Modulating the electronic structure of a hydrogen-bonded organic framework to improve the uranium removal by enhancing hydrogen evolution reaction Qingsong Zhang <sup>a,</sup> \*, Yuyang Miao <sup>a</sup>, Yang Xiao <sup>b,</sup> \*, Jianwei Hu <sup>a</sup>, Haiyi Gong <sup>a</sup>, Qingyi Zeng <sup>a,</sup> \*

<sup>a</sup> School of Resource & Environment and Safety Engineering, University of South

China, Hengyang 421001, China

<sup>b</sup> School of Nuclear Science and Technology, University of South China, Hengyang

421001, China

<sup>\*</sup> Corresponding authors.

*E-mail addresses:* qszhang@usc.edu.cn (QS. Zhang); xiaoyang950529@163.com (Y. Xiao); qingyizeng@usc.edu.cn (QY. Zeng)



Fig. S1. SEM images of (a, b) Co-HOF; (c,d) Co9.5Ni0.5-HOF; (e, f) Co8Ni2-HOF.



Fig. S2. (a) Nitrogen adsorption-desorption isotherms and (b) pore diameter distribution of Co-HOF.



Fig. S3. (a) Nitrogen adsorption-desorption isotherms and (b) pore diameter

distribution of Co<sub>9.5</sub>Ni<sub>0.5</sub>-HOF.



Fig. S4. (a) Nitrogen adsorption-desorption isotherms and (b) pore diameter distribution of  $Co_9Ni_1$ -HOF.



Fig. S5. (a) Nitrogen adsorption-desorption isotherms and (b) pore diameter distribution of  $Co_8Ni_2$ -HOF.



Fig. S6. (a) The kinetic rate constant of the  $UO_2^{2+}$  removal over different photocatalysts; (b-d) The kinetic rate constant of the  $UO_2^{2+}$  removal for different effects, (b) pH; (c) anions and (d) cations.



Fig. S7. Simulation of U(VI) speciation as a function with different pH.



Fig. S8. Selective removal of coexistent ions on Co<sub>9</sub>Ni<sub>1</sub>-HOF.



Fig. S9. The removal ratio and rate of U in simulated seawater for Co<sub>9</sub>Ni<sub>1</sub>-HOF

photocatalyst



Fig. S10. Mott-Schottky plots of the various samples.



Fig. S11. (a) Full XPS region of Co<sub>9</sub>Ni<sub>1</sub>-HOF; high-resolution XPS spectra of (b) C

1s, (c) C 1s, (d) N 2p, (e) Co 2p and (d) Ni 2p after uranium removal.



**Fig. S12.** Charge density differences of  $UO_2^{2+}$  adsorption on NiCo-HOF. Yellow indicates electron accumulation, and light blue indicates depletion.

| Samples                                  | Specific surface area | Pore volume (cm <sup>3</sup> /g) | Pore diameter (nm) |
|------------------------------------------|-----------------------|----------------------------------|--------------------|
|                                          | (m²/g)                |                                  |                    |
| Co-HOF                                   | 191.62                | 0.137                            | 2.4                |
| Co <sub>9.5</sub> Ni <sub>0.5</sub> -HOF | 308.34                | 0.192                            | 2.83               |
| Co <sub>9</sub> Ni <sub>1</sub> -HOF     | 432.66                | 0.364                            | 3.67               |
| Co <sub>8</sub> Ni <sub>2</sub> -HOF     | 270.85                | 0.185                            | 2.86               |

**Table S1.** Surface and pore information of the samples.

Table S2. The ratio of different valence states over  $Co^{2+}/Co^{3+}$  and  $Ni^{3+}/Ni^{2+}$ 

| Samples                              | $Co^{2+}/Co^{3+}(2p_{1/2})$ | $Co^{2+}/Co^{3+}(2p_{3/2})$ | $Ni^{3+}/Ni^{2+}(2p_{1/2})$ | Ni <sup>3+</sup> /Ni <sup>2+</sup> (2p <sub>3/2</sub> ) |
|--------------------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------------------------------|
| Co-HOF                               | 1.006                       | 1.018                       | -                           | -                                                       |
| Co <sub>9</sub> Ni <sub>1</sub> -HOF | 1.008                       | 1.021                       | 1.002                       | 1.003                                                   |

## Table S3. Comparison of HER activity with other materials.

| Materials                                                                                  | Overpotential | Refer |
|--------------------------------------------------------------------------------------------|---------------|-------|
|                                                                                            | (mV)          | ence  |
| Mg <sub>0.99</sub> Ni <sub>0.01</sub> Ga <sub>0.01</sub> Fe <sub>1.99</sub> O <sub>4</sub> | -820          | S1    |
| 2H-TaS <sub>2</sub>                                                                        | 575           | S2    |
| Mo-doped SnS                                                                               | 377           | S3    |
| Ni-SAO                                                                                     | 837.6         | S4    |
| Pd@TiO <sub>2</sub> -H                                                                     | 430           | S5    |
| PSS (BiW@PEPS)                                                                             | 361           | S6    |

| B, P and S-doped Ag <sub>2</sub> WO <sub>4</sub>    | 330   | S7        |
|-----------------------------------------------------|-------|-----------|
| Ni/Ni <sub>3</sub> C/CdS                            | -1080 | S8        |
| Cu-SnO <sub>2</sub> /ZIF-8                          | 364   | S9        |
| Cl-doped CuO                                        | 400   | S10       |
| MoS <sub>2</sub> /BN/rGO                            | -422  | S11       |
| CuO Nanoflowers                                     | 1020  | S12       |
| Ag@g-C <sub>3</sub> N <sub>4</sub> /r-GO            | 484   | S13       |
| ZnO-Ti <sub>3</sub> C <sub>2</sub>                  | 495   | S14       |
| MnTiO <sub>3</sub> /g-C <sub>3</sub> N <sub>4</sub> | 357   | S15       |
| $Co_{0.6}Cu_{0.4}Fe_2O_4$                           | -810  | S16       |
| Tetra-carboxylic acid based MOF                     | 391   | S17       |
| Co <sub>9</sub> Ni <sub>1</sub> -HOF                | 355   | This work |

