Supplementary Information for

Interchain Interactions Raised Photo-Induced [LS] \rightarrow [HS*] Transition Temperature up to 78 K in Cyanide-Bridged [Fe^{III}₂Co^{II}] Chain

Wen-Jing Jiang,^{ab} Yin-Shan Meng,^a Han-Han Lu,^a Hai-Lang Zhu,^a Qiang Liu,^a Chunying Duan,^a Hiroki Oshio,^{*a} Tao Liu^{*a}

a State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology

2 Linggong Rd., 116024 Dalian (China)

b Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian 350108, P. R. Fuzhou (China)

* To whom correspondence should be addressed. E-mail: liutao@dlut.edu.cn and oshio@chem.tsukuba.ac.jp

Table of Contents

Experimental Section	3
Crystallographic data for the LT and HT phases	6
Crystallographic data for the LS and photo-excited HS* phases	.13
Schemes of interchain $\pi \cdots \pi$ stacks	.21
⁵⁷ Fe Mössbauer spectra for LT and HT phases	.23
UV-vis-NIR absorption spectra	.24
Single-chain magnetic properties for the photo-excited HS* phases	.25

Experimental Section

Materials. All chemical reagents were commercially available and used without further purification. The building block, $Li[Fe(bipy)(CN)_4]$ (bipy = 2,2'-bipyridine), were synthesized according to the literature method.^[1]

Synthesis. Compound 1-papy was synthesized by a diffusion method in a test tube. A mixture of methanol/water (1:3, v/v, 3 mL) was gently layered on the top of a solution of $Co(ClO_4)_2$ ·6H₂O (0.0050 mmol) in water (1.0 mL), and then a 1.0 mL methanol solution of Li[Fe(bipy)(CN)₄]·H₂O (0.010 mmol) and 4-[(1E)-2phenyldiazenyl]-pyridine (papy) (0.010 mmol) was added as the third layer. After a few weeks, dark-red flake crystals were obtained. Yield: 43% based on Co(ClO₄)₂·6H₂O. Anal. Calcd (%) for C₁₀₀H₇₄Co₂Fe₄N₃₆O₃: C 55.37, H 3.44, N 23.25; found: C 55.53, H 3.57, N 23.37. Compound **1-pepy** was synthesized by the similar method. Yield: 56% based on $Co(ClO_4)_2$ ·6H₂O. Anal. Calcd (%) for C₁₁₀H₇₈Co₂Fe₄N₂₈O₃: C 60.57, H 3.60, N 17.98; found: C 60.73, H 3.54, N 18.09. ⁵⁷Fe Mössbauer spectra. ⁵⁷Fe Mössbauer spectra were measured with transmission geometry on WSS-10 spectrometer controlled by Wissoft 2003 software. Samples were set in a plastic container and sealed with parafilm. The sample was placed on a copper mount inside the JANIS CCS-800 cryostat system with a helium atmosphere. The temperature was controlled by Cryo-con Model 22C Cryogenic Temperature Controller ranging from 10 K to 300 K. Deconvolution of Mössbauer spectra was carried by least-square fitting using Lorentzian functions (Mosswinn software). The isomer shifts δ and quadrupole splitting ΔE_{0} were calibrated in relation to α -Fe at 298 K.

Structure Determination and Refinement. The single-crystal XRD data were collected on a Bruker D8 VENTURE diffractometer equipped with a CMOS detector using graphite-monochromated Mo K α radiation (λ = 0.71073 Å). APEX-III program was used to determine the unit-cell parameters. The data were integrated with the SAINT program and were corrected for the Lorentz factor and polarization effects. Multi-scan absorption corrections were applied using SADABS. The molecular

3

structures were solved by direct methods and refined by the full-matrix least squares on *F*² using SHELXTL program (version 2014/7). All non-hydrogen atoms were refined anisotropically. The hydrogen atoms of organic ligands were located geometrically and fixed isotropic thermal parameters. Crystal data and the final refinement parameters of the studied compounds were shown in Table S1-S6. The X-ray crystallographic coordinates for structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition nos. CCDC-2247067, for **1-papy** at 110 K; -2247068, for **1-papy** at 290 K; -2247069, for **1-papy** at 78 K; -2247070, for **1-papy** after irradiation at 78 K; and -2247071, for **1-pepy** at 110 K; -2247073, for **1-pepy** at 300 K; -2247074, for **1-pepy** at 50 K; -2247075, for **1pepy** after irradiation at 50 K. These data can be obtained free of charge from CCDC *via* http://www.ccdc.cam.ac.uk/data_request/cif.

UV-vis-NIR Spectra Measurements. Solid-state UV-vis-NIR absorption spectra were recorded by a UV spectrophotometer (HITACHI-UH4150) equipped with a liquid helium type cryostat (Janis ST-500). The sample was set in a silica glass groove. For the UV-vis-NIR absorption spectra of **1**-papy under irradiation, the sample was continuously irradiated with harmonic of Nd: YAG lasers at 78 K via a flexible optical fiber guided laser diode.

Magnetic and Photomagnetic Studies. Magnetic measurements were performed on a Quantum Design SQUID (MPMS XL-7) magnetometer with the polycrystalline samples. Data were corrected for the diamagnetic contribution calculated from Pascal's constants.^[2] Photomagnetic measurements were equipped with a flexible optical fiber guided laser diode pumped Nd: YAG lasers. The polycrystalline sample were attached to a commercial adhesive tape and placed on the edge of the optical fiber. The photo-irradiation of the sample was carried out by 808-nm laser setting temperature to 10 K and 78 K for **1-papy** and by 808-nm laser setting temperature to 10 K for **1-pepy**, respectively. The temperature-dependent magnetization was measured both before and after irradiation in the temperature range from 2 to 150 K. The difference in the

magnetization before and after irradiation was extracted by subtracting the magnetization value before irradiation from that after irradiation.

Crystallographic data for the LT and HT phases

	1-рару ^{110 К}	1-рару ^{290 К}	1-реру ^{110 К}	1-реру ^{300 к}
CCDC	2247067	2247068	2247071	2247073
Formula	$C_{100}H_{74}Co_2Fe_4N_{36}O_3\\$	$C_{100}H_{74}Co_2Fe_4N_{36}O_3$	$C_{110}H_{78}Co_2Fe_4N_{28}O_3$	$C_{110}H_{78}Co_2Fe_4N_{28}O_3\\$
Fw	2169.14	2169.14	2181.23	2181.23
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic
Space group	Рī	Рī	<i>P</i> ī	Рī
<i>a</i> (Å)	13.5731(7)	13.863(3)	13.4529(14)	13.8579(12)
b (Å)	14.3430(7)	14.431(3)	14.6385(17)	14.8053(12)
c (Å)	15.6188(7)	15.991(3)	15.8026(18)	16.0832(14)
α (°)	113.6750(10)	114.141(5)	111.867(4)	112.412(2)
β(°)	109.519(2)	110.063(5)	109.080(4)	109.571(2)
γ(°)	99.1830(10)	98.012(5)	100.127(4)	99.235(2)
V (Å ³)	2468.0(2)	2591.9(9)	2567.5(5)	2712.4(4)
Ζ	1	1	1	1
$ ho_{ m calc}$ (g/cm ³)	1.455	1.386	1.404	1.329
μ (mm⁻¹)	0.971	0.925	0.932	0.882
$ heta_{\min}, \ heta_{\max}$ (°)	4.506 to 49.998	4.392 to 49.998	4.878 to 54.99	3.738 to 50.054
Reflns. (all data)	19158	18665	95194	69836
Reflns [<i>I</i> ≥2 <i>σ</i> (<i>I</i>)]	8670	9015	11762	9573
$R_{\rm int}$	0.1237	0.0698	0.0419	0.0506
R ₁ ,wR ₂ [<i>I</i> ≥2 <i>σ</i> (<i>I</i>)]	0.0671, 0.1702	0.0663, 0.1251	0.0384, 0.1070	0.0635, 0.1935
R_1, wR_2 (all data)	0.1023, 0.1836	0.1301, 0.1417	0.0471, 0.1142	0.0820, 0.2123
GOF	1.054	1.058	1.033	1.061

