Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Pentagonal-bipyramidal Dysprosium(III) complexes with two apical phosphine oxide ligands and equatorial pentadentate N_3O_2 Schiff-base ligands: Breakdown of the apical magnetic axiality by strong equatorial crystal field

Tamara A. Bazhenova,^a Vyacheslav A. Kopotkov,^a Denis V. Korchagin,^a Elena A. Yureva,^a Mikhail V. Zhidkov,^a Alexei I. Dmitriev,^a Ilya A. Yakushev,^b Nikolay N. Efimov,^b Konstantin A. Babeshkin,^b Vladimir S. Mironov^{*c} and Eduard B. Yagubskii^{*a}

Table of Contents:

Figure S1. Crystal-field splitting patterns of Dy^{3+} ion arising from (a) apical ligands, (b) equatorial ligands of a pentagonal-bipyramidal Dy complex

Figure S2. Infrared spectrum of the complex [Dy(L^{CH3})(Cy₃PO)₂]ClO₄·CH₃CN (1)

Figure S3. Infrared spectrum of the complex $[Dy(L^{2(t-Bu)})(Ph_3PO)_2]ClO4 \cdot C_2H_5OH$ (2)

Table S1 Crystal Data and Structure Refinement for 1-3

Figure S5. Powder X-ray diffraction of the complex [Dy(L^{CH3})(Cy₃PO)₂]ClO₄·CH₃CN (1)

Figure S6. Powder X-ray diffraction of the complex $[Dy(L^{2(t-Bu)})(Ph_3PO)_2]ClO_4 \cdot 0.63C_2H_5OH$ (2)

Figure S7. Powder X-ray diffraction of the complex [Dy(L^{OCH3})(Ph₃PO)₂]ClO₄·2H₂O (3)

Figure S8. ¹H NMR and ¹³C NMR spectra of 3,5 di-*tert*-butylbenzoic acid hydrazide

Figure S9. ¹H NMR spectrum for compound H₂L^{OCH3}

Figure S10. ¹³C NMR spectrum for compound H₂L^{OCH3}

^{a.} Federal Research Centre of Problems of Chemical Physics and Medicinal Chemistry, FRC PCP MC RAS, 1 Academician Semenov av., Chernogolovka, 142432, Russian Federation. E-mail: vagubski@amail.com

yagubski@gmail.com ^{b.} Kurnakov Institute of General and Inorganic Chemistry, IGIC RAS, 31 Leninskii av., Moscow, 119071, Russian Federation.

^{c.} National Research Center "Kurchatov Institute", 1 Academician Kurchatov sq., Moscow, 123182, Russian Federation. E-mail: mirsa@list.ru

Table S2 The local symmetry of Dy(III) ions for 1–3 defined by the continuous shape measure (CShM) analysis with SHAPE software

Table S3 Main angles for complex 1

Table S4 Main angles for complex 2

Table S5 Main angles for complex 3

Figure S11. π -stacking interaction in structure 3

Figure S12. Hysteresis loops at different magnetic field sweep rates (50 Oe/s and 150 Oe/s) at temperature 2 K in structure **3**.

Figure S13. Hysteresis loops at different temperatures 2 K, 3 K and 5 K and magnetic field sweep rates 50 Oe/s (a) and 150 Oe/s (b) in structure **3**.

Figure S14. Frequency dependences of the in-phase ac susceptibility (left panel) and Cole–Cole plots (right panel) for complexes **1–3** at zero dc field and stated temperatures

Table S6 Best fit parameters for 1 at zero dc field

Table S7 Best fit parameters for 2 at zero dc field

Table S8 Best fit parameters for 3 at zero dc field

Figure S15. Natural log of the relaxation times τ_1 and τ_2 vs the inverse temperature for 1 (a) and 2 (b) at zero dc field

Figure S16. Frequency dependences of the in-phase (a) and out-of-phase (b) ac susceptibility, Cole–Cole plots (c) for **1** at 10 K and indicated dc fields

Table S9 Best fit parameters for 1 at 10 K

Figure S17. Frequency dependences of the in-phase (a) and out-of-phase (b) ac susceptibility; (c) Cole–Cole plots for **2** at 8 K and indicated dc fields; (d) field dependence of the relaxation time τ at 8 K

Table S10 Best fit parameters for 2 at 8 K

Figure S18. Frequency dependences of the out-of-phase (a) ac susceptibility; (b) field dependence of the relaxation time τ for **3** at 10 K

Table S11 Best fit parameters for **3** at 10 K ($R^2 = 0.99798$)

Figure S19. Frequency dependences of the in-phase ac susceptibility (left panel) and Cole–Cole plots (right panel) for complexes **1–3** at dc field 1000 Oe and stated temperatures

Table S12 Best fit parameters for 1 at dc field 1000 Oe

Table S13 Best fit parameters for 2 at dc field 1000 Oe

Table S14 Best fit parameters for 3 at dc field 1000 Oe

Figure S20. The inverse temperature dependences of the relaxation time τ for **2** (a) and **3** (b) at zero dc field (black lines) and 1000 Oe (red lines)

Table S15 The *ab initio* computed energy levels (cm^{-1}) with g-tensors of the eight lowest KDs for two crystallographic non-equivalent complexes in **1** and **2**

Table S16 SINGLE_ANISO computed wave function decomposition analysis for lowest KDs of Dy(III) ions for two crystallographic non-equivalent complexes in **1** and **2**

Figure S21. The molecular structures of **1** (a), **2** (b) and **3** (c) together with the easy axes (magenta) of ground KD obtained within the *ab initio* SA-CASSCF/RASSI-SO/SINGLE_ANISO calculation

Figure S22. Computed possible magnetization relaxation pathways for 1 (a), 2 (b) and 3 (c)

 Table S17 The *ab initio* computed CF parameter of complexes 1-3

Figure S1. Crystal-field splitting patterns of Dy^{3+} ion arising from (a) apical ligands, (b) equatorial ligands of a pentagonal-bipyramidal Dy complex.

