Supporting Information

Efficient inverse $CO₂/C₂H₂$ **separation driven by rare thermodynamic affinities difference in a porous MOF**

Hai-Yu Duan^a, Xiu-Yuan Li^{*a}, Lei Hou^{*b}, Si-Ru Liu^a, Xiang-Yu Liu^{*c}, Ping Wang^{*a}

^aShaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China. E-mail: lixiuyuan@xatu.edu.cn, wping0922@163.com

^bKey Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China. E-mail: lhou2009@nwu.edu.cn

^cState Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China. E-mail: xiangyuliu432@126.com

$CO2/C2H2$ mixture for reported CO ₂ -selective MOFs.									
MOFs	Uptake of $CO2/C2H2$ @273K, 100 kPa $\rm (cm^3 \, g^{-1})$	Uptake of $CO2/C2H2$ @298K, 100 kPa $\rm (cm^3 \, g^{-1})$	Q_{st} of $CO2/C2H2$ $(kJ \text{ mol}^{-1})$	Selectivity	Selectivity Conditions	Ref.			
$[Co(HL^{dc})]$	$108/-$ 239.5e/140e \setminus			\backslash	\setminus	$\mathbf{1}$			
[Mn(bdc)(dpe)]	$46.8^{\mathrm{a}}/7.3^{\mathrm{a}}$	\setminus	$29 - 30/28$	$8.8\,$	273 K, 100 kPa	$\overline{2}$			
SIFSIX-3-Ni	\backslash	$2.7\frac{c}{3.3}$ c	50.9/36.7	7.7^{j}	298 K, 1 bar	\mathfrak{Z}			
CD-MOF-1	\setminus	$2.87^{\circ}/2.23^{\circ}$	41.0/17.6	6.6 ^j	298 K, 100 kPa	$\overline{4}$			
CD-MOF-2	∖	$2.67^{\circ}/2.03^{\circ}$	67.2/25.8	16.0 ^j	298 K, 100 kPa	$\overline{\mathcal{A}}$			
Tm-MOF	146.3/63.0	130.6/47	45.2/17.8	17.5^{j}	298 K, 1 bar	5			
$MUF-16$	\setminus	47.78f/3.99f	$32.3/-$	510	293 K, 1 bar	6			
$MUF-16(Ni)$	∖	47.97f/7.53f	$37.3/-$	46	293 K, 1 bar	6			
$MUF-16(Mn)$	\setminus	$50.5^{f}/9.69^{f}$	$36.6/-$	31	293 K, 1 bar	$\sqrt{6}$			
$Cd-NP$	\setminus	58.0/9.7	$27.7/-$	85	298 K, 1 bar	$\boldsymbol{7}$			
PCP-NH ₂ -ipa	\setminus	72/43	36.6/26.8	6.4	298 K, 1 bar	$\,8\,$			
PCP-NH ₂ -bdc	\setminus	68/43	34.57/25.6	4.4	298 K, 1 bar	$8\,$			

Table S1 Summary of adsorption uptakes, *Q*st values and selectivity of equimolar

^a at 273 K, 91 kPa;

 b gas uptake (cm³ cm⁻³);</sup>

 $\text{° gas uptake (mmol g}^{-1});$

the gas uptakes of CO₂ and/or C₂H₂^d at 233 K, ^e at 195 K, ^f at 293 K, ^g at 300 K, ^h at 296 K, ⁱ at 298 K and 5 bar;

^j the mixture of CO_2/C_2H_2 (1:2, v:v).

Complex	$\mathbf{1}$
Molecular Formula	$C_{20}H_{19}Ca_2NO_{12}$
Formula Weight	545.52
Temperature (K)	293(2) K
Crystal System	Triclinic
Space Group	$\overline{P1}$
a(A)	10.2890(4)
b(A)	11.6704(6)
c(A)	12.4006(10)
α (°)	71.553(6)
β (°)	66.005(6)
γ (°)	68.890(4)
$V(\AA^3)$	1243.56(15)

Table S2 Structures data and selected refinement of **1**.

 ${}^{a}R_{1} = \Sigma ||F_{o}|-|F_{c}||/\Sigma |F_{o}|$. ${}^{b}wR_{2} = [\Sigma w(F_{o}^{2}-F_{c}^{2})^{2}/\Sigma w(F_{o}^{2})^{2}]^{1/2}$

Fig. S1 (a) Coordination environment of Ca^{2+} ion; (b) Coordination mode of H₄odp.