 Table S1. Table of crystallographic parameters for 1-papy and 1-pepy.

 $R_1 = \Sigma(|F_0| - |F_C|) / \Sigma |F_0|; \ w R_2 = [\Sigma w (|F_0| - |F_C|)^2 / \Sigma w F_0^2]^{1/2}.$

1-рару ^{110 К}		1-	1-рару ^{290 к}		
Co1–N1	1.900(4)	Co1–N1	2.091(4)		
Co1–N1 ¹	1.900(4)	Co1–N1 ¹	2.091(4)		
Co1–N5 ²	1.890(5)	Co1–N5 ²	2.098(4)		
Co1–N5 ³	1.890(5)	Co1–N5 ³	2.098(4)		
Co1–N13	1.977(4)	Co1–N13	2.164(4)		
Co1–N13 ¹	1.977(4)	Co1–N13 ¹	2.164(4)		
Co2–N16	1.973(4)	Co2–N16 ³	2.166(4)		
Co2–N16 ³	1.973(4)	Co2–N16	2.166(4)		
Co2–N2	1.891(5)	Co2–N2	2.112(4)		
Co2–N2 ³	1.891(5)	Co2–N2 ³	2.112(4)		
Co2–N6 ³	1.886(4)	Co2–N6 ³	2.063(4)		
Co2–N6	1.886(4)	Co2–N6	2.063(4)		
Fe2–N12	1.983(5)	Fe2N12	1.991(3)		
Fe2–N11	1.994(4)	Fe2N11	1.986(4)		
Fe2–C7	1.943(6)	Fe2–C7	1.960(6)		
Fe2–C6	1.893(5)	Fe2–C6	1.890(5)		
Fe2–C5	1.877(6)	Fe2–C5	1.917(5)		
Fe2–C8	1.933(6)	Fe2–C8	1.955(6)		
Fe1-N10	1.971(4)	Fe1–N10	1.978(4)		
Fe1–N9	1.984(4)	Fe1–N9	1.968(4)		
Fe1–C2	1.881(6)	Fe1–C2	1.913(5)		
Fe1–C3	1.950(6)	Fe1–C3	1.940(5)		
Fe1–C1	1.892(5)	Fe1–C1	1.890(5)		
Fe1–C4	1.947(6)	Fe1–C4	1.946(5)		

 Table S2. Selected bond lengths (Å) for compound 1-papy at 110 K and 290 K.

¹-X,1-Y,1-Z; ²-1+X,+Y,+Z; ³1-X,1-Y,1-Z (**1-papy**^{110 K})

¹-X,1-Y,1-Z; ²-1+X,+Y,+Z; ³1-X,1-Y,1-Z; ⁴1-X,2-Y,2-Z (**1-papy**^{290 K})

 1-реру ^{110 К}		1	1-реру ^{300 К}		
Co1–N1 ¹	1.8881(18)	Co1–N1 ²	2.088(4)		
Co1–N1	1.8881(18)	Co1–N1	2.088(4)		
Co1–N5 ²	1.8946(18)	Co1–N5 ³	2.099(4)		
Co1–N5 ³	1.8946(18)	Co1–N5 ¹	2.099(4)		
Co1–N13 ¹	1.9628(18)	Co1–N13 ²	2.145(4)		
Co1–N13	1.9628(18)	Co1–N13	2.145(4)		
Co2–N2	1.9154(19)	Co2–N2 ¹	2.112(4)		
Co2–N2 ³	1.9154(19)	Co2–N2	2.112(4)		
Co2–N14 ³	1.9819(19)	Co2–N6 ¹	2.072(4)		
Co2–N14	1.9818(19)	Co2–N6	2.072(4)		
Co2–N6 ³	1.8917(18)	Co2–N14	2.166(4)		
Co2–N6	1.8917(18)	Co2–N14 ¹	2.166(4)		
Fe2–C6	1.884(2)	Fe1–C2	1.915(4)		
Fe2–C5	1.904(2)	Fe1–C3	1.953(5)		
Fe2–C7	1.948(2)	Fe1–C1	1.903(4)		
Fe2–C8	1.949(2)	Fe1–C4	1.945(5)		
Fe2-N12	1.9862(19)	Fe1–N9	1.979(4)		
Fe2-N11	1.9833(18)	Fe1-N10	1.975(4)		
Fe1–C1	1.882(2)	Fe2–C5	1.917(4)		
Fe1–C2	1.891(2)	Fe2–C6	1.900(4)		
Fe1–C4	1.944(2)	Fe2–C8	1.947(5)		
Fe1–C3	1.951(2)	Fe2–C7	1.937(5)		
Fe1–N9	1.9892(19)	Fe2-N11	1.977(3)		
Fe1-N10	1.983(2)	Fe2–N12	1.984(3)		

 Table S3. Selected bond lengths (Å) for compound 1-pepy at 110 K and 300 K.

¹-X,-Y,-Z; ²-1+X,+Y,+Z; ³1-X,-Y,-Z (**1**-pepy^{110 K})

¹1-X,2-Y,1-Z; ²-X,2-Y,1-Z; ³-1+X,+Y,+Z (**1-pepy**^{300 K})

