Supporting Information

Large Optical Anisotropy in Noncentrosymmetric Phosphate with

Pseudo 2D Intercalated Layer

Qiao Xia,[‡]^a Xingxing Jiang,[‡]^b Lu Qi,[‡]^a Chao Wu,^{*}^a Zheshuai Lin,^b Zhipeng Huang,^a Mark G. Humphrey,^c Kazuyuki Tatsumi,^{a,d} and Chi Zhang^{*}^a

^a China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China

^b Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^c Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia

^d Department of Chemistry, Graduate School of Science and Research Center for Materials Science, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya 464-8602, Japan

⁺ These authors contributed equally to this work

Table of Contents

Table S1. Selected bond distances (Å) and angles (°) for $(C_4H_7N_2)(H_2PO_4)$ 1
Table S2. Selected bond distances (Å) and angles (°) for $(C_3H_5N_2)(H_2PO_4)$ 2
Table S3. Atomic Coordinates (× 10^4) and Equivalent Isotropic Displacement Parameters (Å ² × 10^3) for (C ₄ H ₇ N ₂)(H ₂ PO ₄) and (C ₃ H ₅ N ₂)(H ₂ PO ₄). U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor
Table S4. Hydrogen-bonding interactions for $(C_4H_7N_2)(H_2PO_4)$ and $(C_3H_5N_2)(H_2PO_4)$ 4
Table S5. π - π stacking interactions in (C ₄ H ₇ N ₂)(H ₂ PO ₄) and (C ₃ H ₅ N ₂)(H ₂ PO ₄) 5
Table S6. Optical properties for selected phase-matching UV NLO phosphates 6
Table S7. The linear and nonlinear optical properties of $(C_3H_5N_2)(H_2PO_4)$ were calculated by real-space atom cutting method
Figure S1. Unpolished photos of $(C_4H_7N_2)(H_2PO_4)$ crystal (top) and $(C_3H_5N_2)(H_2PO_4)$ crystal (bottom)
Figure S2. Simulated and experimental powder X-ray diffraction patterns of $(C_4H_7N_2)(H_2PO_4)$ (a) and $(C_3H_5N_2)(H_2PO_4)$ (b)
Figure S3. IR spectra of $(C_4H_7N_2)(H_2PO_4)$ (a) and $(C_3H_5N_2)(H_2PO_4)$ (b) 10
Figure S4. UV–Vis–NIR diffuse reflectance spectra of compound $(C_4H_7N_2)(H_2PO_4)$ (a) and $(C_3H_5N_2)(H_2PO_4)$ (b). The experimental optical band gaps are calculated by the Kubelka-Munk formula, $F(R) = (1 - R)^2/(2R)$, where R is the reflectance
Figure S5. Thermogravimetry (TG) curve of $(C_4H_7N_2)(H_2PO_4)$ (a) and $(C_3H_5N_2)(H_2PO_4)$ (b) under a N_2 atmosphere
Figure S6. (a) Phase-matching curves of $(C_3H_5N_2)(H_2PO_4)$ with 1064 nm laser radiation. (b) Oscilloscope traces of the SHG signals for powders of $(C_3H_5N_2)(H_2PO_4)$ (105–150 μ m) with 1064 nm laser radiation
Figure S7. Photograph of the crystal size of $(C_4H_7N_2)(H_2PO_4)$ (a) and $(C_3H_5N_2)(H_2PO_4)$ (b)

Atom to atom	Length (Å)	Atom to atom	Length (Å)
P(1)-O(1)	1.5339(18)	P(1)-O(2)	1.5653(19)
P(1)-O(3)	1.515(2)	P(1)-O(4)	1.5115(18)
N(1)-C(1)	1.463(3)	N(1)-C(2)	1.321(3)
N(1)-C(4)	1.367(4)	N(2)-C(2)	1.310(3)
N(2)-C(3)	1.358(4)	C(3)-C(4)	1.336(4)
Atom to atom to atom	Angle (°)	Atom to atom to atom	Angle (°)
O(1)-P(1)-O(2)	104.90(11)	O(1)-P(1)-O(3)	111.57(11)
O(1)-P(1)-O(4)	110.49(11)	O(2)-P(1)-O(3)	109.12(12)
O(2)-P(1)-O(4)	109.26(11)	O(3)-P(1)-O(4)	111.28(12)
C(1)-N(1)-C(2)	126.5(2)	C(1)-N(1)-C(4)	125.7(2)
C(2)-N(1)-C(4)	107.8(2)	C(2)-N(2)-C(3)	108.7(2)
N(1)-C(2)-N(2)	109.1(2)	C(4)-C(3)-N(2)	107.1(3)
C(3)-C(4)-N(1)	107.3(2)		

Table S1. Selected bond distances (Å) and angles (°) for $(C_4H_7N_2)(H_2PO_4)$.