Fig. S2 PXRD and TGA patterns.

Fig. S3 The pore size distributions obtained by the non-local density-functional theory (NLDFT) model from $CO₂$ at 273 K.

Fig. S4 Gas sorption isotherms (units: cm^3 g^{-1}) for CO_2 and C_2H_2 at (a) 273 K and (b) 298 K; (c) Cyclic CO² sorption isotherms at 298 K.

Fig. S5 Breakthrough curves for (a) $5/95$ and (b) $1/99 \text{ CO}_2/\text{C}_2\text{H}_2$ mixtures.

Calculation of Sorption Heat using Virial 2 Model

$$
\ln P = \ln N + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i \qquad Q_{st} = -R \sum_{i=0}^{m} a_i N^i
$$

The above virial expression was used to fit the combined isotherm data for three frameworks at 273 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, a_i and b_i are virial coefficients, and *m* and *N* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

Fig. S6 (a) CO₂ and (b) C₂H₂ adsorption isotherms of **1a** with fitting by Virial 2 model.

Table S3 Parameters obtained from the Virial 2 model fitting of the single-component

	a0	a1	a2	a3	a4	a5	b ₀	$b1$	b2	$b3$	Chi^2	$R^{\wedge}2$
CO ₂	-4678.02	34.6279	-0.7279	$-1.80E-04$	9.81E-05	$-5.12E-07$	13.9894	-0.10383	0.00352	$-2.30E - 0.5$	1.12E-04	
C_2H_2	-3505.79	82.8451	-0.59184	-0.04199	7.24E-04	$-2.06E-06$	10.9831	-0.33925	0.01012	$-8.08E - 05$	2.08E-03	0.999

adsorption isotherms of $CO₂$ and $C₂H₂$ at 273 K and 298 K.

CO2/C2H² Mixtures Selectivity Prediction via IAST

The experimental isotherm data for pure $CO₂$ and $C₂H₂$ were fitted using a dual Langmuir-Freundlich (L-F) model:

$$
q = \frac{a_1 * b_1 * p^{c_1}}{1 + b_1 * p^{c_1}} + \frac{a_2 * b_2 * p^{c_2}}{1 + b_2 * p^{c_2}}
$$

Where *q* and *p* are adsorbed amounts and the pressure of component *i*, respectively.

The adsorption selectivities for binary mixtures defined by

$$
S_{i/j} = \frac{x_i * y_j}{x_j * y_i}
$$

were respectively calculated using IAST. Where x_i is the mole fraction of component i in the adsorbed phase and y_i is the mole fraction of component i in the bulk.

Fig. S7 Adsorption isotherms of **1a** fitting by dual L-F model.

Table S4 Parameters obtained from the dual Langmuir-Freundlich fitting of the

single-component adsorption isotherms.		

Separation Potential Calculation

The separation potential (Δq) is a combined metric, which incorporates both uptake capacity and selectivity, which is defined to evaluate the separation performances in fixed bed adsorbers for gas mixture. The separation potential Δq , is calculated from IAST base on the following equation:

$$
\triangle q = q_1 \frac{y_2}{y_1} - q_2
$$

Where y_1 and y_2 are the mole fractions of the CO₂ and C₂H₂ in the CO₂/C₂H₂ mixture gases, respectively. q_1 and q_2 are CO_2 and C_2H_2 uptake in the gas mixture, respectively, and predicted by the IAST theory. The physical significance of Δq is that it represents the maximum amount of pure C_2H_2 that can be obtained during the adsorption phase of fixed bed separations.

Calculation of Breakthrough Experiments

The calculation method of the C_2H_2 purity is as follows:

$$
c = \frac{q_{C_2H_2}}{q_{C_2H_2} + q_{CO_2}}
$$

The gas breakthrough gas amount (q_i) (mmol g^{-1}) was calculated by integrating the breakthrough curve $F_i(t)$ as following equation:

$$
q_i = \frac{f_i \int_0^{t_1} F_i(t)dt}{22.4 \times m}
$$

Where the *m* represents the adsorbent mass, f_i is the flow rate of gas *i* (mL min⁻¹); *F*i(t) is the function of the breakthrough curve of component *i*.

