SEM Top view

Graphical analysis result

Figure S1. SEM image of GaN NRs

Figure S2 Photograph of the fabricated SH-PD.

Figure S3 FE-SEM image of ZTN thin film

Figure S4 AES results of ZTN thin film

Figure S5 XPS results of ZTN thin film

Figure S6 Experimental set-up for measuring optical/electrical properties of the devices.

Figure S7 EL spectrum of the conventional light sources (UV, blue, green and red light).

Figure S8 Operation testing results of SH-PD (left) and DH-PD (right)

Figure S9 Voltage-dependent device operation test

Figure S10 R and EQE value of voltage-dependent on/off test

Figure S11. The performance comparison result of reported heterojunction-based PDs

	thickness [nm]	$\begin{array}{c} \text{Bulk concentration} & \text{Mobility} \\ N_b [\text{cm}^{-3}] & \mu [\text{cm}^2 \text{V}^{-1} \text{s}^{-1} \\ \end{array} \end{array}$	
ZTN thin film	242.1	-2.39E+19	1.33E+01

Table S1 Bulk carrier concentration and mobility of ZTN thin-film

Voltage	Photocurrent	Dark current	Responsivity	EQE
1 V	0.504 μA	0.315 μA	0.759 μA/W	1.78×10⁻⁴%
2 V	1.020 μA	0.572 μΑ	1.81 µA/W	4.25×10 ⁻⁴ %
3 V	7.341 µA	1.000 µA	25.3 μA/W	5.95×10 ⁻³ %
4 V	37.14 μA	10.81 µA	1.44 mA/W	3.38×10 ⁻¹ %
5 V	733.7 μA	13.46 µA	3.32 mA/W	7.79×10 ⁻¹ %

Table S2 Summary of voltage-dependent on/off test

Material	Photocurrent	Dark current	Wavelength	ΔI	Ref
MoS₂/GaN	40.5 <u>µA</u>	0.2 <u>µA</u>	405 nm	40.3 <u>µA</u>	[1]
MoSe ₂ /GaN	10.5 <u>µA</u>	0.95 <u>µA</u>	365 nm	9.55 <u>µA</u>	[2]
MoS ₂ /MoO ₃	4.7 nA	1.3 pA	550 nm	4.7 <u>nA</u>	[3]
MoS ₂ /MoO ₃	15.56 nA	6 <u>pA</u>	420 nm	15.56 nA	[4]
MoS ₂ /Au NPs/WS ₂	230 nA	1.1 pA	520 nm	230 nA	[5]
ZTN/GaN/Si	733 <u>µA</u>	13 <u>µA</u>	532 nm	720 <u>µA</u>	This work

Table S3 The photocurrent, dark current and wavelength comparison result of reportedheterojunction-based PDs

- 1 M. Moun, M. Kumar, M. Garg, R. Pathak, and R. Singh, Understanding of MoS₂/GaN Heterojunction Diode and its Photodetection Properties, *Sci. Rep.*, 2018, **8**, 11799.
- 2 H. K. Sandhu, J. W. John, A. Jakhar, A. Sharma, A. Jain, and S. Das, MoSe₂/n-GaN Heterojunction Induced High Photoconductive Gain for Low-Noise Broadband Photodetection from Ultraviolet to Near-Infrared Wavelengths, *Adv. Mater. Interfaces.*, 2022, **9**, 2102200.
- 3 H. Li, T. Zhang, Z. Yi, X. Chen, Z. Dai, and J. Tan, High Sensitive and Stable UV–Vis Photodetector Based on MoS₂/MoO₃ vdW Heterojunction, *ACS Appl. Mater. Interfaces*, 2024, **16**, 33829-33837.
- 4 R. Singh, M. Kumar, U. Kim, and H. Seo, Self-Powered and High-Performance Alternating Current Photodetectors to enhance Broadband Photodetection, *Adv. Electron. Mater.*, 2022, **8**, 2200392.
- 5 Z. Lin, P. Luo, W. Zeng, H. Lai, W. Xie, W. Deng, and Z. Luo, Improvement of photoelectric properties of MoS₂/WS₂ heterostructure photodetector with interlayer of Au nanoparticles, *Opt. Mater.*, 2020, **108**, 110191.