Figure S2. Infrared spectrum of the complex $[Dy(L^{CH3})(Cy_3PO)_2]ClO_4 \cdot CH_3CN$ (1).

Figure S3. Infrared spectrum of the complex $[Dy(L^{2(t-Bu)})(Ph_3PO)_2]ClO4 \cdot C_2H_5OH$ (2).

Figure S4. Infrared spectrum of the complex $[Dy(L^{OCH3})(Ph_3PO)_2]ClO_4 \cdot 2H_2O$ (3).

Identification code	1	2	3
CCDC No	2239615	2239616	2239617
Empirical formula	$C_{51}H_{84}ClDyN_6O_8P_2$	$C_{76.268}H_{84.804}ClDyN_5O_{8.634}P_2$	$C_{61}H_{57}ClDyN_5O_{12}P_2$
Formula weight	1169.13	1469.53	1312.00
Color	yellow	yellow	yellow
Temperature, K	100(2)	150	100(2)
Crystal size, mm	0.420×0.330×0.190	0.38×0.21×0.12	0.240×0.180×0.100
Wavelength, Å	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P2_1/n$	$P2_{1}/c$	<i>P</i> -1
<i>a</i> , Å	25.7341(6)	22.8749(7)	12.2689(5)
<i>b</i> , Å	16.5737(3)	28.3369(8)	13.1736(6)
<i>c</i> , Å	26.5177(5)	22.9566(7)	19.6615(9)
α, deg.	90	90	99.0068(16)
β, deg.	101.6240(10)	98.4170(10)	93.1825(17)
γ, deg.	90	90	113.5421(15)
$V, Å^3$	11078.1(4)	14720.3(8)	2852.8(2)
Ζ	8	8	2
Density (calc.), Mg/m ³	1.402	1.326	1.527
μ , mm ⁻¹	1.510	1.153	1.481
<i>F</i> (000)	4872	6075.9	1334
Theta range, deg.	1.588 - 30.596	1.376 - 29.987	1.826 - 25.350
Index ranges	$-36 \le h \le 36$,	$-32 \le h \le 32$,	$-14 \le h \le 14$,
-	$-23 \le k \le 23,$	$-39 \le k \le 39,$	$-15 \le k \le 15,$
	$-37 \le l \le 37$	$-32 \le l \le 32$	$-23 \le l \le 23$
Reflections collected	172464	242798	38607
Independent reflections	33918 ($R_{\rm int} = 0.0386$)	42864 ($R_{\rm int} = 0.0612$)	10442 ($R_{\rm int} = 0.0447$)
Reflections observed	33918	42864	10442
Data / restraints / parameters	33918 / 0 / 1253	42864 / 742 / 1994	10442 / 216 / 831
$R_1 / \mathbf{w} R_2 (I > 2\sigma(I))$	$R_1 = 0.0273,$	$R_1 = 0.0371,$	$R_1 = 0.0386,$
	$wR_2 = 0.0590$	$wR_2 = 0.0760$	$wR_2 = 0.0814$
R_1 / w R_2 (all data)	$R_1 = 0.0424,$	$R_1 = 0.0623,$	$R_1 = 0.0439,$
2	$wR_2 = 0.0641$	$wR_2 = 0.0841$	$wR_2 = 0.0834$
Goodness-of-fit on F^2	1.013	1.015	1.091
T_{\min} / T_{\max}	0.7461 / 0.6330	0.1182 / 0.0814	0.2125 / 0.1704
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e^{-3}$	-0.787 / 0.601	-0.915 / 0.675	-1.301 / 1.640

 Table S1 Crystal Data and Structure Refinement for 1-3

Figure S5. Powder X-ray diffraction of the complex $[Dy(L^{CH3})(Cy_3PO)_2]ClO_4 \cdot CH_3CN$ (1).

Figure S6. Powder X-ray diffraction of the complex $[Dy(L^{2(t-Bu)})(Ph_3PO)_2]ClO_4 \cdot 0.63C_2H_5OH$ (2).

Figure S7. Powder X-ray diffraction of the complex [Dy(L^{OCH3})(Ph₃PO)₂]ClO₄·2H₂O (3)

Figure S8. ¹**H NMR and** ¹³**C NMR** spectra of 3,5 di*-tert*-butylbenzoic acid hydrazide (solvent – CDCl₃).

Figure S9. ¹**H NMR** spectrum for compound **H**₂**L**^{OCH3} (DMSO-D6, 500 MΓμ), δ: 10.75 (2H, s, NH), 8.35-7.54 (3H, m), 7.90 (4H, d), 7.07 (4H, d), 3.84 (6H, s, OCH₃), 2.53 (6H, s, CH₃).

Figure S10. ¹³C NMR spectrum for compound H₂L^{OCH3} (DMSO-D6, 126 MHz), δ: 163.53, 161.97, 154.24, 153.82, 137.12, 130.19, 125.88, 120.34, 113.53, 55.44, 12.34.

N₂	Polyhedron	Symmetry	1a	1b	2a	2b	3
1	Heptagon	D_{7h}	32.064	32.608	32.208	32.587	31.961
2	Hexagonal pyramid	C_{6v}	22.083	22.098	20.488	22.255	21.292
3	Pentagonal bipyramid	$\mathbf{D}_{5\mathrm{h}}$	1.202	1.154	1.569	1.450	1.377
4	Capped octahedron	C_{3v}	8.111	8.271	7.927	8.247	8.064
5	Capped trigonal prism	C_{2v}	6.336	6.708	6.414	6.624	6.356
6	Johnson pentagonal bipyramid J13	D_{5h}	3.909	3.893	4.339	4.142	4.298
7	Johnson elongated triangular pyramid J7	C_{3v}	21.717	21.931	20.177	20.416	19.991

Table S2 The local symmetry of Dy(III) ions for 1–3 defined by the continuous shape measure(CShM) analysis with SHAPE software

