(NH ₄)(B ₅ O ₆ (OH) ₄)·2H ₂ O	Aba2	5.59	6.88	$d_{15} = -0.17, d_{24} = 0.13,$ $d_{33} = 0.26$	0.049
49	4481	$K_3B_5O_8(OH)_2$	Fdd2	4.84	6.26	$d_{15} = 0.21, d_{24} = 0.26$	0.042
50	20662	$Mg(B_2O(OH)_6)$	$P4_2$	5.44	7.15	0	0.004
51	24920	$Mg(B_2O(OH)_6)$	$P4_2$	4.30	5.86	$d_{33} = -0.39$	0.002
52	20155	Li ₃ (B ₅ O ₈ (OH) ₂)	P41212	6.37	7.82	0	0.004
53	20173	Li ₃ (B ₅ O ₈ (OH) ₂)	P41212	5.97	7.53	0	0.004
54	418166	Li ₃ (B ₅ O ₈ (OH) ₂)	P4 ₃ 2 ₁ 2	5.96	7.81	0	0.004
55	431536	$Ba_2(B_4O_7(OH)_2)$	<i>P</i> 3 ₁ 21	4.13	5.15	$d_{11} = 0.57, d_{12} = -0.57$	0.014
56	10266	$Na_2(B_4O_5(OH)_4)\cdot 3H_2O$	<i>R</i> 32	5.23	6.60	$d_{11} = 0.10, d_{12} = -0.10$	0.007
57	70998	$NaRb_6(B_4O_5(OH)_4)_3(BO_2)$	<i>R</i> 32	4.75	5.83	$d_{11} = 0.02, d_{12} = -0.02$	0.010
58	70999	$NaRb_6(B_4O_5(OH)_4)_3(BO_2)$	<i>R</i> 32	4.73	5.82	$d_{11} = 0.09, d_{12} = -0.09$	0.010
59	421260	Y(B ₂ O ₃ (OH)) ₃	R3c	6.25	7.60	$d_{21} = -0.78, d_{22} = 0.78,$ $d_{15} = 0.20, d_{24} = 0.20$	0.037
60	425207	Li ₃ (B ₈ O ₁₂ (OH) ₃)	<i>р</i> б2 <i>с</i>	5.72	6.84	$d_{16} = 0.20, d_{22} = -0.20$	0.036

Table S7 Calculated band gaps (E_g) by hybrid HSE06, the maximum SHG coefficients (d_{ij}), birefringence at 1064 nm (Δn), UV cutoff wavelengths (λ_{cutoff}), shortest phase-matching wavelengths (λ_{PM}), dimensionality of B–O/OH anionic framework, and (A + OH)/B ratio of screened hydroxyborate crystals.

No.	ICSD code	Compounds	Space group	E _g (eV)	d _{ij} (pm/V)	Δn	λ _{cutoff} (nm)	λ _{PM} (nm)	Dimmension / Ration
1	42570	$Ba_2B_{13}O_{19}(OH)_5 \cdot 5H_2O$	<i>P</i> 1	6.58	$d_{23} = 0.65$	0.04	189	298	2/0.539
la ¹			<i>P</i> 1	> 6.2	$d_{ ext{} \approx$ $1.0 imes ext{KDP}$		<200		
1b1			<i>P</i> 1	5.41 GGA	$d_{23} = 0.87$	0.042	230	270	
2	171019	CaB ₈ O ₁₁ (OH) ₄	<i>P</i> 2 ₁	6.71	$d_{23} = -0.66$	0.091	185	199	2/0.625
2a ²			<i>P</i> 2 ₁	> 6.3	$d_{< powder} \approx$ 1.4 × KDP		<200		
2b ²			<i>P</i> 2 ₁	7.43 PBE0	$d_{23} = -0.41$	0.093	165	174	
3	4228	Sr(B ₈ O ₁₁ (OH) ₄)	<i>P</i> 2 ₁	6.45	$d_{16} = -0.88$	0.076	193	211	2/0.625
3a ²			$P2_{1}$	>6.30	$d_{<_{powder}>} \approx$ 1.4 × KDP	0.109	<200		
3b ²			<i>P</i> 2 ₁	7.02 PBE0	$d_{16} = 0.39$	0.087	176	185	
4	13423	$Li_2CsB_7O_{10}(OH)_4$	C222	7.26	$d_{14} = 0.70$	0.023	171	321	2/1
4a ³			C222	6.35	$d_{< m powder>} \approx$ 2.5 × KDP		196		
4b ³			C222	4.56 GGA	$d_{14} = -0.76$		273		
5	249876	Na ₂ B ₅ O ₈ (OH)·2H ₂ O	$Pna2_1$	6.62	$d_{33} = 0.70$	0.023	188	348	2/0.6
5a ⁴			$Pna2_1$	> 6.5	$d_{< m powder>} pprox$ 0.5 imes m KDP		<190		
6	253012	$K_3B_3O_4(OH)_4 \cdot 2H_2O$	$Cmc2_1$	5.77	$d_{24} = -0.39$	0.036	216	295	0/2.333
6a ⁵			$Cmc2_1$	6.1	$d_{ ext{} pprox$ $0.8 imes ext{KDP}$		204		
6b ⁵			$Cmc2_1$	4.8 GGA	$d_{24} = 0.37$		256		

^a Experimentally measured data in references. ^b Theoretically calculated data in references.