1	-nany ^{110 K}	1-pa	290 K
 N1_Co1_N1 ¹	180 0(2)	N1_Co1_N1 ¹	180.0
N1-Co1-N13	89 27(16)	$N1^{1}$ -Co1-N5 ²	88 56(14)
N1-Co1-N13 ¹	90 73(16)	$N1^{1}$ -Co1-N5 ³	91 44(14)
$N1^{1}$ -Co1-N13 ¹	89 27(16)	$N1 - Co1 - N5^{2}$	91 44(14)
$N1^{-1}$ Co1 - N13	90 73(16)	$N1 - Co1 - N5^{3}$	88 56(14)
$N5^{2}$ -Co1-N1 ¹	90.91(18)	$N1-Co1-N13^{1}$	90.93(15)
$N5^2$ -Co1-N1	89 09(17)	$N1^{-1}$ Co1-N13	90.93(15)
$N5^{3}$ -Co1-N1	90.91(18)	N1-Co1-N13	89.07(15)
$N5^{3}$ -Co1-N1 ¹	89 09(17)	N1 ¹ -Co1-N13 ¹	89.07(15)
$N5^{3}$ -Co1-N5 ²	180.0	$N5^{2}-Co1-N5^{3}$	180.0
$N5^{2}$ -Co1-N13 ¹	88 66(18)	$N5^{3}$ -Co1-N13 ¹	88 99(15)
N5 ² -Co1-N13	91.34(18)	$N5^{3}$ -Co1-N13	91.00(15)
$N5^{3}$ -Co1-N13	88.66(18)	N5 ² –Co1–N13	89.00(15)
$N5^{3}$ -Co1-N13 ¹	91 34(18)	$N5^{2}$ -Co1-N13 ¹	91 01(15)
N13 ¹ –Co1–N13	180.0(3)	N13 ¹ –Co1–N13	180.0
N16 ³ –Co2–N16	180.0	N16–Co2–N16 ²	180.0
N2-Co2-N16 ³	92.51(17)	N2–Co2–N16	86.20(15)
N2 ³ -Co2-N16 ³	87.49(17)	N2–Co2–N16 ²	93.79(15)
N2 ³ –Co2–N16	92.51(17)	N2 ² –Co2–N16 ²	86.21(15)
N2-Co2-N16	87.49(17)	N2 ² –Co2–N16	93.80(15)
N2 ³ –Co2–N2	180.0	N2 ² –Co2–N2	180.0
N6 ³ –Co2–N16 ³	89.87(17)	N6 ² –Co2–N16	90.31(16)
N6–Co2–N16 ³	90.13(17)	N6 ² –Co2–N16 ²	89.69(16)
N6-Co2-N16	89.87(17)	N6–Co2–N16	89.69(16)
N6 ³ –Co2–N16	90.13(17)	N6–Co2–N16 ²	90.31(16)
N6-Co2-N2	89.11(17)	N6 ² –Co2–N2	91.26(14)
N6 ³ –Co2–N2	90.89(18)	N6–Co2–N2	88.75(14)
N6–Co2–N2 ³	90.89(18)	N6–Co2–N2 ²	91.25(14)
N6 ³ –Co2–N2 ³	89.12(17)	N6 ² –Co2–N2 ²	88.74(14)
N6 ³ –Co2–N6	180.00(11)	N6–Co2–N6 ²	180.0
Σ _{Co1}	11.92	Σ _{Co1}	13.5
Σ _{Co2}	14.12	Σ _{Co2}	21.44
N12–Fe2–N11	81.06(17)	N11–Fe2–N12	81.20(15)
C7–Fe2–N12	91.9(2)	C7–Fe2–N12	90.78(18)
C7–Fe2–N11	93.21(18)	C7–Fe2–N11	92.88(17)
C6-Fe2-N12	94.17(19)	C6–Fe2–N12	95.93(17)
C6-Fe2-N11	174.66(19)	C6–Fe2–N11	176.64(17)
C6-Fe2-C7	89.3(2)	C6-Fe2-C7	88.91(19)
C6-Fe2-C8	88.8(2)	C6-Fe2-C5	84.91(18)
C5-Fe2-N12	177.03(18)	C6-Fe2-C8	88.4(Z)
C5-Fe2-NTT	90.09(19)	C5-Fe2-N12	178.93(17)
$C_{2} = Fe_{2} = C_{1}$	89.1(Z)	C5-Fe2-N11	97.94(17)
C5 = Fe2 = C0	00.0(Z) 97.5(2)	C5 = Fe2 = C7	09.9(2)
$C_{3} = F_{2} = C_{0}$	07.3(2) 01.6(2)	$C_{8} = E_{2} = C_{0}$	00.3(2)
C8_Fo2_N11	88.00(18)	C8_Fe2_N11	80 03(18)
$C8_F_{0}^{2}_{0}^{2}$	176 1(2)	C8_Fe2_C7	176 8(2)
N10_Fe1_N9	81 51(18)	N9-Fe1-N10	81 43(17)
C2-Fe1-N10	177 4(2)	C2–Fe1–N10	179 08(17)
C2–Fe1–N9	96.78(19)	C2-Fe1-N9	97.69(18)
C2-Fe1-C3	90.4(2)	C2–Fe1–C3	91.7(2)
C2-Fe1-C1	86.2(2)	C2–Fe1–C4	90.73(19)
C2-Fe1-C4	91.1(2)	C3–Fe1–N10	88.05(19)
C3–Fe1–N10	87.6(2)	C3–Fe1–N9	89.79(18)
C3–Fe1–N9	89.27(19)	C3–Fe1–C4	177.6(2)
C1–Fe1–N10	95.50(19)	C1-Fe1-N10	97.08(18)

 Table S4.
 Selected angles (°) for compound 1-papy at 110 K and 290 K.

C1-Fe1-N9	176.93(19)	C1–Fe1–N9	178.33(18)
C1–Fe1–C3	89.9(2)	C1–Fe1–C2	83.80(18)
C1–Fe1–C4	91.4(2)	C1–Fe1–C3	89.40(19)
C4-Fe1-N10	90.8(2)	C1–Fe1–C4	91.22(19)
C4–Fe1–N9	89.38(19)	C4-Fe1-N10	89.54(18)
C4–Fe1–C3	178.1(2)	C4–Fe1–N9	89.52(17)
C1-N1-Co1	168.2(4)	C1-N1-Co1	166.1(4)
C2-N2-Co2	163.4(4)	C2-N2-Co2	159.7(4)
C5–N5–Co14	174.5(4)	C5–N5–Co14	177.6(4)
C6-N6-Co2	172.8(4)	C6-N6-Co2	175.0(4)
N2-C2-Fe1	175.2(4)	N2-C2-Fe1	177.3(4)
N7–C7–Fe2	176.4(5)	N7–C7–Fe2	178.3(5)
N6–C6–Fe2	179.0(5)	N6-C6-Fe2	179.0(5)
N3–C3–Fe1	176.6(5)	N3-C3-Fe1	175.3(5)
N5–C5–Fe2	177.3(4)	N5-C5-Fe2	177.8(4)
N8–C8–Fe2	177.4(6)	N8-C8-Fe2	179.4(5)
N1–C1–Fe1	176.3(5)	N1–C1–Fe1	177.3(4)
N4–C4–Fe1	177.6(5)	N4–C4–Fe1	176.8(5)

¹-X,1-Y,1-Z; ²-1+X,+Y,+Z; ³1-X,1-Y,1-Z; ⁴1+X,+Y,+Z (**1-papy**^{110 K})

¹-X,1-Y,1-Z; ²1-X,1-Y,1-Z; ³-1+X,+Y,+Z; ⁴1+X,+Y,+Z (**1-papy**^{290 K})