Table S3 Main angles for complex 1

Bonds	Angles, °	Bonds	Angles, °
O(1)–Dy(1)–O(2)	99.62(4)	O(1A)–Dy(2)–N(2A)	65.40(4)
O(1)–Dy(1)–N(2)	65.04(4)	O(1A)–Dy(2)–N(3A)	130.64(4)
O(1)–Dy(1)–N(3)	129.77(4)	O(1A)–Dy(2)–N(4A)	164.36(5)
O(1)–Dy(1)–N(4)	164.98(4)	O(2A)–Dy(2)–O(1A)	99.40(4)
O(2)–Dy(1)–N(2)	164.65(4)	O(2A)–Dy(2)–N(2A)	164.76(4)
O(2)–Dy(1)–N(3)	130.53(4)	O(2A)–Dy(2)–N(3A)	129.95(4)
O(2)–Dy(1)–N(4)	65.43(4)	O(2A)–Dy(2)–N(4A)	64.97(4)
O(3)–Dy(1)–O(1)	93.38(4)	O(3A)–Dy(2)–O(1A)	92.00(4)
O(3)–Dy(1)–O(2)	91.98(4)	O(3A)–Dy(2)–O(2A)	92.34(4)
O(3)–Dy(1)–N(2)	89.68(4)	O(3A)–Dy(2)–N(2A)	87.34(4)
O(3)–Dy(1)–N(3)	83.59(4)	O(3A)–Dy(2)–N(3A)	85.93(4)
O(3)–Dy(1)–N(4)	85.94(4)	O(3A)–Dy(2)–N(4A)	88.22(4)
O(4)–Dy(1)–O(1)	93.73(4)	O(4A)–Dy(2)–O(1A)	93.59(4)
O(4)–Dy(1)–O(2)	92.41(4)	O(4A)–Dy(2)–O(2A)	93.08(4)
O(4)–Dy(1)–O(3)	170.91(4)	O(4A)–Dy(2)–O(3A)	171.49(4)
O(4)–Dy(1)–N(2)	88.18(4)	O(4A)–Dy(2)–N(2A)	89.14(4)
O(4)–Dy(1)–N(3)	87.51(4)	O(4A)–Dy(2)–N(3A)	85.56(4)
O(4)–Dy(1)–N(4)	88.66(4)	O(4A)–Dy(2)–N(4A)	88.14(4)
N(2)–Dy(1)–N(3)	64.82(4)	N(2A)-Dy(2)-N(3A)	65.24(5)
N(4)–Dy(1)–N(2)	129.91(4)	N(2A)-Dy(2)-N(4A)	130.21(5)
N(4)–Dy(1)–N(3)	65.11(4)	N(3A)–Dy(2)–N(4A)	64.98(5)

Table S4 Main angles for complex 2.

Bonds	Angles, °	Bonds	Angles, °
O(1)–Dy(1)–N(2)	65.34(6)	O(1A)–Dy(2)–O(2A)	101.52(5)
O(1)-Dy(1)-N(3)	129.65(6)	O(1A)–Dy(2)–N(2A)	64.79(6)
O(1)–Dy(1)–N(4)	166.12(7)	O(1A)–Dy(2)–N(3A)	128.82(6)
O(2)–Dy(1)–O(1)	101.12(6)	O(1A)–Dy(2)–N(4A)	165.17(6)
O(2)–Dy(1)–N(2)	164.77(7)	O(2A)–Dy(2)–N(2A)	165.09(6)
O(2)–Dy(1)–N(3)	129.08(7)	O(2A)–Dy(2)–N(3A)	129.67(6)
O(2)–Dy(1)–N(4)	65.17(7)	O(2A)–Dy(2)–N(4A)	65.08(6)
O(3)–Dy(1)–O(1)	93.08(6)	O(3A)–Dy(2)–O(1A)	97.08(6)
O(3)–Dy(1)–O(2)	87.46(6)	O(3A)–Dy(2)–O(2A)	89.28(6)
O(3)–Dy(1)–O(4)	176.71(6)	O(3A)–Dy(2)–O(4A)	169.96(6)
O(3)–Dy(1)–N(2)	86.41(7)	O(3A)–Dy(2)–N(2A)	86.77(6)
O(3)–Dy(1)–N(3)	86.39(7)	O(3A)–Dy(2)–N(3A)	85.03(6)
O(3)–Dy(1)–N(4)	88.58(7)	O(3A)–Dy(2)–N(4A)	89.36(6)
O(4)–Dy(1)–O(1)	87.34(6)	O(4A)–Dy(2)–O(1A)	90.40(6)
O(4)–Dy(1)–O(2)	95.67(6)	O(4A)–Dy(2)–O(2A)	95.81(6)
O(4)–Dy(1)–N(2)	90.80(7)	O(4A)–Dy(2)–N(2A)	90.39(6)
O(4)–Dy(1)–N(3)	90.82(7)	O(4A)–Dy(2)–N(3A)	85.06(6)
O(4)–Dy(1)–N(4)	91.80(7)	O(4A)–Dy(2)–N(4A)	84.97(6)
N(2)-Dy(1)-N(3)	64.38(7)	N(3A)-Dy(2)-N(2A)	64.29(6)
N(2)-Dy(1)-N(4)	128.53(7)	N(4A)-Dy(2)-N(2A)	129.18(6)
N(4)–Dy(1)–N(3)	64.19(7)	N(4A)-Dy(2)-N(3A)	64.89(6)