Atom to atom	Length (Å)	Atom to atom	Length (Å)
P(1)-O(1)	1.5043(15)	P(1)-O(2)	1.5630(17)
P(1)-O(3)	1.5059(19)	P(1)-O(4)	1.5739(18)
N(1)-C(1)	1.321(3)	N(1)-C(2)	1.369(3)
N(2)-C(1)	1.320(3)	N(2)-C(3)	1.376(3)
C(2)-C(3)	1.344(4)		
Atom to atom to atom	Angle (°)	Atom to atom to atom	Angle (°)
O(1)-P(1)-O(2)	109.42(10)	O(1)-P(1)-O(3)	114.90(10)
O(1)-P(1)-O(4)	106.69(9)	O(2)-P(1)-O(3)	107.19(10)
O(2)-P(1)-O(4)	107.35(10)	O(3)-P(1)-O(4)	111.05(11)
C(1)-N(1)-C(2)	108.4(2)	C(1)-N(2)-C(3)	108.4(2)
N(1)-C(1)-N(2)	109.0(2)	N(1)-C(2)-C(3)	107.3(2)
N(2)-C(3)-N(2)	106.8(2)		

Table S2. Selected bond distances (Å) and angles (°) for $(C_3H_5N_2)(H_2PO_4)$.

(C ₄ H ₇ N ₂)(H ₂ PO ₄)						
Atom	x	У	Z	<i>U</i> _(eq) (Å ²)		
P(1)	2544.2(8)	5214.6(7)	364.8(7)	39.9(2)		
O(1)	3885(2)	6136(2)	1053(2)	53.4(5)		
O(2)	1546(2)	6120(2)	-725(2)	58.4(6)		
O(3)	3275(2)	4047(2)	-355(2)	58.3(6)		
O(4)	1419(2)	4734(2)	1396.7(17)	52.1(5)		
C(1)	4369(4)	6960(3)	6907(3)	57.7(8)		
C(2)	3168(4)	6271(3)	4584(3)	49.6(7)		
C(3)	2163(4)	4322(3)	5021(3)	59.9(8)		
C(4)	2871(4)	4825(3)	6197(3)	59.9(8)		
N(1)	3499(3)	6053(2)	5911(2)	44.5(5)		
N(2)	2361(3)	5241(2)	4028(2)	49.1(6)		
(C3H5N2)(H	I ₂ PO ₄)					
Atom	x	у	Z	<i>U</i> _(eq) (Ų)		
P(1)	6728.3(6)	5772.1(3)	7181.4(14)	25.11(16)		
O(1)	7530(2)	6532.4(8)	6778(4)	35.5(4)		
O(2)	7669(2)	5304.8(9)	9463(4)	32.9(4)		
O(3)	6635(2)	5286.9(10)	4556(4)	38.2(4)		
O(4)	5000(2)	5936.4(9)	8408(4)	35.5(4)		
C(1)	5351(3)	7570.4(14)	1587(5)	33.9(6)		
C(2)	5861(3)	8787.1(14)	1852(7)	39.9(6)		
C(3)	6782(3)	8432.8(14)	3787(6)	39.8(6)		
N(1)	4980(2)	8239.6(11)	490(5)	33.9(5)		
N(2)	6441(2)	7668.2(12)	3591(5)	36.4(5)		

Table S3. Atomic Coordinates (× 10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for (C₄H₇N₂)(H₂PO₄) and (C₃H₅N₂)(H₂PO₄). U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

$(C_4H_7N_2)(H_2PO_4)$				
D-H A	<i>d</i> (D-H)	<i>d</i> (H A)	<i>d</i> (D A)	∠(DHA)
N(2)-H(2) O(4)	1.05	1.44	2.491(2)	175
O(1)-H(1) O(3)	0.86	1.81	2.668(3)	171
O(2)-H(2B) O(4)	0.82	1.78	2.591(2)	169
C(3)-H(3) O(1)	0.93	2.56	3.428(4)	157
C(4)-H(4) O(3)	0.93	2.56	3.455(4)	162
(C ₃ H ₅ N ₂)(H ₂ PO ₄)				
D-H A	<i>d</i> (D-H)	<i>d</i> (H A)	<i>d</i> (D A)	∠(DHA)
N(1)-H(1) O(1)	0.86	1.86	2.714(3)	169
N(2)-H(2) O(1)	0.86	1.80	2.657(3)	174
O(2)-H(2B) O(3)	0.82	1.75	2.553(3)	166
O(4)-H(4) O(3)	0.82	1.79	2.599(2)	169
C(1)-H(1A) O(4)	0.93	2.40	3.252(3)	152
C(2)-H(2A) O(2)	0.93	2.56	3.180(3)	124

Table S4. Hydrogen-bonding interactions for $(C_4H_7N_2)(H_2PO_4)$ and $(C_3H_5N_2)(H_2PO_4)$.