	5 ()	1 1-1-2	
	1-реру ^{110 к}	1 -	реру ^{300 К}
N1 ¹ –Co1–N1	180.0	N13 ² –Co1–N13	180.0
N1–Co1–N5 ²	91.19(8)	N5 ³ –Co1–N13 ²	89.58(15)
N1–Co1–N5 ³	88.81(8)	N5 ¹ –Co1–N13 ²	90.42(15)
N1 ¹ –Co1–N5 ²	88.80(8)	N5 ¹ –Co1–N13	89.58(15)
N1 ¹ –Co1–N5 ³	91.20(8)	N5 ³ –Co1–N13	90.42(15)
N1-Co1-N131	90.55(8)	N5 ¹ –Co1–N5 ³	180.0
N1–Co1–N13	89.45(8)	N1–Co1–N13 ²	91.13(15)
N1 ¹ –Co1–N13	90.55(8)	N1 ² -Co1-N13 ²	88.87(15)
N11-Co1-N131	89.45(8)	N1–Co1–N13	88.87(15)
N5 ² –Co1–N5 ³	180.00(16)	N1 ² –Co1–N13	91.13(15)
N5 ³ –Co1–N13	90.60(8)	N1–Co1–N5 ¹	91.28(15)
N5 ² -Co1-N13	89.40(8)	N1 ² -Co1-N5 ³	91.28(15)
N5 ² -Co1-N13 ¹	90.60(8)	N1 ² –Co1–N5 ¹	88.72(15)
N5 ³ -Co1-N13 ¹	89.40(8)	N1–Co1–N5 ³	88.72(15)
N131-Co1-N13	180.00(12)	N1 ² –Co1–N1	180.0
N2–Co2–N2 ²	180.0	N14–Co2–N14 ¹	180.0
N2-Co2-N14	86.81(8)	N6 ¹ –Co2–N14	90.27(15)
N2 ² -Co2-N14	93.19(8)	N6 ¹ -Co2-N14 ¹	89.73(15)
N2 ² -Co2-N14 ²	86.81(8)	N6-Co2-N141	90.27(15)
N2-Co2-N142	93.19(8)	N6-Co2-N14	89.73(15)
N14-Co2-N142	180.0	N6 ¹ –Co2–N6	180.0
N6–Co2–N2 ²	90.87(8)	N6 ¹ -Co2-N2 ¹	89.14(14)
N6-Co2-N2	89.13(8)	N6–Co2–N2 ¹	90.87(14)
N6 ² –Co2–N2 ²	89.13(8)	N6 ¹ –Co2–N2	90.86(14)
N6 ² -Co2-N2	90.87(8)	N6-Co2-N2	89.13(14)
N6 ² -Co2-N14 ²	90.05(8)	N2 ¹ –Co2–N14 ¹	85.53(14)
N6-Co2-N14	90.05(8)	N2-Co2-N141	94.47(14)
N6 ² -Co2-N14	89.95(8)	N21-Co2-N14	94.47(14)
N6-Co2-N14 ²	89.95(8)	N2-Co2-N14	85.53(14)
N6–Co2–N6 ²	180.00(9)	N21-Co2-N2	180.0
Σ_{Co1}	9.38	Σ_{Co1}	11.32
Σ_{Co2}	16.44	Σ_{Co2}	22.42
C6–Fe2–C5	87.35(9)	N10–Fe1–N9	81.03(17)
C6–Fe2–C7	90.14(9)	C2–Fe1–N9	97.55(17)
C6–Fe2–C8	89.04(10)	C2-Fe1-N10	178.52(17)
C6–Fe2–N12	94.46(8)	C2–Fe1–C3	92.41(19)
C6–Fe2–N11	175.22(8)	C2–Fe1–C4	90.08(19)
C5–Fe2–C7	88.82(9)	C3–Fe1–N9	90.59(18)
C5–Fe2–C8	87.13(10)	C3–Fe1–N10	88.03(18)
C5–Fe2–N12	178.05(8)	C1–Fe1–N9	178.53(17)
C5–Fe2–N11	96.90(8)	C1–Fe1–N10	97.51(17)
C7–Fe2–C8	175.90(10)	C1–Fe1–C2	83.91(18)
C7–Fe2–N12	90.44(9)	C1–Fe1–C3	89.15(19)
C7–Fe2–N11	92.12(9)	C1–Fe1–C4	90.36(18)
C8–Fe2–N12	93.63(9)	C4–Fe1–N9	89.84(17)
C8–Fe2–N11	89.00(9)	C4–Fe1–N10	89.49(18)
N11-Fe2-N12	81.32(8)	C4–Fe1–C3	177.39(19)
C1–Fe1–C2	85.82(9)	N11–Fe2–N12	81.09(15)
C1–Fe1–C4	90.78(9)	C5–Fe2–N12	178.72(17)
C1–Fe1–C3	89.27(9)	C5–Fe2–N11	98.07(16)
C1-Fe1-N10	96.07(9)	C5–Fe2–C8	88.3(2)
C1-Fe1-N9	177.25(9)	C5–Fe2–C7	88.56(19)
C2–Fe1–C4	89.86(9)	C6–Fe2–N12	95.87(16)
C2–Fe1–C3	92.78(9)	C6–Fe2–N11	176.57(16)
C2-Fe1-N10	178.11(8)	C6–Fe2–C5	85.00(18)
C2–Fe1–N9	96.93(8)	C6–Fe2–C8	88.68(19)

Table S5. Selected angles	(°) for compound	1-pepy at 110 K	and 300 K.
-----------------------------------	------------------	------------------------	------------

C4–Fe1–C3	177.36(10)	C6–Fe2–C7	89.28(19)
C4–Fe1–N10	90.32(9)	C8–Fe2–N12	92.66(19)
C4–Fe1–N9	89.46(9)	C8–Fe2–N11	89.87(18)
C3–Fe1–N10	87.05(9)	C7–Fe2–N12	90.51(18)
C3–Fe1–N9	90.36(9)	C7–Fe2–N11	92.33(18)
N10-Fe1-N9	81.19(8)	C7–Fe2–C8	176.4(2)
N1–C1–Fe1	176.3(2)	N1–C1–Fe1	176.1(4)
N2–C2–Fe1	177.52(19)	N3-C3-Fe1	175.1(5)
N4–C4–Fe1	178.4(2)	N2-C2-Fe1	177.6(4)
N3–C3–Fe1	175.3(2)	N4–C4–Fe1	177.0(5)
N6–C6–Fe2	178.4(2)	N5-C5-Fe2	177.6(4)
N5–C5–Fe2	178.07(19)	N6–C6–Fe2	179.0(4)
N7–C7–Fe2	178.9(2)	N7-C7-Fe2	179.6(5)
N8–C8–Fe2	176.1(2)	N8-C8-Fe2	179.8(7)
C1–N1–Co1	170.82(19)	C1-N1-Co1	170.1(4)
C5–N5–Co1⁴	176.17(18)	C5–N5–Co14	177.1(4)
C2–N2–Co2	158.49(18)	C2-N2-Co2	158.6(4)
C6–N6–Co2	175.64(18)	C6-N6-Co2	175.5(4)

¹-X,-Y,-Z; ²-1+X,+Y,+Z; ³1-X,-Y,-Z; ⁴-X,1-Y,-Z (**1-pepy**^{110 K})

¹1-X,2-Y,1-Z; ²-X,2-Y,1-Z; ³-1+X,+Y,+Z; ⁴1+X,+Y,+Z (**1-pepy**^{300 K})

Crystallographic data for the LS and photo-excited

HS* phases

Table S6.	Table of crystallographic parameters for 1-papy and 1-pepy before and
	after 808-nm laser irradiation at 78 and 50 K, respectively.