Table S8 Predicted band gaps (E_g) by hybrid HSE06, largest SHG coefficients (d_{ij}), birefringence at 1064 nm (Δn), UV cutoff wavelengths (λ_{cutoff}), shortest phase-matching wavelengths (λ_{PM}), dimensionality of B–O/OH anionic framework, and (A + OH)/B ratio of screened hydroxyborate crystals.

No.	ICSD code	Compounds	Space group	E _g (eV)	d _{ij} (pm/V)	Δn	λ _{cutoff} (nm)	λ _{PM} (nm)	Dimmension / Ration
1	187776	KCa4(B22O32)(OH)10Cl·4H2O	<i>P</i> 1	7.08	$d_{12} = 0.59$	0.065	176	235	2/0.682
2	76888	$Ca_9B_{26}O_{34}(OH)_{24}Cl_4 \cdot 13H_2O$	<i>P</i> 1	6.65	$d_{24} = -0.41$	0.031	187	336	3/1.269
3	95447	Na ₂ Ba ₂ (B ₁₀ O ₁₇ (OH) ₂)	<i>C</i> 2	6.12	$d_{22} = -1.08$	0.027	203	368	2/0.6
4	154523	$Na_4(B_{10}O_{16}(OH)_2) \cdot 4H_2O$	Рс	6.42	$d_{11} = 0.65$	0.03	194	318	2/0.6
5	1973	(Na(H ₂ O)) ₂ (B ₅ O ₈ (OH))	$Pna2_1$	6.47	$d_{33} = -0.68$	0.023	192	346	2/0.6
6	134988	$Ca_2(B_5O_8(OH))_2B(OH)_3\cdot H_2O$	<i>P</i> 1	7.38	$d_{12} = -0.67$	0.071	170	229	2/0.636
6a ⁶			<i>P</i> 1	>5.75	$d_{< m powder>} \approx$ 1.8 × KDP		<216		
7	262502	Ba ₂ (B ₆ O ₉ (OH) ₄)	<i>P</i> 2 ₁	7.14	$d_{22} = 1.07$	0.037	174	302	2/1
7a ⁷			<i>P</i> 2 ₁	>6.5	$d_{< powder>} \approx$ 3 × KDP		<190		
8	26380	NH ₄ (B ₅ O ₆ (OH) ₄)·2H ₂ O	Рс	6.47	$d_{12} = -0.39$	0.05	192	240	0/1
8a ⁸			Рс	6.91		0.058	≈180		
9	252381	CaB ₃ O ₅ (OH)	$Pna2_1$	7.15	$d_{33} = -0.77$	0.037	174	327	2/0.667
9a ⁹			$Pna2_1$		$d_{<_{powder}>} \approx$ 1 × KDP				

^a Experimentally measured data in references.

No.	ICSD code	Compounds	Space group	Dimension	Number of [BO ₃] & [B(OH) ₃] & [BO ₂ (OH)] in cell	Cell volume (Å ³)	Birefringence at 1064 nm (cal.)	Density of [BO ₃] & [B(OH) ₃] & [BO ₂ (OH)] groups(Å ⁻³)
		$Ca_2(B_5O_8$						
1	420549	$(OH))_2B(OH)_3$	<i>P</i> 1	2D	6.5	386.3	0.06	0.0168
		·H ₂ O-I						
		$Ca_2(B_5O_8)$						
2	134988	$(OH))_2(B(OH)_3)$	P1	2D	7	385.7	0.071	0.0181
		·H ₂ O-II						
•	422014	$Ca_2(B_5O_8)$	D2	25	14	772.0	0.076	0.0101
3	432814	$(OH))_2(B(OH)_3)$	$P2_1$	2D	14	773.2	0.076	0.0181
		H_2O-III						
Λ	20074	$SI_2(B_5O_8)$	P2	2D	13	802.5	0.040	0.0162
-	20074	·H ₂ O-I	1 21	20	15	002.5	0.040	0.0102
		Sr ₂ (B ₆ O ₈						
5	28014	$(OH))_{2}(B(OH)_{3})$	$P2_1$	2D	13	802.5	0.050	0.0162
-		·H ₂ O-II	1					
		$Sr_2(B_5O_8)$						
6	2942	(OH)) ₂ (B(OH) ₃)	Cc	2D	18	1627.7	0.005	0.0111
		·H ₂ O-III						
		$Ba_2(B_5O_8$						
7	19922	(OH)) ₂ (B(OH) ₃)	$P2_1$	2D	14	857.1	0.070	0.0163
		·H ₂ O-I						
		$Ba_2B_{10}O_{16}$						
8	124040	$(OH)_2(H_3BO_3)$	Сс	2D	30	1717.0	0.069	0.0174
		·H ₂ O-II						

Table S9 The investigation of ratio (A + OH)/B = 0.636, dimensionality of B–O/OH anionic framework, birefringence at 1064 nm (cal.), and [BO₃] & [B(OH)₃] & [BO₂(OH)] density among hydroxyborates involving the screened compounds.