Simulation Methodology

10 Grand canonical Monte Carlo (GCMC) simulations were performed for evaluating the gas adsorption performance. The partial charges of atoms in the framework were originated from the QEq method.³¹ The supercell of $3\times3\times3$ was used during the simulation. All the parameters for atoms of **1a** were modeled with the Dreiding forcefield.³² CO₂ was modeled as a rigid linear triatomic molecule with three charged

LJ interaction sites, for which the LJ potential parameters for O atom ($q = -0.35e$) and C atom ($q = +0.70e$) in CO₂ molecule with C-O bond length 1 = 0.116 nm were taken from the TraPPE force field.³³ The partial charges on the atoms of C_2H_2 molecule was taken from the literature ($q_C = -0.266e$ and $q_H = +0.266e$), and the LJ potential parameters for C_2H_2 was taken from the Optimized Potentials for Liquid Simulations-All Atom (OPLS-AA) force field.³⁴ A cutoff distance of 15.4 Å was used for LJ interactions, and the Coulombic interactions were calculated by using Ewald summation. For each run, the 5×10^6 equilibration steps, 5×10^6 production steps were employed.

The binding energy was calculated by DFT method using the Dmol³ module**.** The calculations were performed under the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional and the double numerical plus d-functions (DND) basis set**.** A cutoff of 4.5 Å was used and the SCF convergence was set to 10^{-5} . The binding energy of gas is evaluated by the following equation: $E_{bind} = E_{framework+gas} - E_{framework} - E_{gas}$, in which $E_{framework+gas}$ is the total energy of the framework and the adsorbed gas molecule, *E*framework and *E*gas are the energies of the framework and gas molecule.

References:

- 1 W. Yang, A. J. Davies, X. Lin, M. Suyetin, R. Matsuda, A. J. Blake, C. Wilson, W. Lewis, J. E. Parker, C. C. Tang, M. W. George, P. Hubberstey, S. Kitagawa, H. Sakamoto, E. Bichoutskaia, N. R. Champness, S. Yang and M. Schröder, Selective $CO₂$ uptake and inverse $CO₂/C₂H₂$ selectivity in a dynamic bifunctional metalorganic framework, *Chem. Sci.*, 2012, **3**, 2993-2999.
- 2 M. L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato, S. Horike, A. Hori, J. Duan, Y. Sato, Y. Kubota, M. Takata and S. Kitagawa, An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO² over C2H2, *J. Am. Chem. Soc.*, 2016, **138**, 3022–3030.
- 11 3 K.-J. Chen, H. S. Scott, D. G. Madden, T. Pham, A. Kumar, A. Bajpai, M. Lusi, K. A. Forrest, B. Space, J. J. Perry and M. J. Zaworotko, Benchmark C_2H_2/CO_2 and

 $CO₂/C₂H₂$ separation by two closely related hybrid ultramicroporous materials, *Chem*, 2016, **1**, 753–765.