	1-рару ^{78 К}	1-papy ^{808 nm}	1-реру ^{50 К}	1-pepy ^{808 nm}
CCDC	2247069	2247070	2247074	2247075
Formula	$C_{100}H_{74}Co_2Fe_4N_{36}O_3$	C ₁₀₀ H ₇₄ Co ₂ Fe ₄ N ₃₆ O ₃	C ₁₁₀ H ₇₈ Co ₂ Fe ₄ N ₂₈ O ₃	$C_{110}H_{78}Co_2Fe_4N_{28}O_3$
Fw	2169.14	2169.14	2181.23	2181.23
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic
Space group	Рī	<i>P</i> ī	<i>P</i> ī	Рī
<i>a</i> (Å)	13.6276(15)	13.8374(13)	13.4126(4)	13.6686(11)
b (Å)	14.3424(16)	14.4192(14)	14.6128(6)	14.8739(12)
c (Å)	15.6194(18)	15.8950(15)	15.7476(6)	16.0438(13)
α (°)	113.678(3)	114.184(3)	112.0100(10)	112.159(2)
β(°)	109.594(3)	110.012(3)	109.1130(10)	110.128(3)
γ(°)	99.000(3)	98.189(3)	99.9300(10)	100.153(3)
V (Å ³)	2479.5(5)	2566.4(4)	2545.68(16)	2654.9(4)
Ζ	1	1	1	1
$ ho_{ m calc}(m g/cm^3)$	1.449	1.400	1.416	1.358
μ (mm ⁻¹)	0.967	0.934	0.940	0.902
$ heta_{\min}, \ heta_{\max}$ (°)	4.49 to 50	4.85 to 49.994	3.808 to 49.994	4.458 to 50
Reflns. (all data)	49747	55575	62891	112256
Reflns [<i>I</i> ≥2 <i>σ</i> (/)]	8413	8890	8924	9122
R _{int}	0.0940	0.0864	0.0580	0.0968
R ₁ ,wR ₂ [<i>l</i> ≥2 <i>σ</i> (<i>l</i>)]	0.0810, 0.2253	0.0749, 0.2098	0.0452, 0.1230	0.0656, 01752
R ₁ ,wR ₂ (all data)	0.1099, 0.2488	0.1024, 0.2335	0.0527, 0.1276	0.0831, 0.1876
GOF	1.116	1.119	1.144	1.138

 $R_1 = \Sigma(|F_0| - |F_C|) / \Sigma |F_0|; \ w R_2 = [\Sigma w (|F_0| - |F_C|)^2 / \Sigma w F_0^2]^{1/2}.$

1-	рару ^{78 к}	1-р	1-papy ^{808 nm}		
Co1-N1	1.897(5)	Co1–N1	2.093(4)		
Co1–N1 ¹	1.897(5)	Co1–N1 ¹	2.093(4)		
Co1–N5 ²	1.916(6)	Co1–N5 ²	2.102(5)		
Co1–N5 ³	1.916(6)	Co1–N5 ³	2.102(5)		
Co1–N13	1.983(5)	Co1–N13 ¹	2.155(4)		
Co1-N131	1.983(5)	Co1–N13	2.155(4)		
Co2–N16	1.973(5)	Co2–N16 ³	2.148(4)		
Co2–N16 ³	1.973(5)	Co2–N16	2.148(4)		
Co2–N2	1.906(6)	Co2–N2 ³	2.114(5)		
Co2–N2 ³	1.906(6)	Co2–N2	2.114(5)		
Co2–N6 ³	1.889(5)	Co2–N6 ³	2.065(4)		
Co2–N6	1.889(5)	Co2–N6	2.065(4)		
Fe2-N12	1.997(5)	Fe2-N12	1.992(5)		
Fe2–N11	1.992(5)	Fe2-N11	1.983(4)		
Fe2–C7	1.943(6)	Fe2–C7	1.960(5)		
Fe2–C6	1.879(6)	Fe2–C6	1.904(5)		
Fe2–C5	1.899(7)	Fe2–C5	1.917(6)		
Fe2–C8	1.939(6)	Fe2–C8	1.945(6)		
Fe1-N10	1.975(5)	Fe1-N10	1.976(5)		
Fe1–N9	1.979(5)	Fe1–N9	1.974(4)		
Fe1–C2	1.900(7)	Fe1–C2	1.914(6)		
Fe1–C3	1.940(6)	Fe1–C3	1.953(6)		
Fe1–C1	1.893(6)	Fe1–C1	1.912(5)		
Fe1–C4	1.955(6)	Fe1–C4	1.957(6)		

Table S7. Selected bond lengths (Å) for compound **1-papy** before and after 808-nmlaser irradiation at 78 K.

¹-X,1-Y,1-Z; ²-1+X,+Y,+Z; ³1-X,1-Y,1-Z (**1-papy**^{78 K})

¹-X,1-Y,1-Z; ²-1+X,+Y,+Z; ³1-X,1-Y,1-Z (**1-papy**^{808 nm})

1-реру ^{50 к}		1-r	1-pepy ^{808 nm}		
Co1–N1 ¹	1.881(3)	Co1–N1	2.090(4)		
Co1–N1	1.881(3)	Co1–N1 ¹	2.090(4)		
Co1–N5 ²	1.894(3)	Co1–N5 ²	2.103(3)		
Co1–N5 ³	1.894(3)	Co1–N5 ³	2.103(3)		
Co1–N13 ¹	1.963(3)	Co1–N13	2.142(3)		
Co1–N13	1.963(3)	Co1–N13 ¹	2.142(3)		
Co2–N2	1.904(3)	Co2–N2	2.131(3)		
Co2–N2 ²	1.904(3)	Co2–N2 ³	2.131(3)		
Co2–N14 ²	1.976(3)	Co2–N14	2.162(3)		
Co2–N14	1.976(3)	Co2–N14 ³	2.162(3)		
Co2–N6	1.882(3)	Co2–N6	2.061(4)		
Co2–N6 ²	1.882(3)	Co2–N6 ³	2.062(4)		
Fe2–C6	1.880(3)	Fe2–C6	1.891(5)		
Fe2–C5	1.905(3)	Fe2–C5	1.911(4)		
Fe2–C7	1.950(3)	Fe2–C7	1.952(4)		
Fe2–C8	1.954(3)	Fe2–C8	1.957(5)		
Fe2-N12	1.983(3)	Fe2N12	1.987(3)		
Fe1-N10	1.983(3)	Fe1-N10	1.984(3)		
Fe1–N9	1.988(3)	Fe1–N9	1.979(4)		
Fe2-N11	1.981(3)	Fe2-N11	1.981(4)		
Fe1–C1	1.875(3)	Fe1–C1	1.911(5)		
Fe1–C2	1.887(3)	Fe1–C2	1.915(4)		
Fe1–C4	1.943(3)	Fe1–C4	1.959(4)		
Fe1–C3	1.953(3)	Fe1–C3	1.962(4)		

Table S8. Selected bond lengths (Å) for compound **1-pepy** before and after 808-nmlaser irradiation at 50 K.

