Supporting Information

Cu-based electrode material for controlled selective electrooxidation of tetrahydroisoquinoline

Yizhou Zhang,^a Rongxian Zhang,^{*a} Qi Zhang,^a Yilin Deng,^b Jiexin Guan,^b Yizhou

Ling,^c and Guoxing Zhu*a

^a Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 202013, China.

^b Institute for Energy Research, Jiangsu University, Zhenjiang, 202013, China.

^c School of Education Science, Nanjing Normal University, Nanjing 210097, China.

* Corresponding authors: <u>rong@ujs.edu.cn</u>; <u>zhuguoxing@ujs.edu.cn</u>.

Fig. S1 TEM images of the Cu_2S/NF .

Fig. S2 XPS spectra of the Cu_2S catalytic electrode before and after catalysis.

Fig. S3 (a) LSV comparison curves of NF and Cu_2S/NF ; (b) Comparison curves of THIQ content between NF and Cu_2S/NF .

Fig. S4 Performance of Cu₂S prepared at different hydrothermal temperatures. (a) CV curves without THIQs; (b) CV curves with THIQs; (c) LSV curves without THIQs; (d) LSV curves with THIQs.

Fig. S5 Catalytic activity of the electrodes with different Cu/S ratios. (a) LSV curves without THIQ, (b) LSV curves with THIQ. (c) Cu/S ratios of the electrodes obtained at different preparation temperatures. (d) catalytic selectivity.

Fig. S6 LSV curves obtained in 1.0 M KOH with different dosages of THIQs.

Fig. S7 LSV curves over the $Cu_2S/NF ||Cu_2S/NF$ electrolyzed in the presence or absence of THIQs.

Fig. S8 SEM images of Cu_2S/NF (a) before the reaction; (b) and (c) after the reaction.

Fig. S9 (a-c) EDS images of Cu_2S/NF . (d) Cu/S ratios before and after the reaction.

Fig. S10 Space-filling models for (a) CuOOH; (b) CuOOH-THIQ; (c) CuOOH-THIQ_{ads}; (d) CuOOH-DHIQ; (e) CuOOH-DHIQ_{ads}; (f) CuOOH-IQ.

Fig. S11 OER steps on CuOOH.

Reaction corrdinata

Fig. S12 Gibbs free energy of the AES reaction path of oxygen evolution reactions.

Reaction corrdinata

Fig. S13 Gibbs free energy of the LOM reaction path of oxygen evolution reactions.

Fig. S14 (a) LSV curves at different K₂SO₄ contents; (b) difference in current density at different K₂SO₄ contents; (c) Selectivity at different K₂SO₄ contents.

Fig. S15 (a) CV and (b) LSV curves collected on the Cu_2S anode with 1.0 M KOH in the presence or absence of Urea.

Catalysts	Catalytic types	Reaction time	Reaction temperature	Convers ion	Yield [%]		
					DHIQs		Refs.
					IQs		
MOF-253- Ru(dcbpy) ₂	photocatalysis	5 days	room temperature	91.1	78.3	8.0	1
DMF	thermocatalysis	24 h	100 °C	>95	84	/	2
$MoS_2/ZnIn_2S_4$	photocatalysis	12 h	room temperature	94	85	9	3
TiO ₂	photocatalysis	24 h	room temperature	100	93	/	4
Ni ₂ P	electrocatalysis	1 h	room temperature	>99	99	/	5
Ni - NSA - V_{Ni}	electrocatalysis	/	room temperature	98	98	0	6
Co ₃ O ₄ @NF	electrocatalysis	1 h	room temperature	81	72	/	7
Ni ₃ N	electrocatalysis	1 h	room temperature	100	79	21	8
NiMo-P	electrocatalysis	1 h	room temperature	100	80.2	19.8	9
Cu ₂ S	electrocatalysis	2.8 h	room temperature	100	90	10	This work

Tab. S1 Performance comparison of the dehydrogenation reaction.

Step	$\Delta G/eV$
CuOOH+THIQ→*THIQ	-1.37
*THIQ-H \rightarrow *THIQ _{ads}	0.01
*THIQ-H→*DHIQ	0.39
*DHIQ-H→*DHIQ _{ads}	-1.18
$DHIQ_{ads}-H \rightarrow IQ$	2.46

Tab. S2 Gibbs free energy of the reaction steps.

*: adsorption; ads: Intermediate state.

References

- X. Deng, Y. Qin, M. Hao and Z. Li, MOF-253-Supported Ru Complex for Photocatalytic CO₂ Reduction by Coupling with Semidehydrogenation of 1,2,3,4-Tetrahydroisoquinoline (THIQ), *Inorg. Chem.*, 2019, 58, 16574-16580.
- 2 A. Mollar-Cuni, D. Ventura-Espinosa, S. Martín, H. García and J. A. Mata, Reduced Graphene Oxides as Carbocatalysts in Acceptorless Dehydrogenation of N-Heterocycles, ACS Catal, 2021, 11, 14688-14693.
- 3 M. Hao, X. Deng, L. Xu and Z. Li, Noble metal Free MoS₂/ZnIn₂S₄ nanocomposite for acceptorless photocatalytic semi-dehydrogenation of 1,2,3,4tetrahydroisoquinoline to produce 3,4-dihydroisoquinoline, *Appl Catal B-Environ*, 2019, **252**, 18-23.
- 4 N. O. Balayeva, N. Zheng, R. Dillert and D. W. Bahnemann, Visible-Light-Mediated Photocatalytic Aerobic Dehydrogenation of N-heterocycles by Surface-Grafted TiO₂ and 4-amino-TEMPO, ACS Catal, 2019, 9, 10694-10704.
- 5 C. Huang, Y. Huang, C. Liu, Y. Yu and B. Zhang, Integrating Hydrogen Production with Aqueous Selective Semi-Dehydrogenation of Tetrahydroisoquinolines over a Ni₂P Bifunctional Electrode, *Angew Chem Int Ed*, 2019, **58**, 12014-12017.
- 6 C. Wang, W. Zhou, Z. Sun, Y. Wang, B. Zhang and Y. Yu, Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode, *J Mater Chem A*, 2021, 9, 239-243.
- 7 M. Xiang, Z. Xu, J. Wang, X. Yang and Z. Yan, Accelerating H₂ Evolution by Anodic

Semi-dehydrogenation of Tetrahydroisoquinolines in Water over Co₃O₄ Nanoribbon Arrays Decorated Nickel Foam, 2021, **27**, 7502-7506.

- 8 R. Zhang, N. Chen, T. Ning, Y. Zhang, Y. Ling, X. Wang, W. Zhu and G. Zhu, Branched Porous Ni₃N as a Catalytic Electrode for Selective Semidehydrogenation of Tetrahydroisoquinoline, *Inorg. Chem.*, 2023, **62**, 17433-17443.
- 9 N. Chen, R. Zhang, W. Sun, Y. Zhang, S. Li, Q. Zhang, H. Yang, Y. Deng, Y. Ling and G. Zhu, Surface Reconstruction for Selective Oxidation of Tetrahydroisoquinoline, *Inorg. Chem.*, 2024, 63, 8977-8987.