- 4 L. Li, J. Wang, Z. Zhang, Q. Yang, Y. Yang, B. Su, Z. Bao and Q. Ren, Inverse adsorption separation of CO_2/C_2H_2 mixture in cyclodextrin-based metal–organic frameworks, *ACS Appl. Mater. Interfaces*, 2019, **11**, 2543–2550.
- 5 D. Ma, Z. Li, J. Zhu, Y. Zhou, L. Chen, X. Mai, M. Liufu, Y. Wu and Y. Li, Inverse and highly selective separation of $CO₂/C₂H₂$ on a thulium–organic framework, *J. Mater. Chem. A*, 2020, **8**, 11933-11937.
- 6 O. T. Qazvini, R. Babarao and S. G. Telfer, Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework, *Nat. Commun.*, 2021, **12**, 197.
- 7 Y. Xie, H. Cui, H. Wu, R.-B. Lin, W. Zhou and B. Chen, Electrostatically driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material, *Angew. Chem. Int. Ed.*, 2021, **60**, 9604-9609.
- 8 Y. Gu, J.-J. Zheng, K. Otake, M. Shivanna, S. Sakaki, H. Yoshino, M. Ohba, S. Kawaguchi, Y. Wang, F. Li and S. Kitagawa, Host–guest interaction modulation in porous coordination polymers for inverse selective $CO₂/C₂H₂$ separation, *Angew. Chem. Int. Ed.*, 2021, **60**, 11688-11694.
- 9 Z. Zhang, S. B. Peh, R. Krishna, C. Kang, K. Chai, Y. Wang, D. Shi and D. Zhao, Optimal pore chemistry in an ultramicroporous metal–organic framework for benchmark inverse CO2/C2H² separation, *Angew. Chem. Int. Ed.*, 2021, **60**, 17198- 17204.
- 10 L.-Z. Cai, Z.-Z. Yao, S.-J. Lin, M.-S. Wang and G.-C. Guo, Photoinduced electrontransfer (PIET) strategy for selective adsorption of $CO₂$ over $C₂H₂$ in a MOF, *Angew. Chem. Int. Ed.*, 2021, **60**, 18223-18230.
- 11 X.-Y. Li, Y. Song, C.-X. Zhang, C.-X. Zhao and C. He, Inverse CO_2/C_2H_2 separation in a pillared-layer framework featuring a chlorine-modified channel by quadrupole-moment sieving, *Sep. Purif. Technol.*, 2021, **279**, 119608.
- 12 12 Y. Shi, Y. Xie, H. Cui, Y. Ye, H. Wu, W. Zhou, H. Arman, R.-B. Lin and B. Chen, Highly selective adsorption of carbon dioxide over acetylene in an

ultramicroporous metal–organic framework, *Adv. Mater.*, 2021, **33**, 2105880.

- 13 H. Cui, Y. Xie, Y. Ye, Y. Shi, B. Liang and B. Chen, An ultramicroporous metalorganic framework with record high selectivity for inverse $CO₂/C₂H₂$ separation, *B. Chem. Soc. Jpn.*, 2021, **94**, 2698–2701.
- 14 C. Hao, H. Ren, H. Zhu, Y. Chi, W. Zhao, X. Liu and W. Guo, CO2-favored metal– organic frameworks SU-101(M) ($M = Bi$, In, Ga, and Al) with inverse and high selectivity of CO² from C2H² and C2H4, *Sep. Purif. Technol.*, 2022, **290**, 120804.
- 15 L.-N. Ma, G.-D. Wang, L. Hou, Z. Zhu and Y.-Y. Wang, Efficient one-step purification of C_1 and C_2 hydrocarbons over CO_2 in a new CO_2 -selective MOF with a gate-opening effect, *ACS Appl. Mater. Interfaces*, 2022, **14**, 26858–26865.
- 16 J. Cui, Z. Qiu, L. Yang, Z. Zhang, X. Cui and H. Xing, Kinetic-sieving of carbon dioxide from acetylene through a novel sulfonic ultramicroporous material, *Angew. Chem. Int. Ed.*, 2022, **134**, e202208756.
- 17 C. He, P. Zhang, Y. Wang, Y. Zhang, T. Hu, L. Li and J. Li, Thermodynamic and kinetic synergetic separation of CO_2/C_2H_2 in an ultramicroporous metal-organic framework, *Sep. Purif. Technol.*, 2023, **304**, 122318.
- 18 J. Yu, J. Zhang, P. Zhang, Y. Wang, S.-N. Li and Q.-G. Zhai, Controllable inverse C_2H_2/CO_2 separation in ultra-stable Zn-organic frameworks for efficient removal of trace CO² from acetylene, *J. Mater. Chem. A*, 2022, **10**, 23630-23638.
- 19 H. Zhu, W. Xue, H. Huang, L. Chen, H. Liu and C. Zhong, Water boosted CO2/C2H² separation in L-arginine functionalized metal-organic framework, *Nano Res.*, 2023, **16**, 6113–6119.
- 20 C. Hao, Z. Ge, R. Krishna, H. Ren, H. Zhu, Y. Chi, W. Zhao, X. Liu and W. Guo, Fine-tuning channel structure and surface chemistry of stable bismuth-organic frameworks for efficient C_2H_4 purification through reversely trapping CO_2 and C2H2, *Chem. Eng. J.*, 2023, **471**, 144533.
- 21 J. Yang, M. Tong, G. Han, M. Chang, T. Yan, Y. Ying, Q. Yang and D. Liu, Solubility-boosted molecular sieving-based separation for purification of acetylene in core–shell IL@MOF composites, *Adv. Funct. Mater.*, 2023, **33**, 2213743.
- 13 22 M. Cavallo, C. Atzori, M. Signorile, F. Costantino, D. M. Venturi, A. Koutsianos,

K. A. Lomachenko, L. Calucci, F. Martini, A. Giovanelli, M. Geppi, V. Crocellà and M. Taddei, Cooperative CO₂ adsorption mechanism in a perfluorinated Ce^{IV}based metal organic framework, *J. Mater. Chem. A*, 2023, **11**, 5568-5583.