Table S5 Main angles for complex 3

Bonds	Angles, °	Bonds	Angles, °
O(1)-Dy(1)-N(2)	65.05(10)	O(5)-Dy(1)-N(4)	87.94(10)
O(1)-Dy(1)-N(3)	130.10(10)	O(6)-Dy(1)-O(1)	91.18(9)
O(1)-Dy(1)-N(4)	164.61(10)	O(6)-Dy(1)-O(2)	88.00(10)
O(2)-Dy(1)-O(1)	99.48(9)	O(6)-Dy(1)-O(5)	174.43(10)
O(2)-Dy(1)-O(5)	91.97(10)	O(6)–Dy(1)–N(2)	85.13(11)
O(2)–Dy(1)–N(2)	162.86(10)	O(6)-Dy(1)-N(3)	83.25(11)
O(2)-Dy(1)-N(3)	129.62(10)	O(6)-Dy(1)-N(4)	86.99(10)
O(2)-Dy(1)-N(4)	65.21(10)	N(2)–Dy(1)–N(3)	65.07(11)
O(5)-Dy(1)-O(1)	94.32(9)	N(2)–Dy(1)–N(4)	129.87(11)
O(5)-Dy(1)-N(2)	96.38(11)	N(3)–Dy(1)–N(4)	64.86(11)
O(5)-Dy(1)-N(3)	92.51(11)		

Figure S11. *π*-stacking interaction in structure **3**.

Figure S12. Hysteresis loops at different magnetic field sweep rates (50 Oe/s and 150 Oe/s) at temperature 2 K in structure **3**.

Figure S13. Hysteresis loops at different temperatures 2 K, 3 K and 5 K and magnetic field sweep rates 50 Oe/s (a) and 150 Oe/s (b) in structure **3**.

Figure S14. Frequency dependences of the in-phase ac susceptibility (left panel) and Cole–Cole plots (right panel) for complexes **1–3** at zero dc field and stated temperatures. Dots are experimental data; solid lines indicate fit data with parameters listed in Tables S6–S8.

<i>Т</i> , К	χ s, cm ³ mol ⁻¹	$\Delta \chi_{T1},$ cm ³ mol ⁻¹	$ au_1$, s	α_1	$\Delta \chi_{T2},$ cm ³ mol ⁻¹	$ au_2$, s	α_2
2	0.611	2.440	$2.42 \cdot 10^{-4}$	0.080	2.431	$3.89 \cdot 10^{-5}$	0.223
2.5	0.490	1.993	$2.30 \cdot 10^{-4}$	0.087	1.866	$3.71 \cdot 10^{-5}$	0.217
4	0.385	1.145	$2.28 \cdot 10^{-4}$	0.082	1.162	$3.82 \cdot 10^{-5}$	0.223
6	0.254	0.713	$2.10 \cdot 10^{-4}$	0.075	0.832	$3.93 \cdot 10^{-5}$	0.217
8	0.235	0.615	$1.84 \cdot 10^{-4}$	0.078	0.570	$3.60 \cdot 10^{-5}$	0.202
10	0.164	0.567	$1.42 \cdot 10^{-4}$	0.069	0.407	$2.42 \cdot 10^{-5}$	0.223
12	0.140	0.517	$1.06 \cdot 10^{-4}$	0.069	0.289	$1.62 \cdot 10^{-5}$	0.222
14	0.114	0.487	$6.89 \cdot 10^{-5}$	0.070	0.201	$1.04 \cdot 10^{-5}$	0.206
16	0.131	0.458	$3.99 \cdot 10^{-5}$	0.071	0.106	$5.27 \cdot 10^{-6}$	0.174
17	0.139	0.389	$2.63 \cdot 10^{-5}$	0.082	_	_	_
18	0.178	0.422	$1.96 \cdot 10^{-5}$	0.047	_	_	_
20	0.177	0.366	$8.65 \cdot 10^{-6}$	0.042	_	_	_
22	0.204	0.286	$3.72 \cdot 10^{-6}$	0.083	_	_	_

Table S6 Best fit parameters for **1** at zero dc field ($R^2 = 0.99978$)*

* at temperatures above17 K, the data were fitted by the generalized Debye model

Table S7 Best fit parameters for **2** at zero dc field ($R^2 = 0.99987$)

<i>Т</i> , К	χ s, cm ³ mol ⁻¹	$\Delta \chi_{T1},$ cm ³ mol ⁻¹	$ au_1$, s	α_1	$\Delta \chi_{T2},$ cm ³ mol ⁻¹	$ au_2$, s	α_2
2	0.350	2.179	$2.843 \cdot 10^{-4}$	0.032	3.423	$7.460 \cdot 10^{-5}$	0.2
3	0.222	1.703	$2.650 \cdot 10^{-4}$	0.038	2.121	$6.623 \cdot 10^{-5}$	0.2
4	0.164	1.543	$2.468 \cdot 10^{-4}$	0.067	1.409	$5.799 \cdot 10^{-5}$	0.2
6	0.108	1.128	$2.272 \cdot 10^{-4}$	0.070	0.893	$5.222 \cdot 10^{-5}$	0.2
8	0.087	0.980	$1.868 \cdot 10^{-4}$	0.070	0.638	$4.620 \cdot 10^{-5}$	0.2
9	0.061	0.788	$1.639 \cdot 10^{-4}$	0.027	0.577	$4.065 \cdot 10^{-5}$	0.2
10	0.057	0.703	$1.381 \cdot 10^{-4}$	0.015	0.519	$3.926 \cdot 10^{-5}$	0.2
11	0.049	0.629	$1.149 \cdot 10^{-4}$	0.007	0.478	$3.656 \cdot 10^{-5}$	0.2
12	0.025	0.712	$8.900 \cdot 10^{-5}$	0.018	0.321	$2.036 \cdot 10^{-5}$	0.2
13	0.032	0.640	$7.461 \cdot 10^{-5}$	0.008	0.305	$2.131 \cdot 10^{-5}$	0.2
14	0.002	0.611	$6.264 \cdot 10^{-5}$	0.001	0.294	$1.453 \cdot 10^{-5}$	0.2
15	0.006	0.631	$4.934 \cdot 10^{-5}$	0.016	0.210	$1.034 \cdot 10^{-5}$	0.2
16	0.001	0.592	$4.176 \cdot 10^{-5}$	0.046	0.196	$1.068 \cdot 10^{-5}$	0.2
17	0.001	0.548	$3.417 \cdot 10^{-5}$	0.022	0.172	$7.965 \cdot 10^{-6}$	0.2
18	0.001	0.509	$2.865 \cdot 10^{-5}$	0.012	0.168	$7.067 \cdot 10^{-6}$	0.2
19	0.001	0.512	$2.317 \cdot 10^{-5}$	0.016	0.132	$4.864 \cdot 10^{-6}$	0.2
20	0.001	0.503	$1.926 \cdot 10^{-5}$	0.018	0.112	$3.147 \cdot 10^{-6}$	0.2
21	0.001	0.498	$1.536 \cdot 10^{-5}$	0.020	0.089	$2.276 \cdot 10^{-6}$	0.2