¹-X,-Y,-Z; ²1-X,-Y,-Z; ³-1+X,+Y,+Z (**1-pepy**^{50 K})

¹-X,-Y,-Z; ²-1+X,+Y,+Z; ³1-X,-Y,-Z (**1-pepy**^{808 nm})

1-p	ару ^{78 К}	1-pa	DV ^{808 nm}
N1–Co1–N1 ¹	180.0(3)	N1–Co1–N1 ¹	180.0
N1 ¹ –Co1–N5 ²	90.9(2)	N1 ¹ –Co1–N5 ²	91.51(17)
N1–Co1–N5 ²	89.1(2)	N1–Co1–N5 ²	88.49(17)
N1 ¹ –Co1–N5 ³	89.1(2)	N1 ¹ –Co1–N5 ³	88.49(17)
N1–Co1–N5 ³	90.9(2)	N1–Co1–N5 ³	91.51(17)
N1 ¹ –Co1–N13	90.63(19)	N1–Co1–N131	90.37(16)
N1-Co1-N13	89.37(19)	N1 ¹ –Co1–N13 ¹	89.63(16)
N1–Co1–N13 ¹	90.63(19)	N1–Co1–N13	89.63(16)
N1 ¹ –Co1–N13 ¹	89.37(19)	N1 ¹ –Co1–N13	90.37(16)
N5 ³ –Co1–N5 ²	180.0	N5 ³ –Co1–N5 ²	180.0
N5 ² –Co1–N13 ¹	89.0(2)	N5 ² –Co1–N13 ¹	88.41(18)
N5 ³ –Co1–N13 ¹	91.0(2)	N5 ² -Co1-N13	91.59(18)
N5 ³ –Co1–N13	89.0(2)	N5 ³ –Co1–N13	88.41(18)
N5 ² –Co1–N13	91.0(2)	N5 ³ –Co1–N13 ¹	91.59(18)
N13–Co1–N13 ¹	180.0	N13 ¹ –Co1–N13	180.0(3)
N16 ³ –Co2–N16	180.0	N16–Co2–N16 ³	180.0
N2 ³ –Co2–N16 ³	87.8(2)	N2-Co2-N16	86.96(17)
N2–Co2–N16 ³	92.2(2)	N2–Co2–N16 ³	93.04(17)
N2 ³ –Co2–N16	92.2(2)	N2 ³ –Co2–N16 ³	86.96(17)
N2–Co2–N16	87.8(2)	N2 ³ –Co2–N16	93.04(17)
N2–Co2–N2 ³	180.0	N2 ³ –Co2–N2	180.0
N6 ³ –Co2–N16 ³	89.92(19)	N6 ³ –Co2–N16	90.30(17)
N6–Co2–N16 ³	90.08(19)	N6–Co2–N16	89.70(17)
N6 ³ –Co2–N16	90.08(19)	N6 ³ –Co2–N16 ³	89.70(17)
N6–Co2–N16	89.92(19)	N6–Co2–N16 ³	90.30(17)
N6 ³ –Co2–N2 ³	89.4(2)	N6 ³ –Co2–N2	91.28(17)
N6–Co2–N2 ³	90.6(2)	N6 ³ –Co2–N2 ³	88.72(17)
N6–Co2–N2	89.4(2)	N6–Co2–N2 ³	91.28(17)
N6 ³ -Co2-N2	90.6(2)	N6-Co2-N2	88.72(17)
N6-C02-N63	180.0(3)	N6-C02-N6 ³	180.0(2)
Σ _{Co1}	10.12	Σ _{Co1}	13.88
Σ_{Co2}	11.52	Σ_{Co2}	18.48
	80.8(2)		81.02(18)
C7 Fe2-N12	91.0(Z)	C7_Fe2-N12	92.0(2)
$C_{1} = Fe_{2} = N_{11}$	93.0(2)	C_{1} = Fe_{2} = N_{12}	94.07(10)
C0 = Fez = IN12	94.3(Z) 174.6(2)	C0 = Fez = INTZ	90.9(Z) 176 5(2)
$C6 = Fe^2 = C7$	88 0(2)	$C6 = Fe^2 = C7$	87 6(2)
C6 = Fe2 = C7	88 3(2)	$C6 = Fe^2 = C7$	84 5(2)
C6_Fe2_C8	88 6(2)	C6_Fe2_C8	88 3(2)
C5_Fe2_N12	177 1(2)	C5_Fe2_N12	178 17(19)
C5-Fe2-N11	96.5(2)	C5-Fe2-N11	98 5(2)
C5-Fe2-C7	89.6(3)	C5-Fe2-C7	89 8(2)
C5-Fe2-C8	87.0(3)	C5-Fe2-C8	87.3(2)
C8-Fe2-N12	91.8(2)	C8-Fe2-N12	90.9(2)
C8–Fe2–N11	89.1(2)	C8–Fe2–N11	90.11(19)
C8–Fe2–C7	175.9(2)	C8–Fe2–C7	175.3(2)
N10-Fe1-N9	81.9(2)	N9-Fe1-N10	82.05(19)
C2–Fe1–N10	177.7(2)	C2–Fe1–N10	179.0(2)
C2–Fe1–N9	96.7(2)	C2–Fe1–N9	97.6(2)
C2–Fe1–C3	90.2(2)	C2–Fe1–C3	90.8(2)
C2–Fe1–C4	91.2(2)	C2–Fe1–C4	91.9(2)
C3–Fe1–N10	88.0(2)	C3–Fe1–N10	88.2(2)
C3-Fe1-N9	89.3(2)	C3-Fe1-N9	89.50(19)

 Table S9. Selected angles (°) for compound 1-papy before and after 808-nm laser

 irradiation at 78 K.

C3–Fe1–C4	178.1(2)	C3–Fe1–C4	177.3(2)
C1–Fe1–N10	95.4(2)	C1–Fe1–N10	97.2(2)
C1–Fe1–N9	177.3(2)	C1–Fe1–N9	179.1(2)
C1–Fe1–C2	85.9(2)	C1–Fe1–C2	83.2(2)
C1–Fe1–C3	90.1(2)	C1–Fe1–C3	90.0(2)
C1–Fe1–C4	91.3(2)	C1–Fe1–C4	90.7(2)
C4–Fe1–N10	90.7(2)	C4–Fe1–N10	89.0(2)
C4–Fe1–N9	89.2(2)	C4–Fe1–N9	89.81(18)
Σ _{Fe2}	35.5	Σ _{Fe2}	42.96
Σ_{Fe1}	31.3	Σ_{Fe1}	36.44
C1–N1–Co1	168.1(4)	C1-N1-Co1	165.3(4)
C2-N2-Co2	162.5(4)	C2-N2-Co2	159.4(4)
C5–N5–Co1 ⁴	173.6(5)	C5–N5–Co1 ⁴	176.2(5)
C6–N6–Co2	172.8(5)	C6-N6-Co2	170.5(4)
N2-C2-Fe1	175.4(5)	N2-C2-Fe1	176.3(4)
N7–C7–Fe2	177.4(5)	N7-C7-Fe2	176.1(4)
N6–C6–Fe2	179.3(5)	N6-C6-Fe2	179.0(5)
N3–C3–Fe1	177.1(5)	N3-C3-Fe1	177.0(5)
N5–C5–Fe2	177.5(5)	N5-C5-Fe2	176.7(5)
N8–C8–Fe2	178.5(6)	N8-C8-Fe2	179.1(7)
N1–C1–Fe1	176.1(5)	N1–C1–Fe1	176.3(4)
N4–C4–Fe1	178.1(5)	N4–C4–Fe1	177.2(5)