$(C_4H_7N_2)(H_2PO_4)$						
Number	Cg(I)->Cg(J)	D	η	d	θ	Strong or Weak
1	Cg(1)->Cg(1)	4.627	0	3.704	36.82	weak
2	Cg(1)->Cg(1)	3.679	0	3.537	15.98	strong
(C₃H₅N₂)(H	2PO4)					
Number	Cg(I)->Cg(J)	D	η	d	θ	Strong or Weak
Number 1	Cg(I)->Cg(J) Cg(1)->Cg(1)	D 4.720	η 0	<i>d</i> 3.197	ປ 47.38	Strong or Weak weak
Number 1 2	Cg(I) -> Cg(J) Cg(1) -> Cg(1) Cg(1) -> Cg(1)	D 4.720 4.720	η Ο Ο	d 3.197 3.197	ູ d 47.38 47.38	Strong or Weak weak weak
Number 1 2 3	$Cg(I) \rightarrow Cg(J)$ $Cg(1) \rightarrow Cg(1)$ $Cg(1) \rightarrow Cg(1)$ $Cg(1) \rightarrow Cg(1)$	D 4.720 4.720 4.720	η 0 0 12.08	d 3.197 3.197 2.786	 ϑ 47.38 47.38 53.82 	Strong or Weak weak weak weak

Table S5. π - π stacking interactions in (C₄H₇N₂)(H₂PO₄) and (C₃H₅N₂)(H₂PO₄).

Note: 1. Cg(I) represents the center of mass(I) of the five-membered ring imidazole plane, and the coordinates of Cg(1) are (0.28, 0.53, 0.51) and (0.59, 0.81, 0.23) in $(C_4H_7N_2)(H_2PO_4)$ and $(C_3H_5N_2)(H_2PO_4)$, respectively; 2. *D*: the distance between the centroids of the rings (Å); 3. η :the dihedral angle (°) between plane I and J; 4. *d*: vertical distance between adjacent imidazole planes (Å); 5. ϑ : displacement angle, the angle between the connection of adjacent centroids and the vertical line formed by the corresponding plane (°).

Compound	Space Group	Δ <i>n</i> at 1064 nm	Reference
KH ₂ PO ₄ (KDP)	I 4 2d	0.034 ^[b]	36
KTiOPO₄ (KTP)	Pna2 ₁	0.0921 ^[b]	35
LAP	P21	0.075 ^[b]	87
Ba ₃ P ₃ O ₁₀ Cl	Pca2 ₁	0.028 ^[a]	16
Ba ₃ P ₃ O ₁₀ Br	P212121	0.023 ^[a]	16
RbMgPO ₄ ·6H ₂ O	Pmn2 ₁	0.005 ^[a]	17
CsMgPO ₄ ·6H ₂ O	P6₃/mmc	0.006 ^[a]	17
NH4MgPO4·6H2O	Pmn2 ₁	0.0063 ^[a]	18
KMgPO ₄ ·6H ₂ O	$Pmn2_1$	0.01 ^[a]	18
LiCs ₂ PO ₄	Cmc2 ₁	0.01 ^[a]	85
RbNaMgP ₂ O ₇ (LTP)	Pna21	0.031 at 532 nm ^[a]	21
RbNaMgP ₂ O ₇ (HTP)	$Ccm2_1$	0.035 at 532 nm ^[a]	21
$NaNH_4PO_3F \cdot H_2O$	Pc	0.053 at 589.3 nm ^[b]	84
RbTiOPO ₄	Pna21	0.0884 ^[b]	36
Na ₃ TaP ₂ O ₉	P212121	0.1101 (static) ^[a]	37
K ₂ ZnMoP ₂ O ₁₀	P212121	0.0534 at 450.2 nm ^[b]	38
Na ₁₂ (NbO) ₃ (PO ₄) ₇	Pna21	0.03 (static) ^[a]	39
Rb ₃ PbBi(P ₂ O ₇) ₂	P212121	0.031 ^[b]	40
Cs ₃ PbBi(P ₂ O ₇) ₂	P212121	0.02 ^[b]	40
Rb ₃ BaBi(P ₂ O ₇) ₂	P21	0.025 ^[a]	41
Cs ₃ BaBi(P ₂ O ₇) ₂	P212121	0.025 ^[a]	41
K ₂ Sb(P ₂ O ₇)F	P4bm	0.157 at 546 nm ^[b]	42
Rb ₂ Sb(P ₂ O ₇)F	P4bm	0.15 at 546 nm ^[b]	43
Sn ₂ PO ₄ Cl	Pna21	0.162 at 546 nm ^[b]	44
β-Cd(PO ₃) ₂	P212121	0.059 ^[a]	1
(NH ₄) ₃ (H ₃ O)Zn ₄ (PO ₄) ₄	<i>P</i> 6 ₃	0.032 ^[a]	45
LiHgPO ₄	P42₁m	0.068 ^[b]	46
[C(NH ₂) ₃] ₆ (PO ₄) ₂ ·3H ₂ O	Сс	0.078 at 546 nm ^[b]	55
4HPP	P212121	0.25 ^[a]	50
2APP	P21	0.225 ^[b]	51
[C(NH ₂) ₃] ₂ PO ₃ F	Ст	0.039 at 532 nm ^[a]	52
[C(NH ₂) ₃] ₃ PO ₄ ·2H ₂ O	Pna21	0.055 at 546 nm ^[b]	49
$(C_{3}H_{7}N_{6})_{6}(H_{2}PO_{4})_{4}(HPO_{4})\cdot 4H_{2}O$	P21	0.220 ^[a]	53
(C ₃ H ₅ N ₂)(H ₂ PO ₄)	Pna21	0.15 at 546 nm ^[b]	this work

