Sr₈MgSc(PO₄)₇:Eu²⁺ Phosphor: d – f Transition Driven Applications

for Solid-State Lighting and Extreme Environment Multimode

Sensing Inspections

Table S1. Ionic radii of Sr^{2+} and Eu^{2+} in different coordination environments.

Ion	Coordination	Ionic Radius (Å)	
	VI	1.18	
	VII	1.21	
Sr ²⁺	VIII	1.26	
	IX	1.31	
	Х	1.36	
Eu ²⁺	VI	1.17	
	VII	1.20	
	VIII	1.25	
	IX	1.30	
	X	1.35	

Sample	η _{IQE} (%)	η_{EQE} (%)
SMSP:0.025Eu ²⁺	17.9%	9.8%
SMSP:0.05Eu ²⁺	25.67%	14.7%
SMSP:0.1Eu ²⁺	29.64%	18.1%
SMSP:0.2Eu ²⁺	31.27%	19.6%
SMSP:0.5Eu ²⁺	21.45%	12.3%
SMSP:1Eu ²⁺	15.85%	8.9%

Table S2. Quantum efficiency of SMSP:x% Eu²⁺ (x = 0.025 - 1) phosphors

Table S3. Bond length of the Sr1-O for the SMSP:0.2% Eu²⁺ and SMSP host samples.

	SMSP host	SMSP:0.2% Eu ²⁺
Sr1-O1	3.10771(1)	3.33724(1)
Sr1-O3	3.29204(2)	3.19379(8)
Sr1-O7	3.06274(2)	2.81341(1)
Sr1-O8	2.77284(1)	2.74760(1)
Sr1-O9	2.47385(1)	2.55908(7)
Sr1-O12	2.51631(1)	2.92903(6)
Sr1-O13	2.65096(1)	2.31305(7)
Sr1-O14	2.89014(7)	2.71916(6)
Average Sr1-O	2.84672	2.82651

	SMSP host	SMSP:0.2% Eu ²⁺
Sr2-O2	2.74370(1)	2.76115(1)
Sr2-O4	2.54253(1)	2.71409(9)
Sr2-O5	2.94653(1)	2.75710(1)
Sr2-O6	2.53527(1)	2.77373(8)
Sr2-O10	2.53808(1)	2.58961(7)
Sr2-O12	2.54356(9)	2.44142(7)
Sr2-O13	2.35415(1)	2.58378(1)
Sr2-O14	2.71012(6)	2.88999(9)
Average Sr2-O	2.61493	2.68892

Table S4. Bond length of the Sr2-O for the SMSP:0.2% Eu²⁺ and SMSP host samples.

	SMSP host	SMSP:0.2% Eu ²⁺
Sr3-O1	2.67841(3)	3.25581(9)
Sr3-O2	3.32560(5)	3.08125(9)
Sr3-O5	3.08651(8)	3.27481(9)
Sr3-O6	2.82945(6)	2.33764(8)
Sr3-07	2.60307(6)	2.49114(8)
Sr3-O9	2.53353(2)	2.71164(5)
Sr3-O11	2.40011(7)	2.52803(7)
Average Sr3-O	2.77961	2.81150

Table S5. Bond length of the Sr3-O for the SMSP:0.2% Eu²⁺ and SMSP host samples.

	SMSP host	SMSP:0.2% Eu ²⁺
Sr5-O1	2.48860(8)	2.62239(7)
Sr5-O3	2.63180(1)	2.63960(1)
Sr5-O3	2.82673(4)	2.98858(3)
Sr5-O4	2.71201(2)	2.63836(4)
Sr5-07	2.41515(9)	2.31262(1)
Sr5-O11	2.51298(6)	2.47610(2)
Sr5-O13	2.68101(6)	2.72184(8)
Average Sr5-O	2.60983	2.62850

Table S6. Bond length of the Sr5-O for the SMSP:0.2% Eu²⁺ and SMSP host samples.

Table S7. Comparison of luminescence thermal stability of differentphosphors

Sample	$\lambda_{ex} (nm)$	$I_{373 \text{ K}}/I_{298 \text{ K}}$ (%)	Reference
SMSP: Eu ²⁺	342	50.01	This work
Sr ₉ LiMg(PO ₄) ₇ :Eu ²⁺	405	27	[1]
$Sr_9Sc(PO_4)_7$: Eu^{2+}	360	30	[2]
$Ba_3Si_6O_{15}{:}Eu^{2+}$	360	26	[3]

Samples	CIE (x, y)	CCT (K)	Ra	references
SMSP:0.2% Eu ²⁺	(0.3509, 0.3397)	4718 K	93.2	This work
Ba ₃ GdNa(PO ₄) ₃ F:Eu ²⁺	(0.273, 0.275)	5402 K	81	[4]
Ba ₂ Ca(PO ₄) _{1.6} (BO ₃) _{0.4} :Eu ²⁺	_	6488 K	90.4	[5]
$K_2BaCa(PO_4)_2$: Eu^{2+} , Mn^{2+}	(0.298, 0.383)	6789 K	74.7	[6]

 Table S8. The optical properties of WLED devices have been reported.