2 0.102 0.998 $4.617 \cdot 10^{-5}$ 0.067 4 0.073 0.493 $4.458 \cdot 10^{-5}$ 0.073 6 0.049 0.327 $4.299 \cdot 10^{-5}$ 0.053 8 0.038 0.234 $4.140 \cdot 10^{-5}$ 0.049 10 0.029 0.182 $3.980 \cdot 10^{-5}$ 0.007 12 0.026 0.134 $3.662 \cdot 10^{-5}$ 0.005 13 0.024 0.128 $3.184 \cdot 10^{-5}$ 0.006	Т, К	$\chi_{\rm S}$, cm ³ mol ⁻¹	$\Delta \chi_{\rm T}, {\rm cm}^3 {\rm mol}^{-1}$	τ, s	α
4 0.073 0.493 $4.458 \cdot 10^{-5}$ 0.073 6 0.049 0.327 $4.299 \cdot 10^{-5}$ 0.053 8 0.038 0.234 $4.140 \cdot 10^{-5}$ 0.049 10 0.029 0.182 $3.980 \cdot 10^{-5}$ 0.007 12 0.026 0.134 $3.662 \cdot 10^{-5}$ 0.005 13 0.024 0.128 $3.184 \cdot 10^{-5}$ 0.006	2	0.102	0.998	$4.617 \cdot 10^{-5}$	0.067
6 0.049 0.327 $4.299 \cdot 10^{-5}$ 0.053 8 0.038 0.234 $4.140 \cdot 10^{-5}$ 0.049 10 0.029 0.182 $3.980 \cdot 10^{-5}$ 0.007 12 0.026 0.134 $3.662 \cdot 10^{-5}$ 0.005 13 0.024 0.128 $3.184 \cdot 10^{-5}$ 0.006	4	0.073	0.493	$4.458 \cdot 10^{-5}$	0.073
8 0.038 0.234 $4.140 \cdot 10^{-5}$ 0.049 10 0.029 0.182 $3.980 \cdot 10^{-5}$ 0.007 12 0.026 0.134 $3.662 \cdot 10^{-5}$ 0.005 13 0.024 0.128 $3.184 \cdot 10^{-5}$ 0.006	6	0.049	0.327	$4.299 \cdot 10^{-5}$	0.053
10 0.029 0.182 $3.980 \cdot 10^{-5}$ 0.007 12 0.026 0.134 $3.662 \cdot 10^{-5}$ 0.005 13 0.024 0.128 $3.184 \cdot 10^{-5}$ 0.006	8	0.038	0.234	$4.140 \cdot 10^{-5}$	0.049
12 0.026 0.134 $3.662 \cdot 10^{-5}$ 0.005 13 0.024 0.128 $3.184 \cdot 10^{-5}$ 0.006	10	0.029	0.182	$3.980 \cdot 10^{-5}$	0.007
13 0.024 0.128 $3.184 \cdot 10^{-5}$ 0.006	12	0.026	0.134	$3.662 \cdot 10^{-5}$	0.005
	13	0.024	0.128	$3.184 \cdot 10^{-5}$	0.006

Table S8 Best fit parameters for **3** at zero dc field ($R^2 = 0.99952$)

Figure S15. Natural log of the relaxation times τ_1 and τ_2 vs the inverse temperature for **1** (a) and **2** (b) at zero dc field.

Figure S16. Frequency dependences of the in-phase (a) and out-of-phase (b) ac susceptibility, Cole–Cole plots (c) for **1** at 10 K and indicated dc fields. Symbols are experimental data; solid lines indicate fits.

H, Oe	χ s, cm ³ mol ⁻¹	$\Delta \chi_{T1},$ cm ³ mol ⁻¹	$ au_1,$ s	α_1	$\Delta \chi_{T2},$ cm ³ mol ⁻¹	$ au_2, s$	α_2
0	0.195	0.503	$1.554 \cdot 10^{-4}$	0.036	0.432	$2.927 \cdot 10^{-5}$	0.167
500	0.159	0.836	$1.470 \cdot 10^{-3}$	0.017	0.168	$1.406 \cdot 10^{-4}$	0.378
1000	0.147	0.916	$1.620 \cdot 10^{-3}$	0.010	_	_	_
1500	0.155	0.977	$1.520 \cdot 10^{-3}$	0.045	_	_	_
2500	0.150	0.958	$1.470 \cdot 10^{-3}$	0.042	_	_	_
5000	0.143	0.949	$9.095 \cdot 10^{-4}$	0.057	_	—	_

Table S9 Best fit parameters for **1** at 10 K ($R^2 = 0.99972$)

Figure S17. Frequency dependences of the in-phase (a) and out-of-phase (b) ac susceptibility; (c) Cole–Cole plots for **2** at 8 K and indicated dc fields; (d) field dependence of the relaxation time τ at 8 K. Symbols are experimental data; solid lines indicate fits.

