Supporting Information

Efficient inverse CO₂/C₂H₂ separation driven by rare thermodynamic affinities difference in a porous MOF

Hai-Yu Duan^a, Xiu-Yuan Li^{*a}, Lei Hou^{*b}, Si-Ru Liu^a, Xiang-Yu Liu^{*c}, Ping Wang^{*a}

^aShaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China. E-mail: lixiuyuan@xatu.edu.cn, wping0922@163.com

^bKey Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China. E-mail: lhou2009@nwu.edu.cn

^cState Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China. E-mail: xiangyuliu432@126.com

MOFs	Uptake of CO ₂ /C ₂ H ₂ @273K, 100 kPa (cm ³ g ⁻¹)	Uptake of CO ₂ /C ₂ H ₂ @298K, 100 kPa (cm ³ g ⁻¹)	ke of C ₂ H ₂ Q _{st} of 98K, CO ₂ /C ₂ H ₂ Selectivity kPa (kJ mol ⁻¹)		Selectivity Conditions	Ref.
[Co(HL ^{dc})]	108/-	239.5°/140°	\	\	١	1
[Mn(bdc)(dpe)]	46.8ª/7.3ª	١	29-30/28	8.8	273 K, 100 kPa	2
SIFSIX-3-Ni	١	2.7°/3.3°	50.9/36.7	7.7 ^j	298 K, 1 bar	3
CD-MOF-1	١	2.87°/2.23°	41.0/17.6	6.6 ^j	298 K, 100 kPa	4
CD-MOF-2	١	2.67°/2.03°	67.2/25.8	16.0 ^j	298 K, 100 kPa	4
Tm-MOF	146.3/63.0	130.6/47	45.2/17.8	17.5 ^j	298 K, 1 bar	5
MUF-16	١	47.78 ^f /3.99 ^f	32.3/-	510	293 K, 1 bar	6
MUF-16(Ni)	١	47.97 ^f /7.53 ^f	37.3/-	46	293 K, 1 bar	6
MUF-16(Mn)	١	50.5 ^f /9.69 ^f	36.6/-	31	293 K,	6
Cd-NP	١	58.0/9.7	27.7/-	85	298 K,	7
PCP-NH ₂ -ipa	١	72/43	36.6/26.8	6.4	298 K,	8
PCP-NH ₂ -bdc	١	68/43	34.57/25.6	4.4	1 bar 298 K, 1 bar	8

Table S1 Summary of adsorption uptakes, Q_{st} values and selectivity of equimolar CO_2/C_2H_2 mixture for reported CO2-selective MOFs.

2

Ce(IV)-MIL-	151.7 ^b /53.5 ^b	110.3 ^b /41.5 ^b	39.5/27.4	9.5 ^j	298 K,	9
140-4F	10117 70010	110.0 / 11.0	59.072711	2.0	100 kPa	,
PMOF-1	47.5/9.5	١	\	\	١	10
[Zn(atz)(BDC-	60.2h/	10.7b/	22 7/25 4	2.4	285 K,	11
Cl4)0.5]n	00.2 /-	19.7 /-	52.7/25.4	2.4	100 kPa	11
Cu-F-pymo	\ \	1 19°/0 10°	28 8/-	>10 ⁵	298 K,	12
eu i pjille	,	1119 70110	2010/	10	100 kPa	12
[Cu(hfipbb)(H ₂	0 75°/0 03°	0 74°/0 10°	25 5/-	696	298 K,	13
hfipbb) _{0.5}]	0170 70100	0.7.1.70110	2010/	0,0	1 bar	15
SU-101(Bi)	\ \	53 7/51 4	30 5/28 8	5 5	298 K,	14
50 IUI(DI)	,	55.7751.1	50.5720.0	5.5	100kPa	11
SU-101(Al)	\ \	53 1/-	31 3/-	15.5	298 K,	14
	,	0011	5115/	10.0	100 kPa	11
SU-101(In)	\	55.0/-	28.3/-	6.2	298 K,	14
50 I0I(III)	,	0010	20.07	0.2	100 kPa	11
SU-101(Ga)	\	40.2/-	27.7/-	11.1	298 K,	14
20101(00)	·				100 kPa	
[Zn(odip) _{0.5} (bpe	118.8/59.0	118.7/39.8	42.3/35.0	13.2	298 K,	15
) _{0.5} (CH ₃ OH)]	11010/0910	1100,000,000		1012	100 kPa	10
ZU-610a	\	1.51°/0.12°	27.3/-	207	298 K,	16
					100 kPa	
Y-bptc	\	55/-	31.5/-	4.1	298 K,	17
1					1bar	
SNNU-334	85.1/66.8	\	20.2/38.3	3595.4	273 K,	18
					1atm	
SNNU-335	78.4/63.0	١	38.07/44.23	١	١	18
SNNU-336	92.7/65.3	١	50.9/48.7	١	١	18