- 23 Q. Liu, S. G. Cho, J. Hilliard, T.-Y. Wang, S.-C. Chien, L.-C. Lin, A. C. Co and C. R. Wade, Inverse CO_2/C_2H_2 separation with MFU-4 and selectivity reversal via postsynthetic ligand exchange, *Angew. Chem. Int. Ed.*, 2023, **62**, e202218854.
- 24 W. Wang, G.-D. Wang, B. Zhang, X.-Y. Li, L. Hou, Q.-Y. Yang and B. Liu, Discriminatory gate-opening effect in a flexible metal–organic framework for inverse CO2/C2H² separation, *Small*, 2023, **19**, 2302975.
- 25 Z. Zhang, Z. Deng, H. A. Evans, D. Mullangi, C. Kang, S. B. Peh, Y. Wang, C. M. Brown, J. Wang, P. Canepa, A. K. Cheetham and D. Zhao, Exclusive recognition of CO² from hydrocarbons by aluminum formate with hydrogen-confined pore cavities, *J. Am. Chem. Soc.*, 2023, **145**, 11643−11649.
- 26 S. Geng, H. Xu, C.-S. Cao, T. Pham, B. Zhao and Z. Zhang, Bioinspired design of a giant $[Mn_{86}]$ nanocage-based metal-organic framework with specific $CO₂$ binding pockets for highly selective CO² separation, *Angew. Chem. Int. Ed.*, 2023, **62**, e202305390.
- 27 S.-Q. Yang, R. Krishna, H. Chen, L. Li, L. Zhou, Y.-F. An, F.-Y. Zhang, Q. Zhang, Y.-H. Zhang, W. Li, T.-L. Hu and X.-H. Bu, Immobilization of the polar group into an ultramicroporous metal–organic framework enabling benchmark inverse selective CO_2/C_2H_2 separation with record C_2H_2 production, *J. Am. Chem. Soc.*, 2023, **145**, 13901–13911.
- 28 Z. Zhang, Y. Chen, K. Chai, C. Kang, S. B. Peh, H. Li, J. Ren, X. Shi, X. Han, C. Dejoie, S. J. Day, S. Yang and D. Zhao, Temperature-dependent rearrangement of gas molecules in ultramicroporous materials for tunable adsorption of $CO₂$ and C2H2, *Nat. Commun.*, 2023, **14**, 3789.
- 29 Y. Li, X. Wang, H. Zhang, L. He, J. Huang, W. Wei, Z. Yuan, Z. Xiong, H. Chen, S. Xiang, B. Chen and Z. Zhang, A microporous hydrogen bonded organic framework for highly selective separation of carbon dioxide over acetylene, *Angew. Chem. Int. Ed.*, 2023, **62**, e202311419.
- 30 J.-H. Li, Y.-W. Gan, J.-X. Chen, R.-B. Lin, Y. Yang, H. Wu, W. Zhou, B. Chen and X.-M. Chen, Reverse separation of carbon dioxide and acetylene in two isostructural copper pyridine‐carboxylate frameworks, *Angew. Chem. Int. Ed.*, 2024, **63**, e202400823.
- 31 A. K. Rappé and W. A. Goddard III, Charge equilibration for molecular dynamics simulations, *J. Phys. Chem.*, 1991, **95**, 3358–3363.
- 32 S. L. Mayo, B. D. Olafson and W. A. Goddard III, DREIDING: a generic force field for molecular simulations, *J. Phys. Chem.*, 1990, **94**, 8897–8909.
- 33 J. J. Potoff and J. I. Siepmann, Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen, *AIChE J.*, 2001, **47**, 1676–1682.
- 34 W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, *J. Am. Chem. Soc.*, 1996, **118**, 11225–11236.