H, Oe	$\chi_{\rm S}$, cm ³ mol ⁻¹	$\Delta \chi_{T1},$ cm ³ mol ⁻¹	$ au_1$, s	α_1	$\Delta \chi_{T2},$ cm ³ mol ⁻¹	$ au_2, s$	α_2
0	0.086	0.950	$1.885 \cdot 10^{-4}$	0.066	0.670	$4.822 \cdot 10^{-5}$	0.202
500	0.061	1.727	$1.880 \cdot 10^{-3}$	0.093	_	_	_
1000	0.010	1.757	$2.000 \cdot 10^{-3}$	0.074	_	_	_
1500	0.009	1.744	$2.020 \cdot 10^{-3}$	0.071	_	_	_
2500	0.002	1.721	$1.890 \cdot 10^{-3}$	0.076	_	_	_
5000	0.002	1.578	$1.310 \cdot 10^{-3}$	0.077	_	_	_

Table S10 Best fit parameters for **2** at 8 K ($R^2 = 0.99982$)

Figure S18. Frequency dependences of the out-of-phase (a) ac susceptibility; (b) field dependence of the relaxation time τ for **3** at 10 K. Symbols are experimental data; solid lines indicate fits.

H, Oe	$\chi_{\rm S},{\rm cm}^3{\rm mol}^{-1}$	$\Delta \chi_{\rm T}, {\rm cm}^3 {\rm mol}^{-1}$	τ, s	α
0	0.029	0.182	$3.980 \cdot 10^{-5}$	0.007
200	0.022	0.181	$1.799 \cdot 10^{-4}$	0.134
400	0.027	0.235	$3.009 \cdot 10^{-4}$	0.058
600	0.028	0.248	$3.391 \cdot 10^{-4}$	0.031
1000	0.020	0.249	$3.503 \cdot 10^{-4}$	0.023
3000	0.025	0.229	$3.121 \cdot 10^{-4}$	0.004
4000	0.027	0.219	$1.799 \cdot 10^{-4}$	0.074

Table S11 Best fit parameters for **3** at 10 K ($R^2 = 0.99798$)

Figure S19. Frequency dependences of the in-phase ac susceptibility (left panel) and Cole–Cole plots (right panel) for complexes 1–3 at dc field 1000 Oe and stated temperatures. Dots are experimental data; solid lines indicate fit data with parameters listed in Tables S12-S14.

<i>Т</i> , К	$\chi_{\rm S}$, cm ³ mol ⁻¹	$\Delta \chi_{\rm T}$, cm ³ mol ⁻¹	τ, s	α
6	0.227	1.864	$2.677 \cdot 10^{-2}$	0.159
7	0.199	1.423	$9.640 \cdot 10^{-3}$	0.101
8	0.178	1.189	$4.640 \cdot 10^{-3}$	0.073
10	0.152	0.953	$1.520 \cdot 10^{-3}$	0.053
12	0.138	0.773	$6.367 \cdot 10^{-4}$	0.046
14	0.131	0.645	$2.908 \cdot 10^{-4}$	0.048
16	0.130	0.546	$1.238 \cdot 10^{-4}$	0.051
18	0.131	0.469	$4.487 \cdot 10^{-5}$	0.065
19	0.097	0.363	$2.359 \cdot 10^{-5}$	0.076
20	0.153	0.386	$1.564 \cdot 10^{-5}$	0.057
22	0.035	0.452	$3.079 \cdot 10^{-6}$	0.131

Table S12 Best fit parameters for **1** at dc field 1000 Oe ($R^2 = 0.99949$)

Table S13 Best fit parameters for **2** at dc field 1000 Oe ($R^2 = 0.99893$)

<i>Т</i> , К	$\chi_{\rm S}$, cm ³ mol ⁻¹	$\Delta \chi_{\rm T}, {\rm cm}^3 {\rm mol}^{-1}$	τ, s	α
4	0.034	1.785	$3.615 \cdot 10^{-2}$	0.070
5	0.024	2.545	$2.393 \cdot 10^{-2}$	0.077
6	0.017	2.233	$9.130 \cdot 10^{-3}$	0.080
7	0.013	1.952	$4.010 \cdot 10^{-3}$	0.080
8	0.010	1.757	$2.000 \cdot 10^{-3}$	0.074
9	0.009	1.526	$1.110 \cdot 10^{-3}$	0.069
10	0.008	1.382	$6.739 \cdot 10^{-4}$	0.067
11	0.004	1.257	$4.372 \cdot 10^{-4}$	0.067
12	0.007	1.144	$2.928 \cdot 10^{-4}$	0.058
13	0.004	1.061	$2.067 \cdot 10^{-4}$	0.058
14	0.006	0.983	$1.509 \cdot 10^{-4}$	0.055
15	0.006	0.917	$1.126 \cdot 10^{-4}$	0.053
16	0.007	0.859	$8.570 \cdot 10^{-5}$	0.047
17	0.007	0.811	$6.624 \cdot 10^{-5}$	0.046
18	0.011	0.763	$5.178 \cdot 10^{-5}$	0.042
19	0.010	0.724	$4.009 \cdot 10^{-5}$	0.039
20	0.014	0.683	$3.149 \cdot 10^{-5}$	0.034
21	0.015	0.649	$2.421 \cdot 10^{-5}$	0.035
22	0.019	0.616	$1.855 \cdot 10^{-5}$	0.034
23	0.021	0.587	$1.402 \cdot 10^{-5}$	0.032

<i>Т</i> , К	$\chi_{\rm S}$, cm ³ mol ⁻¹	$\Delta \chi_{\rm T}$, cm ³ mol ⁻¹	τ, s	α
6	0.026	0.454	$0.386 \cdot 10^{-2}$	0.007
7	0.025	0.375	$0.178 \cdot 10^{-2}$	0.005
8	0.022	0.327	$9.649 \cdot 10^{-4}$	0.020
10	0.020	0.249	$3.503 \cdot 10^{-4}$	0.023
11	0.017	0.225	$2.356 \cdot 10^{-4}$	0.017
12	0.020	0.209	$1.656 \cdot 10^{-4}$	0.007
13	0.015	0.194	$1.226 \cdot 10^{-4}$	0.011
14	0.011	0.181	$9.235 \cdot 10^{-5}$	0.019
15	0.013	0.166	$6.687 \cdot 10^{-5}$	0.030
17	0.012	0.143	$3.662 \cdot 10^{-5}$	0.057
18	0.011	0.141	$2.707 \cdot 10^{-5}$	0.091

Table S14 Best fit parameters for **3** at dc field 1000 Oe ($R^2 = 0.99892$)

Figure S20. The inverse temperature dependences of the relaxation time τ for **2** (a) and **3** (b) at zero dc field (black lines) and 1000 Oe (red lines).