MOF-808-ARG	\	51 0/41 3	48 3/38 8	3 5j	298 K,	19
(dry)	, , , , , , , , , , , , , , , , , , ,	51.0/11.5	10.5750.0	5.5	1 bar	17
MOF-808-ARG	١	71.0/7.8	70 3/5 2	71i	298 K,	10
(wet)	۲.	/1.0//.8	10.575.2	/ 15	1 bar	19
D: MOE CHO	١	117 76/81 8b	18 2/16 2	77	298 K,	20
BI-MOI ⁻ -CHO	١	147.7 /01.0	48.2/40.2	1.1	100 kPa	20
Bi-MOF-	١	114 7b/	12 6/10 6	5 2	298 K,	20
СООН	\ \	114./*/-	43.0/40.0	5.5	100 kPa	20
D: MOE NO	\ \	1 20 1b/	20 0/20 5	4.0	298 K,	20
BI-MOF-NO ₂	\ \	129.1%-	38.8/38.3	4.9	100 kPa	20
DUCT C10	\	40.2/6.7	\	10700	298 K,	21
BUCI-CI9	\ \	40.3/6./	\ \	10700	100 kPa	21
F4_MIL- 140A(Ce)	١	2.6°/-	35-45/-	\	١	22
MFU-4	١	3.17 ^{c, g} /-	24/-	3360	300 K,	23
					298 K low	
Zn-DPNA	61.1/92.1	52.7/-	43.1/32.4	11.9	pressure	24
					298 K.	
ALF	\	86.2/3.3	\	6.5×10 ⁵	100 kPa	25
					298 K.	
NKMOF-9a	57.5/4.9	46.4/2.8	69.6/-	241.9	1 bar	26
					298 K.	
Zn-ox-mtz	\	68.78/5.46	43.02/-	1064.9	1.0 bar	27
					298 K.	
Zn-ox-trz	\	89.49/67.85	38.09/38.39	1.9	1.0 bar	27
					298 K,	
Co-CUK-1	170 ^d /119 ^d	106/86	20.8/-	2	100 kPa	28
	1400/074	A statements and	21.7/	2	298 K,	20
NI-CUK-I	142º/9 [°] /º	١	21.//-	2	100 kPa	28

Mg-CUK-1	144 ^d /89 ^d	\ \	\	2	298 K,	28	
Mg-COK-1	147/07	Υ.	Υ.	2	100 kPa	20	
	N	50 (h/(20h	12.2/	1904	296 K,	20	
HOF-FJU-88	Υ.	59.0 ⁴ /0.28 ⁴	12.3/-	1894	1 bar	29	
	,	cc chiac sh	31.7±3.5/		298 K,	20	
$Cu(Qc)_2$	N	66.6%/26.5%	21.4±3.5	5.6	1 bar	30	
1			20.7/20.0	2.0	298 K,	This	
1	/4.6/45.5	57.0/37.9	38.7/29.0	3.0	100 kPa	work	

^a at 273 K, 91 kPa;

^b gas uptake (cm³ cm⁻³);

^c gas uptake (mmol g⁻¹);

the gas uptakes of CO_2 and/or C_2H_2 ^d at 233 K, ^e at 195 K, ^f at 293 K, ^g at 300 K, ^h at 296 K, ⁱ at 298 K and 5 bar;

 j the mixture of CO₂/C₂H₂ (1:2, v:v).

Complex	1	
Molecular Formula	$C_{20}H_{19}Ca_2NO_{12}$	
Formula Weight	545.52	
Temperature (K)	293(2) K	
Crystal System	Triclinic	
Space Group	PĪ	
<i>a</i> (Å)	10.2890(4)	
<i>b</i> (Å)	11.6704(6)	
<i>c</i> (Å)	12.4006(10)	
α (°)	71.553(6)	
β (°)	66.005(6)	
γ (°)	68.890(4)	
$V(Å^3)$	1243.56(15)	

 Table S2 Structures data and selected refinement of 1.

