SUPPORTING INFORMATION for High-Performance Rh@MgO Catalysts for Complete Dehydrogenation of Hydrazine Borane: A Comparative Study

Ahmet Bulut,^a Mustafa Erkartal^{b,*}, Mehmet Yurderi,^{c, d} Tuba Top,^e Mehmet Zahmakiran,^{a,*}

^aDepartment of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Türkiye

^bDepartment of Basic Sciences, Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, 74100, Bartin, Türkiye

^cDepartment of Electronics and Automation, Bartin Vocational School, Bartin University, 74100, Bartin, Türkiye

^dCentral Research Laboratory, Research & Application Center, Bartin University, 74100, Bartin, Türkiye

^eDepartment of Chemistry, Faculty of Science, Karabük University, 78000, Karabük, Türkiye

^{* *}Corresponding Authors; e-mail: (MZ) mzahmakiran@bartin.edu.tr ; (ME) merkartal@bartin.edu.tr

Figure S1. TEM images of monometallic Rh(0) nanoclusters immobilized on different support materials.

Figure S2. Mole ratio of generated gas $(H_2 + N_2)/HB$ versus time graph for the Rh@MgO, Rh/MgO (physical mixture) and MgO-catalyzed dehydrogenation of aqueous HB.

Figure S3. Rh (3d) XPS spectra of Rh@MgO after the 5th reuse cycle, showing the preservation of the metallic Rh structure with minimal shifts, indicating catalyst stability over multiple cycles.

No	Catalyst	Temperature	TOF (h ⁻¹)	Ref.
		(K)		
1	Ni@RhNi/Al ₂ O ₃	323	72 h ⁻¹	1
2	Rh _{0.8} Ni _{0.2} @CeO _x /rGO	323	667 h ⁻¹	2
3	Ni _{0.9} Pt _{0.1} /Graphene	323	242 h ⁻¹	3
4	$Ni_{0.9}Pt_{0.1}/CeO_2$	323	234 h ⁻¹	4
5	$Ni_{0.9}Pt_{0.1}/MIL-101$	323	1515 h ⁻¹	5
6	NiIr/Cr ₂ O ₃	323	248 h ⁻¹	6
7	Ni-MoO _x /BN	323	600 h ⁻¹	7
8	Ni _{0.5} Fe _{0.5} -CeO _x /MIL-101	323	352 h ⁻¹	8
9	Cu _{0.4} Ni _{0.6} Mo	323	108 h ⁻¹	9
10	Ni _{0.75} Ir _{0.25} /La ₂ O ₂ CO ₃	323	1250 h ⁻¹	10
11	$Rh_{0.5}(Mox)_{0.5}$	323	2000 h ⁻¹	11
12	Ni _{0.22} @Ir _{0.78} /OMS-2	323	2590 h ⁻¹	12
13	Rh@MgO	323	2005 h ⁻¹	This Work

Table S1. Heterogeneous catalysts tested for the complete degradation reaction of hydrazine borane $(N_2H_4BH_3)$ in water and capable of conversion.

Determination of Average Turnover Frequency (TOF) Values

The activity values in this report are not corrected for the number of exposed surface

atoms; that is, the values given are lower limits.

For Rh@MgO catalyst; mol (Rh) = 1.496 μ mol, mol (HB) = 1 mmol , Rh@MgO catalyst provides 6 moles equiv. gas generation at t = 12 min.

TOF(average) = moles of product / moles of catalyst × time (where 100 % conversion was achieved)

 $TOF(average) = (6 \times 10^{-3} \text{ mol}) / (1,496 \times 10^{-5} \text{ mol}) \times (12/60 \text{ h})$

References

(1) Li, C.; Dou, Y.; Liu, J.; Chen, Y.; He, S.; Wei, M.; Evans, D. G.; Duan, X. Synthesis of supported Ni@(RhNi-alloy) nanocomposites as an efficient catalyst towards hydrogen generation from N2H4BH3. *Chem Commun* **2013**, *49* (85), 9992-9994, 10.1039/C3CC45697H. DOI: 10.1039/C3CC45697H.

(2) Zhang, Z.; Lu, Z.-H.; Tan, H.; Chen, X.; Yao, Q. CeOx-modified RhNi nanoparticles grown on rGO as highly efficient catalysts for complete hydrogen generation from hydrazine borane and hydrazine. *J Mater Chem A* **2015**, *3* (46), 23520-23529, 10.1039/C5TA06197K. DOI: 10.1039/C5TA06197K.

