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Experimental Procedures

1. Treatment of Ni foam

The nickel foam (NF, 1×4 cm) was immersed in 2 M hydrochloric acid, ethanol 

and distilled water, respectively, for ultrasonic treatment over 12 min. which was dried 

at 60 °C for 8 h. After cooling to room temperature, it was obtained.

2. Chemicals and Reagents

Thioacetamide (C2H5NS) comes from Shanghai Macklin Biochemical 

Technology Co., Ltd. Sodium molybdate dehydrate (Na2MoO4⋅2H2O) is purchased 

from Sinopharm Chemical Reagent Co., Ltd. Nickel foam (NF) is used as substrate. All 

these chemicals are used without further purification.

3. Electrochemical measurements. 

All the electrochemical measurements were conducted in a standard three-

electrode setup on a CHI 660E electrochemical workstation (Chenhua Instruments, 

Shanghai, China). The fabricated self-supported electrodes (1×4×0.1 cm-2) were 

directly employed as working electrodes, while a graphite rod and an Hg/HgO (filled 

in 1 M KOH) electrode as the counter electrode and the reference electrode, 

respectively. Before Multiple cyclic voltammetry (CV) scans were firstly performed at 

a scan rate of 5 mV s-1 until reached a stable state of electrodes. Then, linear sweep 

voltammetry (LSV) was conducted with a scan rate of 5 mV s-1 in 1 M KOH solution. 

The electrochemical impedance spectroscopy (EIS) measurements were conducted 

over a frequency range of 100 kHz to 0.01 Hz with an amplitude of 10 mV. The long-

term stability was measured by chronocurrent method. All the polarization curves were 

corrected using 85% iR compensation. Potentials were referenced to the reversible 

hydrogen electrode (RHE): E vs. RHE = E vs. Hg/HgO + 0.098 + 0.059 pH. The 

overpotential (η) was calculated according to the following equation: η = E vs. RHE -

1.23 V. In order to obtain the effective electrochemical active surface area (ECSA) of 

the electrocatalyst, a series of cyclic voltammetry (CV) measurements were performed 

at different scanning rates. Geometric double layer capacitance (Cdl) is calculated by 

plotting the difference between current density (J) and scan rate to build a linear trend.

4. In situ Raman spectroscopy. 



The in-situ device was placed on a Renishaw Raman microscope, the potential was 

controlled by an electrochemical workstation, and the Raman spectra were recorded by 

532 nm laser excitation. In situ device electrolytic cell is made of 

polytetrafluoroethylene, through the large pool, small pool, electrolyte and pump to 

form a closed loop, the top with a round quartz glass as a protective cover to protect the 

objective lens, the working electrode is facing the quartz glass, so that the laser is 

vertically incident, before the test should increase the pump rate, the circulation of 

bubbles clean, avoid blocking the light path, after stabilizing, reduce the speed for 

testing. The Hg/HgO electrode with 1.0 M KOH internal reference electrolyte was used 

as the reference electrode.

5. Theoretical calculations. 

All the calculations were performed with the Vienna Ab initio Simulation Package 

(VASP) based on the density-functional theory (DFT). We use DFT to help understand 

the reaction mechanism. The generalized gradient approximation (GGA) with Perdew-

Burke-Ernzerhof (PBE) functional is used, and the long-range van der Waals 

interaction is considered using the DFT-D3 method, the cut off energy is 500 eV, and 

the K point is 3 2 1. A 4 4 supercell model was constructed using Ni(OH)2 (112) × × ×

surfaces. A 15 Å vacuum is used along the z direction to avoid interaction between 

periodic images. The convergence criteria for electrons and ions are 10-7 eV energies 

and 0.05 eV A-1 forces to ensure adequate accuracy.
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