Ζ	2
$Dc (g \cdot cm^{-3})$	1.457
F(000)	564
Reflections collected	10350
Goodness-of-fit on F^2	1.049
$R_1^{a}[I > 2\sigma(I)]$	0.0760
$WR_2^b[I \ge 2\sigma(I)]$	0.2188

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

Fig. S1 (a) Coordination environment of Ca^{2+} ion; (b) Coordination mode of H₄odp.

Fig. S2 PXRD and TGA patterns.

Fig. S3 The pore size distributions obtained by the non-local density-functional theory (NLDFT) model from CO₂ at 273 K.

Fig. S4 Gas sorption isotherms (units: $\text{cm}^3 \text{ g}^{-1}$) for CO₂ and C₂H₂ at (a) 273 K and (b) 298 K; (c) Cyclic CO₂ sorption isotherms at 298 K.

Fig. S5 Breakthrough curves for (a) 5/95 and (b) $1/99 \text{ CO}_2/\text{C}_2\text{H}_2$ mixtures.

Calculation of Sorption Heat using Virial 2 Model

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i \qquad Q_{st} = -R \sum_{i=0}^{m} a_i N^i$$

The above virial expression was used to fit the combined isotherm data for three frameworks at 273 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, a_i and b_i are virial coefficients, and *m* and *N* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

Fig. S6 (a) CO_2 and (b) C_2H_2 adsorption isotherms of **1a** with fitting by Virial 2

model.

Table S3 Parameters obtained from the Virial 2 model fitting of the single-component

	a0	a1	a2	a3	a4	a5	ь0	b1	b2	b3	Chi^2	R^2
CO ₂	-4678.02	34.6279	-0.7279	-1.80E-04	9.81E-05	-5.12E-07	13.9894	-0.10383	0.00352	-2.30E-05	1.12E-04	1
C2H2	-3505.79	82.8451	-0.59184	-0.04199	7.24E-04	-2.06E-06	10.9831	-0.33925	0.01012	-8.08E-05	2.08E-03	0.999

adsorption isotherms of CO2 and C2H2 at 273 K and 298 K.

CO₂/C₂H₂ Mixtures Selectivity Prediction via IAST

The experimental isotherm data for pure CO_2 and C_2H_2 were fitted using a dual Langmuir-Freundlich (L-F) model:

$$q = \frac{a_1 * b_1 * p^{c_1}}{1 + b_1 * p^{c_1}} + \frac{a_2 * b_2 * p^{c_2}}{1 + b_2 * p^{c_2}}$$

Where q and p are adsorbed amounts and the pressure of component i, respectively.

The adsorption selectivities for binary mixtures defined by

$$S_{i/j} = \frac{x_i * y_j}{x_j * y_i}$$

were respectively calculated using IAST. Where x_i is the mole fraction of component *i* in the adsorbed phase and y_i is the mole fraction of component *i* in the bulk.

Fig. S7 Adsorption isotherms of 1a fitting by dual L-F model.

Table S4 Parameters obtained from the dual Langmuir-Freundlich fitting of the

single-com	ponent	adsor	ption	isotherms.
0				

298 K	a1	b1	c1	a2	b2	c2	Chi^2	R^2
CO ₂	1.52099	0.14252	0.99064	2.17614	0.01862	0.8798	1.99E-06	1
C2H2	1.18319	0.10654	1.01937	8.03444	0.00109	0.93587	2.26E-06	1

Separation Potential Calculation

The separation potential (Δq) is a combined metric, which incorporates both uptake capacity and selectivity, which is defined to evaluate the separation performances in fixed bed adsorbers for gas mixture. The separation potential Δq , is calculated from IAST base on the following equation:

$$\bigtriangleup q = q_1 \frac{y_2}{y_1} - q_2$$

Where y_1 and y_2 are the mole fractions of the CO₂ and C₂H₂ in the CO₂/C₂H₂ mixture gases, respectively. q_1 and q_2 are CO₂ and C₂H₂ uptake in the gas mixture, respectively, and predicted by the IAST theory. The physical significance of Δq is that it represents the maximum amount of pure C₂H₂ that can be obtained during the adsorption phase of fixed bed separations.