(3) Zhang, Z.; Lu, Z.-H.; Chen, X. Ultrafine Ni–Pt Alloy Nanoparticles Grown on Graphene as Highly Efficient Catalyst for Complete Hydrogen Generation from Hydrazine Borane. *ACS Sustainable Chemistry & Engineering* **2015**, *3* (6), 1255-1261. DOI: 10.1021/acssuschemeng.5b00250.

(4) Wang, H.-L.; Yan, J.-M.; Wang, Z.-L.; O, S.-I.; Jiang, Q. Highly efficient hydrogen generation from hydrous hydrazine over amorphous Ni0.9Pt0.1/Ce2O3 nanocatalyst at room temperature. *J Mater Chem A* **2013**, *1* (47), 14957-14962, 10.1039/C3TA13259E. DOI: 10.1039/C3TA13259E.

(5) Zou, H.; Zhang, S.; Hong, X.; Yao, Q.; Luo, Y.; Lu, Z.-H. Immobilization of Ni–Pt nanoparticles on MIL-101/rGO composite for hydrogen evolution from hydrous hydrazine and hydrazine borane. *Journal of Alloys and Compounds* **2020**, *835*, 155426. DOI: <u>https://doi.org/10.1016/j.jallcom.2020.155426</u>.

(6) Chen, J.; Lu, Z.-H.; Yao, Q.; Feng, G.; Luo, Y. Complete dehydrogenation of N2H4BH3 with NiM-Cr2O3 (M = Pt, Rh, and Ir) hybrid nanoparticles. *J Mater Chem A* **2018**, *6* (42), 20746-20752, 10.1039/C8TA08050J. DOI: 10.1039/C8TA08050J.

(7) Li, S.-J.; Kang, X.; Wulan, B.-R.; Qu, X.-L.; Zheng, K.; Han, X.-D.; Yan, J.-M. Noble-Metal-Free Ni-MoO Nanoparticles Supported on BN as a Highly Efficient Catalyst toward Complete Decomposition of Hydrazine Borane. *Small Methods* **2018**, *2* (12), 1800250. DOI: <u>https://doi.org/10.1002/smtd.201800250</u> (accessed 2024/10/07).

(8) Li, S.-J.; Wang, H.-L.; Wulan, B.-R.; Zhang, X.-b.; Yan, J.-M.; Jiang, Q. Complete Dehydrogenation of N2H4BH3 over Noble-Metal-Free Ni0.5Fe0.5–CeO/MIL-101 with High Activity and 100% H2 Selectivity. *Advanced Energy Materials* **2018**, *8* (21), 1800625. DOI: <u>https://doi.org/10.1002/aenm.201800625</u> (acccessed 2024/10/07).

(9) Yao, Q.; Lu, Z.-H.; Zhang, R.; Zhang, S.; Chen, X.; Jiang, H.-L. A noble-metal-free nanocatalyst for highly efficient and complete hydrogen evolution from N2H4BH3. *J Mater Chem A* **2018**, *6* (10), 4386-4393, 10.1039/C7TA10886A. DOI: 10.1039/C7TA10886A.

(10) Hong, X.; Yao, Q.; Huang, M.; Du, H.; Lu, Z.-H. Bimetallic NiIr nanoparticles supported on lanthanum oxy-carbonate as highly efficient catalysts for hydrogen evolution from hydrazine borane and hydrazine. *Inorganic Chemistry Frontiers* **2019**, *6* (9), 2271-2278, 10.1039/C9QI00848A. DOI: 10.1039/C9QI00848A.

(11) Yao, Q.; He, M.; Hong, X.; Chen, X.; Feng, G.; Lu, Z.-H. Hydrogen production via selective dehydrogenation of hydrazine borane and hydrous hydrazine over MoOx-promoted Rh catalyst. *Int J Hydrogen Energ* **2019**, *44* (53), 28430-28440. DOI: <u>https://doi.org/10.1016/j.ijhydene.2019.02.105</u>.

(12) Yurderi, M.; Top, T.; Bulut, A.; Kanberoglu, G. S.; Kaya, M.; Zahmakiran, M. Complete Dehydrogenation of Hydrazine Borane on Manganese Oxide Nanorod-Supported Ni@Ir Core–Shell Nanoparticles. *Inorganic Chemistry* **2020**, *59* (14), 9728-9738. DOI: 10.1021/acs.inorgchem.0c00965.