Viologen Doping Induced Charge Storage of Carbon Nitride for

Enhanced Photocatalytic Hydrogen Production

Fankai Bu, Runzhi Yuan, Zejun Zhang, Jun Wang, Junying Liu*, Yang-Chun Yong†

Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu

Road, Zhenjiang 212013, China

Fig. S1 FTIR spectra of g-C₃N₄ and the CN-MV-10 sample.

^{*} Corresponding author. E-mail: lsliujy@ujs.edu.cn.

[†] Corresponding author. E-mail: ycyong@ujs.edu.cn.

Fig. S2 SEM images and EDS spectrum of (a,c) g-C₃N₄ and (b,d) the CN-MV-10 sample. (e) Elemental mappings of the CN-MV-10 sample.

Fig. S3 Solid state 13C cross-polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) of g-C₃N₄ and CN-MV-10.

Fig. S4 (a) The XPS survey spectrum of pristine $g-C_3N_4$ and CN-MV-10. (b) Enlarged

view of a portion of the XPS survey spectrum.

Fig. S5 Schematic illustration of the band structure of pure $g-C_3N_4$ and CN-MV-10.

Fig. S6 (a) Zeta potentials and (b) PL spectra of $g-C_3N_4$ and CN-MV-x.

Fig. S7 N_2 adsorption/desorption curves and pore size distribution of pure C_3N_4 and CN-MV-10 samples.

Table S1 Comparison of specific surface area and	pore size between Pure C ₃ N ₄ and
CN-MV-10	

	BET Surface Area	BJH Desorption average pore width (4V/A)		
	(m^2/g)	(nm)		
Pure C ₃ N ₄	11.0077	6.5605		
CN-MV-10	11.7936	5.8332		

Fig. S8 Stability tests of photocatalytic hydrogen production for CN-MV-10

Fig.S9 Comparison of XRD before and after photocatalytic reaction

Fig.S10 proposed reaction mechanism of dark reaction hydrogen generation after illumination for the CN-MV-10 sample.

Photocatalyst	Hydrogen production rate	Co- catalyst	Sacrificial agent	Reference
	(µmol/g/h)			
0.1HCCN	683.54	3wt%Pt	10vol%TEOA	1
Zn-Ni-P@g-C ₃ N ₄	531.2	١	15vol%TEOA	2
Ni _{0.4} Mo _{0.6} /g-C ₃ N ₄	1785	١	10vol%TEOA	3
CNK	919.5	3wt%Pt	10vol%TEOA	4
B-CN/P- CN(0.5:0.5)	655	3wt%Pt	10vol%TEOA	5
CN-M/CNU/Pt- TiO ₂	1735	1wt%Pt	10vol%TEOA	6
CNC-0.1	212.8	1wt%Pt	15vol%TEOA	7
CN-40	1210.3	3wt%Pt	10vol%TEOA	8
CN-MV-10	1650	1wt%Pt	5vol%TEOA	This work

Table S2 Comparison of different research reports

References

1.Y. Li, D. Zhang, X. Feng and Q. Xiang, Enhanced photocatalytic hydrogen production activity of highly crystalline carbon nitride synthesized by hydrochloric acid treatment, *Chinese J. Catal.*, 2020, **41**, 21-30.

2.Y. Li, Z. Jin, L. Zhang and K. Fan, Controllable design of Zn-Ni-P on g-C₃N₄ for efficient photocatalytic hydrogen production, *Chinese J. Catal.*, 2019, **40**, 390-402.

3.X. Han, D. Xu, L. An, C. Hou, Y. Li, Q. Zhang and H. Wang, Ni-Mo nanoparticles as co-catalyst for drastically enhanced photocatalytic hydrogen production activity over g-C₃N₄, *Appl. Catal. B-Environ.*, 2019, **243**, 136-144.

4.S. Sun, J. Li, J. Cui, X. Gou, Q. Yang, Y. Jiang, S. Liang and Z. Yang, Simultaneously engineering K-doping and exfoliation into graphitic carbon nitride (g-C₃N₄) for enhanced photocatalytic hydrogen production, *Int. J. Hydrogen Energ*, 2019, **44**, 778-787.

5.D. Yuan, Z. Li, X. Chen, J. Ding, H. Wan and G. Guan, Homodispersed B–CN/P–CN S-scheme homojunction for enhanced visible-light-driven hydrogen evolution, *Green Energ. Environ.*, 2022, 7, 1119-1127.

6.H. Qin, X. Zhao, H. Zhao, L. Yan and W. Fan, Well-organized CN-M/CN-U/Pt-TiO2 ternary

heterojunction design for boosting photocatalytic H₂ production via electronic continuous and directional transmission, *Appl. Catal. A-Gen*, 2019, **576**, 74-84.

7.Q. Xu, B. Cheng, J. Yu and G. Liu, Making co-condensed amorphous carbon/g- C_3N_4 composites with improved visible-light photocatalytic H₂-production performance using Pt as cocatalyst, *Carbon*, 2017, **118**, 241-249.

8.Y. Liu, S. Zhao, C. Zhang, J. Fang, L. Xie, Y. Zhou and S. J. C. Zhuo, Hollow tubular carbon doping graphitic carbon nitride with adjustable structure for highly enhanced photocatalytic hydrogen production, *Carbon*, 2021, **182**, 287-296.