Table S6. Optical properties for selected phase-matching UV NLO phosphates.

Notes:

[a] Cal. Birefringence

[b] Exp. Birefringence

LAP: $(H_2N)_2CNH(CH_2)_3CH(NH_3)COO \cdot H_2PO_4 \cdot H_2O$

 $4HPP: (C_5H_6ON)(H_2PO_4)$

2APP: (C₄H₆N₃)(H₂PO₃)

		Total	$[C_3H_5N_2]^+$	[H ₂ PO ₄] ⁻
	n _x	1.51	1.42	1.22
	ny	1.578	1.46	1.22
	nz	1.50	1.40	1.20
(C ₃ H ₅ N ₂)(H ₂ PO ₄)	Δ <i>n</i> @ 546 nm	0.078	0.057 (78.08%) ^a	0.016 (21.92%)
	<i>d</i> ₁₅	-0.045	0.034	-0.053
	d ₂₄	0.19	0.11	0.25
	d ₃₃	-0.49	–0.35 (55.56%) ^b	-0.28 (44.44%)

Table S7. The linear and nonlinear optical properties of $(C_3H_5N_2)(H_2PO_4)$ were calculated by real-space atom cutting method.

Notes:

d values in pm/V.

^{*a*}The percentage in the table represents the contribution of each component to Δn . ^{*b*}The percentage in the table represents the contribution of each component to d_{33} .

Figure S1. Unpolished photos of $(C_4H_7N_2)(H_2PO_4)$ crystal (top) and $(C_3H_5N_2)(H_2PO_4)$ crystal (bottom).

Figure S2. Simulated and experimental powder X-ray diffraction patterns of $(C_4H_7N_2)(H_2PO_4)$ (a) and $(C_3H_5N_2)(H_2PO_4)$ (b).

Figure S3. IR spectra of $(C_4H_7N_2)(H_2PO_4)$ (a) and $(C_3H_5N_2)(H_2PO_4)$ (b).

Figure S4. UV-Vis-NIR diffuse reflectance spectra of compound $(C_4H_7N_2)(H_2PO_4)$ (a) and $(C_3H_5N_2)(H_2PO_4)$ (b). The experimental optical band gaps are calculated by the Kubelka-Munk formula, $F(R) = (1 - R)^2/(2R)$, where R is the reflectance.

Figure S5. Thermogravimetry (TG) curve of $(C_4H_7N_2)(H_2PO_4)$ (a) and $(C_3H_5N_2)(H_2PO_4)$ (b) under a N₂ atmosphere.

Figure S6. (a) Phase-matching curves of $(C_3H_5N_2)(H_2PO_4)$ with 1064 nm laser radiation. (b) Oscilloscope traces of the SHG signals for powders of $(C_3H_5N_2)(H_2PO_4)$ (105–150 μ m) with 1064 nm laser radiation.

Figure S7. Photograph of the crystal size of $(C_4H_7N_2)(H_2PO_4)$ (a) and $(C_3H_5N_2)(H_2PO_4)$ (b).