Calculation of Breakthrough Experiments

The calculation method of the C₂H₂ purity is as follows:

$$c = \frac{q_{C_2H_2}}{q_{C_2H_2} + q_{CO_2}}$$

The gas breakthrough gas amount (q_i) (mmol g⁻¹) was calculated by integrating the breakthrough curve $F_i(t)$ as following equation:

$$q_i = \frac{f_i \int_0^{t_1} F_i(t) dt}{22.4 \times m}$$

Where the *m* represents the adsorbent mass, f_i is the flow rate of gas *i* (mL min⁻¹); $F_i(t)$ is the function of the breakthrough curve of component *i*.

Simulation Methodology

Grand canonical Monte Carlo (GCMC) simulations were performed for evaluating the gas adsorption performance. The partial charges of atoms in the framework were originated from the QEq method.³¹ The supercell of $3\times3\times3$ was used during the simulation. All the parameters for atoms of **1a** were modeled with the Dreiding forcefield.³² CO₂ was modeled as a rigid linear triatomic molecule with three charged 10

LJ interaction sites, for which the LJ potential parameters for O atom (q = -0.35e) and C atom (q = +0.70e) in CO₂ molecule with C-O bond length l = 0.116 nm were taken from the TraPPE force field.³³ The partial charges on the atoms of C₂H₂ molecule was taken from the literature ($q_C = -0.266e$ and $q_H = +0.266e$), and the LJ potential parameters for C₂H₂ was taken from the Optimized Potentials for Liquid Simulations-All Atom (OPLS-AA) force field.³⁴ A cutoff distance of 15.4 Å was used for LJ interactions, and the Coulombic interactions were calculated by using Ewald summation. For each run, the 5×10^6 equilibration steps, 5×10^6 production steps were employed.

The binding energy was calculated by DFT method using the Dmol³ module. The calculations were performed under the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional and the double numerical plus d-functions (DND) basis set. A cutoff of 4.5 Å was used and the SCF convergence was set to 10^{-5} . The binding energy of gas is evaluated by the following equation: $E_{\text{bind}} = E_{\text{framework+gas}} - E_{\text{framework}} - E_{\text{gas}}$, in which $E_{\text{framework+gas}}$ is the total energy of the framework and the adsorbed gas molecule, $E_{\text{framework}}$ and E_{gas} are the energies of the framework and gas molecule.

References:

- W. Yang, A. J. Davies, X. Lin, M. Suyetin, R. Matsuda, A. J. Blake, C. Wilson, W. Lewis, J. E. Parker, C. C. Tang, M. W. George, P. Hubberstey, S. Kitagawa, H. Sakamoto, E. Bichoutskaia, N. R. Champness, S. Yang and M. Schröder, Selective CO₂ uptake and inverse CO₂/C₂H₂ selectivity in a dynamic bifunctional metal-organic framework, *Chem. Sci.*, 2012, **3**, 2993-2999.
- 2 M. L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato, S. Horike, A. Hori, J. Duan, Y. Sato, Y. Kubota, M. Takata and S. Kitagawa, An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO₂ over C₂H₂, *J. Am. Chem. Soc.*, 2016, **138**, 3022–3030.
- K.-J. Chen, H. S. Scott, D. G. Madden, T. Pham, A. Kumar, A. Bajpai, M. Lusi, K.
 A. Forrest, B. Space, J. J. Perry and M. J. Zaworotko, Benchmark C₂H₂/CO₂ and

CO₂/C₂H₂ separation by two closely related hybrid ultramicroporous materials, *Chem*, 2016, **1**, 753–765.