Table S9. Comparison of $d\lambda / dp$ and red shift values of different rare earth

Sample	λ_{ex} (nm)	$d\lambda / dp$	Red shift (nm)	Ref
SMSP:Eu ²⁺	342	2.03	42	This work
BaLi ₂ Al ₂ Si ₂ N ₆ : Eu ²⁺	400	1.5813	35	[7]
$Mg_2Gd_8(SiO_4)_6O_2:Ce^{3+}$	490	1.8453	60	[8]
$Lu_2Mg_2Al_2Si_2O_{12}$: Eu^{2+}	355	1.68	19	[9]

doped phosphors under high pressure

Table S10. Comparison of pressure sensing sensitivity of different rare

Materials	Pressure	S _{pa} (GPa ⁻¹)	$S_{\rm pr}(\% {\rm GPa}^{-1})$	Ref.
SMSP:Eu ²⁺	0 – 21.5 GPa	0.96	21.8	this work
$Lu_2Mg_2Al_2Si_2O_{12}:Eu^{2+}, Mn^{2+}$	0 – 25.6 GPa	0.0494	1.89	[10]
$SrB_4O_7:Eu^{2+}/Sm^{2+}$	10 – 40 GPa	0.35	13.8	[11]
$Li_4SrCa(SiO_4)_2:Eu^{2+}$	0 – 15.7 GPa	0.299	9.9	[12]

earth doped phosphors

Materials	Pressure	$S_{\rm pr}(\% { m GPa}^{-1})$	Ref.
SMSP:Eu ²⁺	0 – 21.5 GPa	116.22	this work
LiScGeO ₄ :Cr ³⁺	0 – 9.78 GPa	121.14	[13]
$Li_2Mg_3TiO_6:Cr^{3+}$	0 – 10.05 GPa	4.7	[14]
MgO:Cr ³⁺	0 – 8 GPa	9.83	[15]

Table S11. Comparison of pressure dynamic sensitivity of differentphosphors

Fig. S1 Rietveld analysis patterns for XRD data of the SMSP host.

Fig. S2 Quantum efficiency of SMSP:x% Eu²⁺ (x = 0.025 - 1) phosphors

Fig. S3 PL spectra of SMSP:0.2% Eu²⁺ at 298K-473K temperature

Fig. S4 Gaussian fitting diagrams of two position of SMSP:0.2% Eu^{2+} under different temperature (289 K \rightarrow 78 K)

Fig. S5 PL spectra of SMSP:0.2% Eu²⁺ at 298K-78K-298K temperature

Fig. S6 Raman spectra of the SMSP:0.2% Eu²⁺ sample at different pressures

Fig. S7 Raman spectra of the SMSP:0.2% Eu²⁺ sample during decompression.

Fig. S8 Schematic diagram of the influence of defects on the intensity

Fig. S9 Schematic illustration of the nonradiative transition.

Fig. S10 Gaussian fitting diagrams of two positions of SMSP:0.2% Eu²⁺ under different pressures

Fig. S11 The LIR as a function of pressure.

$$LIR = 0.038 - 0.046p + 0.029p^2 - 7.6 \times 10^{-3}p^3 + 9.8 \times 10^{-4}p^4 - 4.8 \times 10^{-5}p^5$$
(F1)

Quantum efficiency calculation formula:^[16]

$$\eta_{IQE} = \frac{\varepsilon}{\alpha} = \frac{\int L_S}{\int E_R - \int E_S}$$
(F2)

$$\alpha_{abs} = \frac{\alpha}{\delta} = \frac{\int E_R - \int E_S}{\int E_R}$$
(F3)

$$\eta_{EQE} = \frac{\varepsilon}{\delta} = \frac{\int L_S}{\int E_R}$$
(F4)

References

- X. Ding, Y. Wang, Novel Orange Light Emitting Phosphor Sr₉(Li, Na, K)Mg(PO₄)₇: Eu²⁺ Excited by NUV Light for White LEDs, Acta Materialia, 2016, **120**, 281-291.
- D. Kim, Y.W. Seo, S.H. Park, B.C. Choi, J.H. Kim, J.H. Jeong, Theoretical Design and Characterization of High Efficient Sr₉Ln(PO₄)₇: Eu²⁺ Phosphors, *Mater Res Bull*, 2020, **127**, 110856.
- 3. M. Shang, S. Liang, N. Qu, H. Lian, J. Lin, Influence of Anion/Cation Substitution $(Sr^{2+} \rightarrow Ba^{2+}, Al^{3+} \rightarrow Si^{4+}, N^{3-} \rightarrow O^{2-})$ on Phase Transformation and Luminescence Properties of

Ba₃Si₆O₁₅:Eu²⁺ Phosphors, *Chem. Mater*, 2017, **29**(4), 1813-1829.

