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 Materials synthesis

The material was synthesized from previously reported literature with minor 

modifications. 1 Synthesis of VN: 225 mg of V2O5 (Adamas, 99.5%) powder was added 

to the mixed solvent of 11 mL NMP (Macklin, 99.5%) and 7 mL deionized water. The 

above solution was reacted at 140°C for 24 h. The product was filtrated and dried at 

80°C for 12 h. The synthesis steps of VNK4, VNK5, VNK10, and VNK20 are 

consistent with VNK3, except that the m V2O5: m KCO (Aladdin, 99%) are 4:1, 5:1, 

10:1, and 20:1, respectively. The preparation of V2O5-H2O followed the same 

procedure as for VN, but the solvent was deionized water without NMP.

 Material Characterizations

X-ray diffraction (XRD) characterized the crystal structure of the materials. 

Fourier transform infrared spectrometer (FTIR) and Raman spectroscope were used to 

analyze the chemical bonds. The microscopic morphologies were obtained by 

transmission electron microscope (TEM) and scanning electron microscope (SEM). X-

ray photoelectron spectroscopy (XPS) analyzed elemental valence states and species. 

Thermogravimetry (TG) was used to analyze water and organic matter content.

 Electrochemical Measurements

The cathode preparation was to mix 60 wt% product, 30 wt% Ketjen black, and 

10 wt% polyvinylidene fluoride. the slurry was loaded onto stainless steel mesh with a 

loading of about 1–1.5 mg cm-2. The 2032 coin cells were assembled using 2M Zn 

(CF3SO3)2, a GF/C Whatman membrane, and zinc foil. The cyclic voltammetry curves 

and the discharge/charge test were obtained in 0.2–1.5 V using the CHI604e 
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electrochemical workstation and the Neware devices (CT-4008T), respectively.

Obtaining layer spacing by Bragg's equation:2

\* MERGEFORMAT (1)2 sind n 

d is the layer spacing, θ is the X-ray incident angle, λ is the X-ray wavelength and n is 

the positive integer.

 Theoretical calculation

The structural optimization of VN, VNK4, and V2O5 was carried out by VASP 

using the Perdew, Burke, and Ernzerhof (PBE) functional and DFT-D3 methods with 

simultaneous consideration of the spin polarization. The total energy convergence was 

set as the plane-wave basis with a kinetic energy cutoff of 500 eV, and the Monkhorst-

Pack scheme with a k-point grid spacing of 2 π×0.04 Å-1 the converged ionic and 

electronic optimizations conditions were chosen as 0.03 eV/Å and 1×10-5 eV, 

respectively. These complex structures and isolated molecules were optimized using 

DFT at PBE0-D3/def2-SVP with the implicit solvent model SMD 3 involving water. 

The structural optimization and vibrational frequency analysis were carried out using 

B3LYP/TZVP under DFT calculations via Gaussian 16. Meanwhile, the SMD implicit 

solvent model was used to describe the solvation effect of water. The result analysis, 

including HOMO-LUMO and ESP, was handled through Multiwfn 4 and VMD 5.
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Figure S1. XRD of V2O5-H2O.

Figure S2. XRD of VNK10 and VNK20.
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Figure S3. Schematic diagram of KCO replacement of NMP.

Figure S4. FTIR spectra of KCO.
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Figure S5. (a-b) SEM images of VNK4.

Figure S6. SEM images of commercial V2O5.

Figure S7. N2 physisorption isotherms and pore size distribution (inset) of (a) 

commercial V2O5; (b) VN; (c) VNK4
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Figure S8. SAED spectrum of VNK4.

Figure S9. TEM-EDS mapping for (a) VNK4, (b) VN, (c) VNK3, (d) VNK5.
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Figure S10. The CV curves of VNK3 at different sweep speeds.

Figure S11. Cycling stability of VNK10 and VNK20 at 0.5 A g-1
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Figure S12. The GCD curves at a current density of 0.5 A g-1 of (a) VN, (b) VNK3, (c) 

VNK5.

Figure S13. The GCD curves of (a) VN, (b) VNK3, (c) VNK4, (d) VNK5 from 0.5 to 

10 A g-1.
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Figure S14. Long-cycle performance of VNK10 and VNK20 at 10 A g-1.

Figure S15. Long-cycle performance of commercial V2O5 at 10 A g-1.

Figure S16. High-resolution spectra of N 1s of VNK4.
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Figure S17. Long-term cycling durability of VNK4 under high load at 5 A g-1.

Figure S18. The CV profile of VN at various scan rates.
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Figure S19. Log (peak current) versus log (scan rate) plots of VN.

Figure S20. Capacitive contributions of VN at 1.0 mV s-1 of VN.
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Figure S21. EIS plots of commercial V2O5.
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Figure S22. GITT graph of commercial V2O5.

For the GITT test, the current pulse of 0.1 A g-1 was applied for 10 min, and the relax-

ation time was 30 min in the voltage window of 0.2-1.5 V.

The diffusion coefficient of Zn2+ was obtained according to the below equation. 6, 7

\* MERGEFORMAT (2)2

22
4 SB M

Zn
B

Em VD
M A E

   
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Therein, τ denotes the relaxed time of the constant current pulse, mB, MB, and VM mean 

the weight, moles weight, and mole volume of active materials, respectively. A stands 

for the area of the electrode-electrolyte contact, ΔES denotes the voltage change due to 

current pulses, and ΔEτ represents the voltage change that arises from galvanostatic
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Figure S23. Enlargement of ex-situ XRD spectrum of VNK4 when discharged to 0.9 

V.
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Figure S24. Simulated models for binding energies of (a) commercial V2O5, (b) VN, 

(c) VNK4.

Figure S25. Calculated model for the de-solvation energy of (a)Zn (H2O)6
2+, (b) Zn 

KCO (H2O)4
2+, (c) Zn NMP (H2O)5

2+.
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Table S1. Performance comparison with the organic intercalated vanadium cathodes

previously published in the literature.

Materials Current 

density

Capacity retention 

(mAh g-1)

References

VO-DP 10 A g-1 86.5 (15000 cycles) 8

N(C4H9)4]0.11V2O5·0.6H2

O

8 A g-1 142 (3600 cycles) 9

(1, 2, 3-BQ)-VO 10 A g-1 204 (3000 cycles) 10

HVO-MB 10 A g-1 147 (2000 cycles) 11

NiVO-BTA 5 A g-1 241.9 (1600 cycles) 12

MO-VOH 3 A g-1 228 (1000 cycles) 13

VOH-PPy (PSA) 10 A g-1 165 (5000 cycles) 14

NVOY 20 A g-1 170.9 (1500 cycles) 15

PANI-VOH 5 A g-1 131 (2000 cycles) 16

VNK4 10 A g-1 190.6 (9500 cycles) This work
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