- 4 L. Li, J. Wang, Z. Zhang, Q. Yang, Y. Yang, B. Su, Z. Bao and Q. Ren, Inverse adsorption separation of CO₂/C₂H₂ mixture in cyclodextrin-based metal–organic frameworks, *ACS Appl. Mater. Interfaces*, 2019, **11**, 2543–2550.
- 5 D. Ma, Z. Li, J. Zhu, Y. Zhou, L. Chen, X. Mai, M. Liufu, Y. Wu and Y. Li, Inverse and highly selective separation of CO₂/C₂H₂ on a thulium–organic framework, *J. Mater. Chem. A*, 2020, **8**, 11933-11937.
- O. T. Qazvini, R. Babarao and S. G. Telfer, Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework, *Nat. Commun.*, 2021, 12, 197.
- 7 Y. Xie, H. Cui, H. Wu, R.-B. Lin, W. Zhou and B. Chen, Electrostatically driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material, *Angew. Chem. Int. Ed.*, 2021, **60**, 9604-9609.
- 8 Y. Gu, J.-J. Zheng, K. Otake, M. Shivanna, S. Sakaki, H. Yoshino, M. Ohba, S. Kawaguchi, Y. Wang, F. Li and S. Kitagawa, Host–guest interaction modulation in porous coordination polymers for inverse selective CO₂/C₂H₂ separation, *Angew. Chem. Int. Ed.*, 2021, **60**, 11688-11694.
- 9 Z. Zhang, S. B. Peh, R. Krishna, C. Kang, K. Chai, Y. Wang, D. Shi and D. Zhao, Optimal pore chemistry in an ultramicroporous metal–organic framework for benchmark inverse CO₂/C₂H₂ separation, *Angew. Chem. Int. Ed.*, 2021, **60**, 17198-17204.
- 10 L.-Z. Cai, Z.-Z. Yao, S.-J. Lin, M.-S. Wang and G.-C. Guo, Photoinduced electrontransfer (PIET) strategy for selective adsorption of CO₂ over C₂H₂ in a MOF, *Angew. Chem. Int. Ed.*, 2021, **60**, 18223-18230.
- 11 X.-Y. Li, Y. Song, C.-X. Zhang, C.-X. Zhao and C. He, Inverse CO₂/C₂H₂ separation in a pillared-layer framework featuring a chlorine-modified channel by quadrupole-moment sieving, *Sep. Purif. Technol.*, 2021, **279**, 119608.
- 12 Y. Shi, Y. Xie, H. Cui, Y. Ye, H. Wu, W. Zhou, H. Arman, R.-B. Lin and B. Chen, Highly selective adsorption of carbon dioxide over acetylene in an

ultramicroporous metal-organic framework, Adv. Mater., 2021, 33, 2105880.

- H. Cui, Y. Xie, Y. Ye, Y. Shi, B. Liang and B. Chen, An ultramicroporous metalorganic framework with record high selectivity for inverse CO₂/C₂H₂ separation, *B. Chem. Soc. Jpn.*, 2021, **94**, 2698–2701.
- 14 C. Hao, H. Ren, H. Zhu, Y. Chi, W. Zhao, X. Liu and W. Guo, CO₂-favored metal– organic frameworks SU-101(M) (M = Bi, In, Ga, and Al) with inverse and high selectivity of CO₂ from C₂H₂ and C₂H₄, *Sep. Purif. Technol.*, 2022, **290**, 120804.
- 15 L.-N. Ma, G.-D. Wang, L. Hou, Z. Zhu and Y.-Y. Wang, Efficient one-step purification of C₁ and C₂ hydrocarbons over CO₂ in a new CO₂-selective MOF with a gate-opening effect, ACS Appl. Mater. Interfaces, 2022, 14, 26858–26865.
- 16 J. Cui, Z. Qiu, L. Yang, Z. Zhang, X. Cui and H. Xing, Kinetic-sieving of carbon dioxide from acetylene through a novel sulfonic ultramicroporous material, *Angew. Chem. Int. Ed.*, 2022, **134**, e202208756.
- 17 C. He, P. Zhang, Y. Wang, Y. Zhang, T. Hu, L. Li and J. Li, Thermodynamic and kinetic synergetic separation of CO₂/C₂H₂ in an ultramicroporous metal-organic framework, *Sep. Purif. Technol.*, 2023, **304**, 122318.
- 18 J. Yu, J. Zhang, P. Zhang, Y. Wang, S.-N. Li and Q.-G. Zhai, Controllable inverse C₂H₂/CO₂ separation in ultra-stable Zn-organic frameworks for efficient removal of trace CO₂ from acetylene, *J. Mater. Chem. A*, 2022, **10**, 23630-23638.
- 19 H. Zhu, W. Xue, H. Huang, L. Chen, H. Liu and C. Zhong, Water boosted CO₂/C₂H₂ separation in L-arginine functionalized metal-organic framework, *Nano Res.*, 2023, **16**, 6113–6119.
- 20 C. Hao, Z. Ge, R. Krishna, H. Ren, H. Zhu, Y. Chi, W. Zhao, X. Liu and W. Guo, Fine-tuning channel structure and surface chemistry of stable bismuth-organic frameworks for efficient C₂H₄ purification through reversely trapping CO₂ and C₂H₂, *Chem. Eng. J.*, 2023, **471**, 144533.
- 21 J. Yang, M. Tong, G. Han, M. Chang, T. Yan, Y. Ying, Q. Yang and D. Liu, Solubility-boosted molecular sieving-based separation for purification of acetylene in core–shell IL@MOF composites, *Adv. Funct. Mater.*, 2023, **33**, 2213743.
- 22 M. Cavallo, C. Atzori, M. Signorile, F. Costantino, D. M. Venturi, A. Koutsianos, ¹³