Table S10 Bonding electron difference ($\Delta \rho$) and contribution percent *w* (%) of different units in KCa₄(B₂₂O₃₂(OH)₁₀Cl)·4H₂O calculated by the REDA model.

Compounds	units	$\Delta oldsymbol{ ho}$	w (%)
	[BO ₃]	0.0106	52.46
	[BO ₂ (OH)]	0.0054	26.55
	[B(OH) ₃]	0.0029	14.28
KCa4(B22O32(OH)10Cl)·4H2O	$[BO_4]$	0.0008	4.04
	[KO ₄]	0.0001	0.73
	[CaO ₉]	0.0003	1.45
	[CaO ₈ Cl]	0.0001	0.49

Figure S1. (a) Band structures by the HSE06 functional. (b) Total and partial density of states (PDOS) and band-resolved NLO coefficients. (c) SHG-weighted density of occupied and unoccupied states in virtual-electron (VE) progress of $KCa_4(B_{22}O_{32}(OH)_{10}Cl) \cdot 4H_2O$. Here, $\chi_{122} = 2d_{12}$.

Notes and references

- 1 K. Liu, J. Han, F. Li, C. Jin, Z. Yang, M. Mutailipu and S. Pan, Ba₂B₁₃O₁₉(OH)₅·5H₂O: A promising nonlinear optical material with a unique ²[B₁₃O₁₉(OH)₅]_∞ two-dimensional layer, J. Alloys Compd., 2022, **897**, 163194.
- 2 P. Gong, L. Kang and Z. Lin, Realizing deep-ultraviolet second harmonic generation by first-principles-guided materials exploration in hydroxyborates, J. Am. Chem. Soc., 2020, **142**, 15157–15163.
- 3 J.-H. Huang, C.-C. Jin, P.-L. Xu, P. Gong, Z. Lin, J.-W. Cheng and G.-Y. Yang, Li₂CsB₇O₁₀(OH)₄: A deep-ultraviolet nonlinearoptical mixed-alkaline borate constructed by unusual heptaborate anions, Inorg. Chem., 2019, **58**, 1755–1758.
- 4 Y. Wang, S. Pan, X. Tian, Z. Zhou, G. Liu, J. Wang and D. Jia, Synthesis, structure, and properties of the noncentrosymmetric hydrated borate Na₂B₃O₈(OH) ·2H₂O, Inorg. Chem., 2009, **48**, 7800–7804.
- 5 Q. Liu, X. Zhang, Z. Yang, F. Zhang, L. Liu, J. Han, Z. Li and S. Pan, K₃B₃O₄(OH)₄·2H₂O: A UV nonlinear optical crystal with isolated [B₃O₄(OH)₄]³⁻ anion groups, Inorg. Chem., 2016, 55, 8744–8749.
- 6 Q.-M. Qiu, X.-Y. Li, C.-A. Chen, K.-N. Sun and G.-Y. Yang, Polar polymorphism: β-Ca₂[B₅O₈(OH)]₂[B(OH)₃]·H₂O-synthesis, structure and nonlinear optical property, J. Solid State Chem., 2021, **299**, 122193.
- 7 L. Wang, S. Pan, L. Chang, J. Hu and H. Yu, UV nonlinear optical crystal Ba₂[B₆O₉(OH)₄] featuring unique chiral layers with a new B₁₈O₄₂ circle based on BO₃ and BO₄ units, Inorg. Chem., 2012, **51**, 1852–1858.
- 8 P. Becker, P. Held and L. Bohatý, Crystal growth and optical properties of the polar hydrated pentaborates Rb[B₅O₆(OH)₄]·2H₂O and NH₄[B₅O₆(OH)₄]·2H₂O and structure redetermination of the ammonium compound, Cryst. Res. Technol., 2000, **35**, 1251–1262.
- 9 N. A. Yamnova, S. M. Aksenov, S. Y. Stefanovich, A. S. Volkov and O. V. Dimitrova, Synthesis, crystal structure refinement, and nonlinear-optical properties of CaB₃O₅(OH): Comparative crystal chemistry of calcium triborates, Crystallogr. Rep., 2015, 60, 649– 655.