¹-X,1-Y,1-Z; ²-1+X,+Y,+Z; ³1-X,1-Y,1-Z; ⁴1+X,+Y,+Z (**1-papy**^{78 K})

 $^{1}\text{-}X, 1\text{-}Y, 1\text{-}Z; \, ^{2}\text{-}1\text{+}X, \text{+}Y, \text{+}Z; \, ^{3}\text{1-}X, 1\text{-}Y, 1\text{-}Z; \, ^{4}\text{1+}X, \text{+}Y, \text{+}Z \, \left(\textbf{1-papy}^{808 \text{ nm}}\right)$

	1-pepy ^{50 K}	1-r	2000 Nm	—
N1 ¹ -Co1-N1	180 00(13)	N1–Co1–N1 ¹	180.0	-
$N1 - Co1 - N5^2$	91 35(11)	$N1 - Co1 - N5^{2}$	92 18(13)	
N1-Co1-N5 ³	88 65(11)	$N1^{1}$ -Co1-N5 ²	87 82(13)	
$N1^{1}$ -Co1-N5 ²	88 65(11)	$N1 - Co1 - N5^3$	87 82(13)	
$N1^{1}$ Co1 $N5^{3}$	91 35(11)	$N1^{1}$ -Co1-N5 ³	92 18(13)	
$N1^{-}C01-N13$	90 40(10)	N1 ¹ -Co1-N13	90.87(13)	
N1 ¹ -Co1-N13 ¹	89 60(10)	N1_Co1_N13	89 13(13)	
N1-Co1-N13	89 60(10)	$N1-Co1-N13^{1}$	90.87(13)	
N1_Co1_N13 ¹	90.40(10)	N1 ¹ -Co1-N13 ¹	89 13(13)	
$N5^{2}$ -Co1-N5 ³	180 0(2)	$N5^{2}-Co1-N5^{3}$	180 0(3)	
$N5^{2}$ -Co1-N13	89 56(11)	N5 ² -Co1-N13	90 16(13)	
N5 ³ –Co1–N13	90.44(11)	N5 ³ –Co1–N13 ¹	90.16(13)	
$N5^{3}$ -Co1-N13 ¹	89.56(11)	$N5^{2}-Co1-N13^{1}$	89.84(13)	
$N5^{2}$ -Co1-N13 ¹	90.44(11)	N5 ³ –Co1–N13	89.84(13)	
N13-Co1-N13 ¹	180.0	N13–Co1–N13 ¹	180.0	
$N2-Co2-N2^{2}$	180.0	$N2^2$ –Co2–N2	180.0	
$N2^{2}-Co2-N14^{2}$	86.72(11)	N2 ² -Co2-N14	95,26(13)	
$N2^{2}$ -Co2-N14	93.28(11)	$N2-Co2-N14^2$	95.26(13)	
$N2-Co2-N14^{2}$	93.28(11)	$N2^{2}-Co2-N14^{2}$	84.74(13)	
N2-Co2-N14	86.72(11)	N2–Co2–N14	84.74(13)	
N14 ² –Co2–N14	180.0	N14 ² –Co2–N14	180.0(2)	
N6-Co2-N2	89.07(10)	N6–Co2–N2	88.21(14)	
N6 ² –Co2–N2	90.93(10)	N6 ² –Co2–N2	91.79(14)	
N6 ² –Co2–N2 ²	89.07(10)	N6–Co2–N2 ²	91.79(14)	
N6–Co2–N2 ²	90.93(10)	N6 ² –Co2–N2 ²	88.21(14)	
N6 ² -Co2-N14	90.11(11)	N6 ² –Co2–N14	90.46(14)	
N6-Co2-N14	89.89(11)	N6–Co2–N14	89.54(14)	
N6-Co2-N14 ²	90.11(11)	N6 ² –Co2–N14 ²	89.54(14)	
N6 ² –Co2–N14 ²	89.89(11)	N6-Co2-N14 ²	90.46(14)	
N6 ² -Co2-N6	180.0	N6-Co2-N6 ²	180.0	
Σ_{Co1}	8.76	Σ _{Co1}	12.84	
Σ_{Co2}	17.28	$\Sigma_{\rm Co2}$	30.04	
C6–Fe2–C5	86.94(12)	C6-Fe2-C5	83.72(17)	
C6–Fe2–C7	90.12(13)	C6–Fe2–C7	89.09(17)	
C6–Fe2–C8	88.91(13)	C6–Fe2–C8	88.96(18)	
C6–Fe2–N12	94.79(12)	C6–Fe2–N12	96.25(16)	
C6–Fe2–N11	175.40(12)	C6–Fe2–N11	176.79(15)	
C5–Fe2–C7	88.70(13)	C5–Fe2–C7	87.95(16)	
C5–Fe2–C8	87.08(13)	C5–Fe2–C8	88.56(16)	
C5–Fe2–N12	178.18(11)	C5–Fe2–N12	178.55(15)	
C5–Fe2–N11	97.03(12)	C5–Fe2–N11	98.85(16)	
C7–Fe2–C8	175.72(13)	C7–Fe2–C8	176.17(16)	
C7–Fe2–N12	90.73(12)	C7–Fe2–N12	90.60(15)	
C7–Fe2–N11	92.29(12)	C7–Fe2–N11	92.90(16)	
C8–Fe2–N12	93.50(12)	C8–Fe2–N12	92.89(15)	
C8–Fe2–N11	88.97(12)	C8–Fe2–N11	89.20(16)	
N11-Fe2-N12	81.26(11)	N11-Fe2-N12	81.22(15)	
C1–Fe1–C2	85.83(12)	C1–Fe1–C2	82.10(17)	
C1–Fe1–C4	90.82(13)	C1–Fe1–C4	90.58(17)	
C1–Fe1–C3	89.41(13)	C1–Fe1–C3	88.37(17)	
C1-Fe1-N10	95.93(12)	C1-Fe1-N10	98.20(16)	
C1–Fe1–N9	177.09(12)	C1–Fe1–N9	179.30(15)	
C2–Fe1–C4	89.99(13)	C2–Fe1–C4	90.99(16)	
C2–Fe1–C3	92.74(13)	C2–Fe1–C3	93.57(16)	

 Table S10. Selected angles (°) for compound 1-pepy before and after 808-nm laser

 irradiation at 50 K.