K. A. Lomachenko, L. Calucci, F. Martini, A. Giovanelli, M. Geppi, V. Crocellà and M. Taddei, Cooperative CO₂ adsorption mechanism in a perfluorinated Ce^{IV}based metal organic framework, *J. Mater. Chem. A*, 2023, **11**, 5568-5583.

- Q. Liu, S. G. Cho, J. Hilliard, T.-Y. Wang, S.-C. Chien, L.-C. Lin, A. C. Co and C. R. Wade, Inverse CO₂/C₂H₂ separation with MFU-4 and selectivity reversal via postsynthetic ligand exchange, *Angew. Chem. Int. Ed.*, 2023, 62, e202218854.
- 24 W. Wang, G.-D. Wang, B. Zhang, X.-Y. Li, L. Hou, Q.-Y. Yang and B. Liu, Discriminatory gate-opening effect in a flexible metal–organic framework for inverse CO₂/C₂H₂ separation, *Small*, 2023, **19**, 2302975.
- 25 Z. Zhang, Z. Deng, H. A. Evans, D. Mullangi, C. Kang, S. B. Peh, Y. Wang, C. M. Brown, J. Wang, P. Canepa, A. K. Cheetham and D. Zhao, Exclusive recognition of CO₂ from hydrocarbons by aluminum formate with hydrogen-confined pore cavities, *J. Am. Chem. Soc.*, 2023, **145**, 11643–11649.
- 26 S. Geng, H. Xu, C.-S. Cao, T. Pham, B. Zhao and Z. Zhang, Bioinspired design of a giant [Mn₈₆] nanocage-based metal-organic framework with specific CO₂ binding pockets for highly selective CO₂ separation, *Angew. Chem. Int. Ed.*, 2023, 62, e202305390.
- S.-Q. Yang, R. Krishna, H. Chen, L. Li, L. Zhou, Y.-F. An, F.-Y. Zhang, Q. Zhang, Y.-H. Zhang, W. Li, T.-L. Hu and X.-H. Bu, Immobilization of the polar group into an ultramicroporous metal–organic framework enabling benchmark inverse selective CO₂/C₂H₂ separation with record C₂H₂ production, *J. Am. Chem. Soc.*, 2023, 145, 13901–13911.
- 28 Z. Zhang, Y. Chen, K. Chai, C. Kang, S. B. Peh, H. Li, J. Ren, X. Shi, X. Han, C. Dejoie, S. J. Day, S. Yang and D. Zhao, Temperature-dependent rearrangement of gas molecules in ultramicroporous materials for tunable adsorption of CO₂ and C₂H₂, *Nat. Commun.*, 2023, 14, 3789.
- 29 Y. Li, X. Wang, H. Zhang, L. He, J. Huang, W. Wei, Z. Yuan, Z. Xiong, H. Chen, S. Xiang, B. Chen and Z. Zhang, A microporous hydrogen bonded organic framework for highly selective separation of carbon dioxide over acetylene, *Angew. Chem. Int. Ed.*, 2023, **62**, e202311419.

- 30 J.-H. Li, Y.-W. Gan, J.-X. Chen, R.-B. Lin, Y. Yang, H. Wu, W. Zhou, B. Chen and X.-M. Chen, Reverse separation of carbon dioxide and acetylene in two isostructural copper pyridine-carboxylate frameworks, *Angew. Chem. Int. Ed.*, 2024, 63, e202400823.
- 31 A. K. Rappé and W. A. Goddard III, Charge equilibration for molecular dynamics simulations, J. Phys. Chem., 1991, 95, 3358–3363.
- 32 S. L. Mayo, B. D. Olafson and W. A. Goddard III, DREIDING: a generic force field for molecular simulations, *J. Phys. Chem.*, 1990, **94**, 8897–8909.
- 33 J. J. Potoff and J. I. Siepmann, Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen, *AIChE J.*, 2001, **47**, 1676–1682.
- 34 W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, *J. Am. Chem. Soc.*, 1996, **118**, 11225–11236.