Table S15 The *ab initio* computed energy levels (cm^{-1}) with g-tensors of the eight lowest KDs for two crystallographic non-equivalent complexes in 1 and 2

1a				1b				
KD	Energy	g_x	g_y	g _z	Energy	g_x	g_y	g _z
1	0.0	0.026	0.073	19.610	0.0	0.029	0.076	19.602
2	162.9	1.834	2.844	12.024	162.8	2.136	2.402	12.551
3	191.5	1.882	2.618	15.032	197.7	1.215	4.217	13.929
4	227.8	0.115	1.794	6.850	229.7	1.225	1.900	5.615
5	387.5	1.949	4.848	11.858	390.6	1.853	4.870	11.836
6	420.7	1.022	3.420	15.062	427.2	1.125	3.415	15.216
7	510.9	2.289	2.796	12.286	514.2	2.296	2.575	12.226
8	650.1	0.314	0.816	17.496	651.5	0.321	0.872	17.436

KDEnergy g_x g_y g_z Energy g_x g_y g_z 10.00.0300.06419.6910.00.0180.04019.7202187.81.1252.51414.534192.70.9682.37313.8493241.80.8241.08712.646244.80.3431.05211.6054282.30.0671.26213.344289.70.2401.09015.2385395.92.1813.45814.455404.51.9993.44113.8786488.39.4075.3380.727491.99.4115.3810.6877586.82.3845.43110.339579.42.4275.9259.9118721.10.3311.25717.175712.30.3101.19817.227	2a				2b				
1 0.0 0.030 0.064 19.691 0.0 0.018 0.040 19.720 2 187.8 1.125 2.514 14.534 192.7 0.968 2.373 13.849 3 241.8 0.824 1.087 12.646 244.8 0.343 1.052 11.605 4 282.3 0.067 1.262 13.344 289.7 0.240 1.090 15.238 5 395.9 2.181 3.458 14.455 404.5 1.999 3.441 13.878 6 488.3 9.407 5.338 0.727 491.9 9.411 5.381 0.687 7 586.8 2.384 5.431 10.339 579.4 2.427 5.925 9.911 8 721.1 0.331 1.257 17.175 712.3 0.310 1.198 17.227	KD	Energy	g_x	g_y	g _z	Energy	g_{x}	g_y	g _z
2 187.8 1.125 2.514 14.534 192.7 0.968 2.373 13.849 3 241.8 0.824 1.087 12.646 244.8 0.343 1.052 11.605 4 282.3 0.067 1.262 13.344 289.7 0.240 1.090 15.238 5 395.9 2.181 3.458 14.455 404.5 1.999 3.441 13.878 6 488.3 9.407 5.338 0.727 491.9 9.411 5.381 0.687 7 586.8 2.384 5.431 10.339 579.4 2.427 5.925 9.911 8 721.1 0.331 1.257 17.175 712.3 0.310 1.198 17.227	1	0.0	0.030	0.064	19.691	0.0	0.018	0.040	19.720
3 241.8 0.824 1.087 12.646 244.8 0.343 1.052 11.605 4 282.3 0.067 1.262 13.344 289.7 0.240 1.090 15.238 5 395.9 2.181 3.458 14.455 404.5 1.999 3.441 13.878 6 488.3 9.407 5.338 0.727 491.9 9.411 5.381 0.687 7 586.8 2.384 5.431 10.339 579.4 2.427 5.925 9.9111 8 721.1 0.331 1.257 17.175 712.3 0.310 1.198 17.227	2	187.8	1.125	2.514	14.534	192.7	0.968	2.373	13.849
4 282.3 0.067 1.262 13.344 289.7 0.240 1.090 15.238 5 395.9 2.181 3.458 14.455 404.5 1.999 3.441 13.878 6 488.3 9.407 5.338 0.727 491.9 9.411 5.381 0.687 7 586.8 2.384 5.431 10.339 579.4 2.427 5.925 9.911 8 721.1 0.331 1.257 17.175 712.3 0.310 1.198 17.227	3	241.8	0.824	1.087	12.646	244.8	0.343	1.052	11.605
5 395.9 2.181 3.458 14.455 404.5 1.999 3.441 13.878 6 488.3 9.407 5.338 0.727 491.9 9.411 5.381 0.687 7 586.8 2.384 5.431 10.339 579.4 2.427 5.925 9.911 8 721.1 0.331 1.257 17.175 712.3 0.310 1.198 17.227	4	282.3	0.067	1.262	13.344	289.7	0.240	1.090	15.238
6 488.3 9.407 5.338 0.727 491.9 9.411 5.381 0.687 7 586.8 2.384 5.431 10.339 579.4 2.427 5.925 9.911 8 721.1 0.331 1.257 17.175 712.3 0.310 1.198 17.227	5	395.9	2.181	3.458	14.455	404.5	1.999	3.441	13.878
7 586.8 2.384 5.431 10.339 579.4 2.427 5.925 9.911 8 721.1 0.331 1.257 17.175 712.3 0.310 1.198 17.227	6	488.3	9.407	5.338	0.727	491.9	9.411	5.381	0.687
8 721.1 0.331 1.257 17.175 712.3 0.310 1.198 17.227	7	586.8	2.384	5.431	10.339	579.4	2.427	5.925	9.911
• · · · · · · · · · · ·	8	721.1	0.331	1.257	17.175	712.3	0.310	1.198	17.227