- J. Chen, N. Zhang, C. Guo, F. Pan, X. Zhou, H. Suo, X. Zhao and E. M. Goldys, Site-Dependent Luminescence and Thermal Stability of Eu²⁺ Doped Fluorophosphate toward White LEDs for Plant Growth, *ACS Appl Mater Interfaces*, 2016, 8(32), 20856-20864.
- X. Sheng, P. Dai, Z. Sun and D. Wen, Site-Selective Occupation of Eu²⁺ Activators Toward Full-Visible-Spectrum Emission in Well-Designed Borophosphate Phosphors, *Chem. Eng. J*, 2020, **395**, 125141.
- X. Zhang, Z. Zhu, Z. Guo, Z. Sun, Z. Yang, T. Zhang, J. Zhang, Z.-c. Wu and Z. Wang, Dopant Preferential Site Occupation and High Efficiency White Emission in K₂BaCa(PO₄)₂:Eu²⁺, Mn²⁺ Phosphors for High Quality White LED Applications, *Inorg. Chem. Front*, 2019, 6(5), 1289-1298.
- Y. Wang, T. Seto, K. Ishigaki, Y. Uwatoko, G. Xiao, B. Zou, G. Li,
 Z. Tang, Z. Li and Y. Wang, Pressure-Driven Eu²⁺-Doped BaLi₂Al₂Si₂N₆: A New Color Tunable Narrow-Band Emission Phosphor for Spectroscopy and Pressure Sensor Applications, *Adv. Funct. Mater*, 2020, **30**(34), 2001384.
- B. F. Zheng, X. T. Zhang, D. Zhang, F. K. Wang, Z. B. Zheng, X. Y. Yang, Q. Yang, Y. H. Song, B. Zou and H. F. Zou, Ultra-Wideband Phosphor Mg₂Gd₈(SiO₄)₆O₂:Ce³⁺, Mn²⁺: Energy Transfer and

Pressure-Driven Color Tuning for Potential Applications in LEDs and Pressure Sensors, *Chem. Eng. J*, 2022, **427**, 131897.

- Z. B. Zheng, Y. Song, B. F. Zheng, Y. Zhao, Q. Wang, X. Zhang, B.
 Zou and H. F. Zou, *Inorg. Chem. Front*, 2023, 10, 2788-2798.
- Z. B. Zheng, Z. Li, H. F. Zou, Q. Tao, Y. Zhao, Q. Wang, Z. Shi, Y. Song and L. Li, Eu²⁺ and Mn²⁺ Co-Doped Lu₂Mg₂Al₂Si₂O₁₂ Phosphors for High Sensitivity and Multi-Mode Optical Pressure Seneing, *Inorg Chem*, 2024, 63(9), 3882-3892.
- T. Zheng, M. Sójka, P. Woźny, I. R. Martín, V. Lavín, E. Zych, S. Lis, P. Du, L. Luo and M. Runowski, Supersensitive Ratiometric Thermometry and Manometry Based on Dual-Emitting Centers in Eu²⁺/Sm²⁺-Doped Strontium Tetraborate Phosphors, *Adv. Opt. Mater*, 2022, **10**(20), 2201055.
- K. Su, L. Mei, Q. Guo, P. Shuai, Y. Wang, Y. Liu, Y. Jin, Z. Peng, B. Zou and L. Liao, Multi-Mode Optical Manometry Based on Li₄SrCa(SiO₄)₂:Eu²⁺ Phosphors, *Adv. Funct. Mater*, 2023, **33**(49), 2305359.
- M. Szymczak, M.Runowski, M. G. Brik and L. Marciniak, Super-Sensitive Luminescent Manometer Based on Giant Pressure-Induced Spectral Shift of Cr³⁺ in the NIR Range, *Chem. Eng. J*, 2023, 466, 143130.
- 14. M. Szymczak, P. Woźny, M. Runowski, M. Pieprz, V. Lavín and L.

Marciniak, Temperature Invariant Ratiometric Luminescence Manometer Based on Cr³⁺ Ions Emission, *Chem. Eng. J*, 2023, **453**, 139632.

- M. Szymczak, M. Runowski, V. Lavín and L. Marciniak, Highly Pressure-Sensitive, Temperature Independent Luminescence Ratiometric Manometer Based on MgO:Cr³⁺ Nanoparticles, *Laser Photonics Rev*, 2023, 17(4), 2200801.
- Y. Zhuo, F. Wu, Y. Niu, Y. Wang, Q. zhang, Y. Teng, H. Dong, Z. Mu, Super Broadband Emission Across NIR-I and NIR-II Under Blue Light Excitation of Cr³⁺, Ni²⁺ Co-Doped Sr₂GaTaO₆ Phosphor Achieved by Two-Site Occupation and Effective Energy Transfer, *Laser Photonics Rev*, 2024, **18**(8), 2400105.