C2–Fe1–N10	178.21(12)	C2-Fe1-N10	178.99(15)
C2–Fe1–N9	97.06(12)	C2–Fe1–N9	98.15(16)
C4–Fe1–C3	177.26(13)	C4–Fe1–C3	175.14(17)
C4–Fe1–N10	90.26(12)	C4-Fe1-N10	88.04(15)
C4–Fe1–N9	89.43(12)	C4–Fe1–N9	90.07(16)
C3–Fe1–N10	87.00(12)	C3–Fe1–N10	87.41(15)
C3–Fe1–N9	90.21(12)	C3–Fe1–N9	90.96(16)
N10-Fe1-N9	81.17(11)	N9-Fe1-N10	81.55(15)
Σ _{Fe2}	36.6	Σ _{Fe2}	42.79
Σ_{Fe1}	34.19	Σ _{Fe1}	45.05
N1–C1–Fe1	176.2(3)	N1–C1–Fe1	175.8(3)
N2–C2–Fe1	177.2(3)	N2–C2–Fe1	177.8(4)
N6–C6–Fe2	178.4(3)	N4–C4–Fe1	175.0(3)
N5–C5–Fe2	177.8(3)	N3-C3-Fe1	175.3(4)
N7–C7–Fe2	177.9(3)	N6-C6-Fe2	179.4(4)
N8–C8–Fe2	175.3(3)	N5–C5–Fe2	176.3(4)
N4–C4–Fe1	177.8(3)	N7–C7–Fe2	177.2(4)
N3–C3–Fe1	174.7(3)	N8–C8–Fe2	178.5(4)
C1-N1-Co1	169.9(3)	C1-N1-Co1	169.3(3)
C5–N5–Co14	175.9(2)	C5–N5–Co14	174.9(3)
C2-N2-Co2	158.1(2)	C2-N2-Co2	156.8(3)
C6-N6-Co2	175.6(2)	C6–N6–Co2	177.0(3)

¹-X,-Y,-Z; ²1-X,-Y,-Z; ³-1+X,+Y,+Z; ⁴1+X,+Y,+Z (**1-pepy**^{50 K})

¹-X,-Y,-Z; ²1-X,-Y,-Z; ³-1+X,+Y,+Z; ⁴1+X,+Y,+Z (**1-pepy**^{808 nm})

	1-papy ^{78 K}	1-papy ^{808 nm}	1-реру ^{50 к}	1-pepy ^{808 nm}
Av. Co–N _{CN} (Å)	1.902(5)	2.094(4)	1.890(3)	2.096(4)
Aν. Co–N _L (Å)	1.978(5)	2.152(4)	1.969(3)	2.152(3)
$\Sigma_{ ext{Co1}}$ (°) ^[a]	10.12	13.88	8.76	12.84
Σ _{Co2} (°)	11.52	18.48	17.28	30.04
$\Theta_{co1}(^{\circ})^{[a]}$	20.67	20.85	20.85	21.71
$\Theta_{co2}(^{\circ})$	25.19	30.36	33.56	49.07
$\pi_{L} \cdots \pi_{L}$ (Å) ^[b]	3.726(4)	3.688(4)	3.776(1)	3.766(1)
Its dihedral angles (°) ^[c]	165.46	166.07	161.72	159.29
$\pi_{ ext{bipy}} \cdots \pi_{ ext{bipy}}$ (Å) ^[b]	3.838(4)	3.771(4)	3.8872(1)	3.8266(3)
Its dihedral angles (°) ^[c]	180.0	180.0	161.72	180.0
Cell volume (Å ³) ^[d]	2479.5(5)	2566.4(4)	2545.68(16)	2654.9(4)

Table S11. Selected average coordination bond lengths, interchain contact distances around the Co sites, distortion parameters, and cell volume before and after irradiation at 78 and 50 K for 1-papy and 1-pepy, respectively.

[a] Distortion parameters of $\Sigma = (\sum_{i=1}^{12} |90 - \alpha_i|)$ and $\Theta = (\sum_{j=1}^{24} |60 - \theta_j|)$ are the sums of twelve *cis*-N–Co–N

angles (α_i) and twenty-four unique N–Co–N angles (θ_i) measured on the projection of two triangular faces of the octahedron along their common pseudo-threefold axis, respectively. [b] The interchain $\pi_L \cdots \pi_L$ and $\pi_{\text{bipy}} \cdots \pi_{\text{bipy}}$ distances are calculated by the distances between centers of the corresponding aromatic rings. [c] The dihedral angles of the interacting aromatic rings. [d] The numbers of molecules in the unit cell are 2 for 1-papy and 1-pepy.

Schemes of interchain $\pi \cdots \pi$ stacks

Figure S1. Interchain $\pi \cdots \pi$ interactions for **1-papy** (a) and **1-pepy** (b). Orange-dash: interchain $\pi_{L} \cdots \pi_{L}$ contacts of the phenyl and pyridyl rings coordinating to Co1 and Co2 ions, respectively. Purple-dash: interchain $\pi_{bipy} \cdots \pi_{bipy}$ contacts of the bipyridine rings coordinating to Fe1 ions.

Figure S2. View of packing diagrams with the $\pi \cdots \pi$ interaction network in the neighbouring chains for (a) **1-papy** and (b) **1-pepy** along the crystallographic *a*-axis.

⁵⁷Fe Mössbauer spectra for LT and HT phases

gure S3. ⁵⁷Fe Mössbauer spectra of **1-papy** (a) and **1-pepy** (b) collected at 300 and 78 K.

UV-vis-NIR absorption spectra

Figure S4. Variable temperature solid-state UV-vis-NIR absorption spectra from 300 K to 78 K for **1-papy** (a) and **1-pepy** (b).

Single-chain magnetic properties for the photoexcited HS* phases

Figure S5. (a) Temperature dependence of the in-phase χ' and out-of-phase χ'' components of ac magnetic susceptibility under a 3.5 Oe oscillating field for the photoinduced HS* phase after 808-nm irradiation at 78 K of **1-papy**. (b) Arrhenius plots for the magnetic relaxation process for the photo-induced HS* phase after 946-nm irradiation at 78 K of **1-papy**.

Figure S6. Temperature dependence of the in-phase χ' (a) and out-of-phase χ'' (b) components of ac magnetic susceptibility under a 3.5 Oe oscillating field for the photo-induced HS* phase after irradiation of **1-pepy**. (c) Arrhenius plots for the magnetic relaxation process in the photo-generated HS* phases after irradiation at 10 K.

Figure S7. Plots of $\ln(\chi'T)$ versus T^{-1} for the photo--induced HS* chains after irradiation under 808 nm laser. The red solid lines represent fitting with the equation $\chi'T/C_{\text{eff}} = \exp(\Delta_{\xi}/k_{\text{B}}T)$ between 4 and 25 K for **1-papy** and between 4 and 15 K for **1-pepy**.

Reference:

- R. Lescouëzec, F. Lloret, M. Julve, J. Vaissermann, M. Verdaguer, R. Llusar, S. Uriel, *Inorg. Chem.* 2001, 40, 2065-2072.
- [2] G. A. Bain, J. F. Berry, J. Chem. Edu. 2008, 85, 532.