Table S16 SINGLE_ANISO computed wave function decomposition analysis for lowest KDs of Dy(III) ions for two crystallographic non-equivalent complexes in **1** and **2**. It is shown only main (> 10%) contributions

	wave function decomposition analysis (main (> 10%) contributions)						
KD	1 a	1b					
1	0.948 ±15/2>	0.950 ±15/2>					
2	0.409 ±13/2> + 0.327 ±9/2> + 0.195 ±5/2>	0.427 ±13/2> + 0.351 ±9/2> + 0.173 ±5/2>					
3	0.301 ±7/2> + 0.245 ±1/2> + 0.149 ±3/2>	$0.350 \mid \pm 7/2 \rangle + 0.227 \mid \pm 1/2 \rangle + 0.128 \mid \pm 3/2 \rangle + 0.116 \mid \pm 11/2 \rangle$					
4	0.383 ±11/2> + 0.212 ±7/2> + 0.149 ±3/2>	0.345 ±11/2> + 0.188 ±3/2> + 0.161 ±7/2> + 0.106 ±5/2>					
5	0.454 ±13/2> + 0.313 ±9/2> + 0.123 ±5/2>	0.461 ±13/2> + 0.309 ±9/2> + 0.129 ±5/2>					
6	0.290 ±11/2> + 0.273 ±7/2> + 0.189 ±5/2>	0.296 ±11/2> + 0.287 ±7/2> + 0.179 ±5/2>					
	+ 0.163 ±9/2>	+ 0.164 ±9/2>					
7	0.347 ±3/2> + 0.287 ±5/2> + 0.155 ±11/2> +	0.352 ±3/2> + 0.289 ±5/2> + 0.153 ±11/2> + 0.137 ±7/2>					
	0.143 ±7/2>						
8	0.636 ±1/2> + 0.262 ±3/2>	0.637 ±1/2> + 0.260 ±3/2>					

	wave function decomposition analysis (main (> 10%) contributions)						
KD	2a	2b					
1	0.962 ±15/2>	0.966 ±15/2>					
2	0.499 ±13/2> + 0.346 ±9/2>	0.508 ±13/2> + 0.366 ±9/2> + 0.103 ±5/2>					
3	0.425 ±7/2> + 0.292 ±11/2> + 0.112 ±5/2>	0.466 ±7/2> + 0.384 ±11/2>					
4	0.284 ±3/2> + 0.201 ±1/2> +0.199 ±11/2> +	0.313 ±3/2> + 0.228 ±1/2> +0.225 ±5/2> +					
	0.175 ±5/2>	0.146 ±11/2>					
5	0.355 ±13/2> + 0.321 ±9/2> + 0.138 ±7/2>	0.387 ±13/2> + 0.334 ±9/2> + 0.108 ±7/2>					
6	0.254 ±5/2> + 0.202 ±11/2> + 0.180 ±7/2>+	0.231 ±5/2> + 0.227 ±11/2> + 0.224 ±7/2>+					
	0.123 ±9/2>	0.106 ±9/2>					
7	0.316 ±3/2> + 0.251 ±5/2> + 0.157 ±7/2> +	0.319 ±3/2> + 0.270 ±5/2> + 0.146 ±11/2> +					
	0.147 ±11/2>	0.141 ±7/2> + 0.101 ±9/2>					
8	0.611 ±1/2> + 0.259 ±3/2>	0.634 ±1/2> + 0.256 ±3/2>					

Figure S21. The molecular structures of **1** (a), **2** (b) and **3** (c) together with the easy axes (magenta) of ground KD obtained within the *ab initio* SA-CASSCF/RASSI-SO/SINGLE_ANISO calculation. Color code: green = Dy, magenta = P, red = O, blue = N, gray = C, white = H.

Figure S22. Computed possible magnetization relaxation pathways for **1** (a), **2** (b) and **3** (c). The red arrows show the QTM and TA-QTM via ground and higher excited KD, respectively. The blue arrow shows the Orbach process for the relaxation. The green arrows show the mechanism of magnetic relaxation.

1-	q		B_k^q			
K		1	2	3		
	-2	0.153E+01	-0.258E+00	-0.125E+01		
	-1	-0.861E+00	0.320E-01	0.757E+00		
2	0	-0.498E+01	-0.255E+01	-0.553E+01		
	+1	0.125E+00	0.209E+01	-0.301E+01		
	+2	0.286E+00	-0.291E+00	0.289E+00		
	-4	-0.259E-01	0.240E-03	-0.848E-01		
	-3	-0.432E-03	-0.612E-02	-0.518E-01		
	-2	-0.329E+00	-0.400E-03	0.722E-01		
	-1	-0.102E-03	-0.722E-02	-0.425E-01		
4	0	-0.161E-01	-0.226E-02	-0.153E-01		
	+1	0.259E-02	-0.830E-02	0.777E-02		
	+2	-0.282E-01	0.478E-01	0.316E+00		
	+3	0.150E-01	0.122E-01	0.505E-02		
	+4	0.266E+00	-0.431E-01	-0.244E+00		
	-6	0.158E-02	0.859E-05	0.259E-02		
	-5	-0.318E-03	-0.102E-04	0.594E-03		
	-4	0.188E-03	0.743E-05	0.349E-03		
	-3	0.474E-03	0.972E-04	0.277E-02		
	-2	0.990E-02	0.325E-04	-0.907E-03		
	-1	-0.809E-03	0.197E-03	0.488E-02		
6	0	-0.136E-02	-0.570E-04	-0.133E-02		
	+1	-0.109E-02	-0.544E-04	0.407E-03		
	+2	0.620E-03	-0.392E-03	-0.981E-02		
	+3	-0.139E-02	0.478E-04	-0.241E-02		
	+4	0.924E-03	-0.180E-04	-0.915E-03		
	+5	0.243E-03	-0.209E-03	0.271E-02		
	+6	0.738E-03	0.116E-03	0.617E-03		

 Table S17 The *ab initio* computed CF parameter of complexes 1-3