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The model construction and excitation configuration of RSC simulation.

The size dimensions of the perfect electrical conductor (PEC) plate are 180.0 mm × 180.0 mm with a thickness 

of 0.035 mm. The absorber has the same size dimensions of 180.0 mm × 180.0 mm with PEC plate but a 

different thickness of 2.5 mm. The far-field position is set to “calculate the field in the direction of the incident 

plane wave”. The polarization mode employed is linear. The following formula is used to perform the RCS 

calculation [1, 2]:
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where S, λ, Es and Ei are the area of simulation model, the wavelength of EM wave, the scattered electric field 

intensity and the incident electric field intensity, respectively.

Figures:

Fig. S1. N2 adsorption-desorption isotherms and relevant pore size distributions of (a,b) CSONFs and (c,d) 

CSO@NCNFs-2.
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Fig. S2. RL curve and EAB of CSO@NCNFs-1 with an absorber thickness of 2.9 mm.

Fig. S3. RL curve and EAB of CSO@NCNFs-2 at an absorber thickness of 1.4 mm.
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Fig. S4. RL curve and EAB of CSO@NCNFs-4 for an absorber thickness of 1.3 mm.

Fig. S5. Frequency dependence of RL values for (a) CSONFs, (b) CSO@NCNFs-1, (c) CSO@NCNFs-2 and (d) 

CSO@NCNFs-4 samples at different thicknesses. Simulations of matching thickness and peak frequency for (e) 

CSONFs, (f) CSO@NCNFs-1, (g) CSO@NCNFs-2 and (h) CSO@NCNFs-4 samples under λ/4 and 3λ/4 models.
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Fig. S6. Electrical conductivity (σ) of CSONFs, CSO@NCNFs-1, CSO@NCNFs-2 and CSO@NCNFs-4.

Fig. S7. CST simulation result of PEC.
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Fig. S8. Polar curve of RCS value for PEC.

Fig. S9. Comparison of RLmin, EAB and filling ratio of some recently reported microwave absorbers.
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Tables:

Table S1 Comparison of lithium storage performances of CSO@NCNFs-2 and other CaSnO3-based and carbon-
based electrode materials.

electrode Current rate Capacity
 (mA h g‒1)

Capacity 
retention  

CE Cycles Ref.

CSO-nanotubes 60 mA g‒1 648 ~56.3% 98.1% 50 [3]

Porous flowerlike CSO 60 mA g‒1 547 ~31.3% 99% 50 [4]

C-CTO NTs 60 mA g‒1 ~170 ~13.1% / 30 [5]

Nano-CSO 60 mA g‒1 ~450 ~38.8% ~98% 30 [6]

CSO-NTs-700 60 mA g‒1 565 ~48.4% 97.5% 50 [7]

N-doping carbon fiber 1C ~200 ~39.2% / 150 [8]

WO3-26.36%/carbon 100 mA g‒1 540 ~36.5%  ~99% 150 [9]

CNS-3 100 mA g‒1 ~468 ~47.8% ~99% 200 [10]

O-MCN-150 100 mA g‒1 197.7  63.2% 63% 100 [11]

Ca2Fe2O5 nanofibers-800 50 mA g‒1 530 ~50.1% ~98% 100 [12]

CSO@NCNFs-2 100 mA g‒1 645.2 53.7% 99% 100 herein
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