Reference:

[S1] R. Jasrotia, A. Verma, J. Ahmed, V. Khanna, M. Fazil, S. M. Alshehri, S. Kumari, P. Kumar, T. Ahmad, A. Kandwal,  $Mg_{1-x}Ni_xGa_yFe_{2-y}O_4$  nano catalysts for green hydrogen generation with highly efffcient photo/electro catalytic water splitting applications, *Int. J. Hydrogen Energ.*, 2024, **52**, 1228–1240.

[S2] E. Kovalska, P. K. Roy, N. Antonatos, V. Mazanek, M. Vesely, B. Wu, Zd. Sofer,Photocatalytic activity of twist-angle stacked 2D TaS<sub>2</sub>, npj 2D Mater. Appl. 2021, 68.

[S3] S. R. Kadam, S. Ghosh, R. Bar-Ziv, M. Bar-Sadan, Structural transformation of SnS<sub>2</sub> to SnS by Mo doping produces electro/photocatalyst for hydrogen production, *Chem. Eur. J.*, 2020, **26**, 6679-6685. [S4] C. L. Wang, H. Yang, J. Du, S. Z. Zhan, Catalytic performance of a square planar nickel complex for electrochemical- and photochemical-driven hydrogen evolution from water, *Inorg. Chem. Commun.* 2021, **131**, 108780.

[S5] C. Shu, H. Du, W. H. Pu, C. Z. Yang, J. Y. Gong, Trace amounts of palladiumdoped hollow TiO<sub>2</sub> nanosphere as highly efficient electrocatalyst for hydrogen evolution reaction, *Int. J. Hydrogen Energ.* 2021, **46**, 1923-1933.

[S6] R. Manikandan, S. Sekar, S. P. Mani, S. Lee, D. Y. Kim, S. Saravanan, Bismuth tungstate-anchored PEDOT: PSS materials for high performance HER electrocatalyst, *Int. J. Hydrogen Energ.* 2023, **48**, 11746-11753.

[S7] M. M. Mohamed, M. Khairy, S. Eid, Phosphorous, boron and sulphur-doped silver tungstate-based nanomaterials toward electrochemical methanol oxidation and water splitting energy applications, *Int. J. Hydrogen Energ.* 2024, **50**, 1232–1245.

[S8] F. Y. Liu, F. Chen, X. Li, A. R. Xu, Z. J. Li, Z. J. Si, Z. Chen, A novel ternary nano-photocatalyst (Ni/Ni<sub>3</sub>C/CdS) for HER and water purification with enhanced photocatalytic activity, *Chem. Eng. J.* 2023, **478**, 147242.

[S9] D. D. Zhang, H. M. Yang, Y. P. Li, Z. F. Li, N. Gao, W. J. Zhou, Z. H. Liang, High-performance Photoelectrocatalytic Reduction of CO<sub>2</sub> by the hydrophilic– hydrophobic composite Cu-SnO<sub>2</sub>/ZIF-8, *Int. J. Electrochem. Sci.*, 2021, **16**, 150951.

[S10] D. P. Jaihindh, P. Anand, R. S. Chen, W. Y. Yu, M. S. Wong, Y. P. Fu, Cldoped CuO for electrochemical hydrogen evolution reaction and tetracycline photocatalytic degradation, *J. Environ. Chem. Eng.* 2023, **11**, 109852.

[S11] S. Selvaraj, K. Natesan, P. B. Bhargav, A. Nafis, Revolutionizing water

treatment: Exploring the efficacy of MoS<sub>2</sub>/BN/rGO ternary nanocomposite in organic dye treated water for OER and HER applications. *J. Water Process Engineering*, 2023, **54**, 104033.

[S12] F. Naaz, A. Sharma, M. Shahazad, T. Ahmad, Hydrothermally derived hierarchical CuO nanoflowers as an efficient photocatalyst and electrocatalyst for hydrogen evolution, *ChemistrySelect* 2022, 7, e202201800.

[S13] S. R. Gujjula, U. Pal, N. Chanda, S. Karingula, S. Chirra, S. Siliveri, S. Goskula,
V. Narayanan, Versatile bifunctional Ag@g-C<sub>3</sub>N<sub>4</sub>/r-GO catalyst for efficient
photoand electrocatalytic H<sub>2</sub> production, *Energy Fuels* 2023, 37, 9722–9735.

[S14] B. Saini, Harikrishna K, D. Laishram, R. Krishnapriya, R. Singhal, R. K. Sharma, Role of ZnO in ZnO nanoflake/Ti<sub>3</sub>C<sub>2</sub> MXene composites in photocatalytic and electrocatalytic hydrogen evolution. *ACS Appl. Nano Mater.* 2022, **5**, 9319–9333.

[S15] F. Li, Y. Zhou, S. T. Xie, Z. L. Wu, Q. J. Wang, Y. N. An, H. H. Huang, Q. Y. He, F. Li, K. Y. Zhao, P. W. Wu, C. L. Yu, In-situ synthesis of 2D Z-scheme MnTiO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> heterostructure for efficient electrocatalytic hydrogen production, *J. Taiwan Inst. Chem. Eng.* 2023, **151**, 105085.

[S16] P. Kotwal, R. Jasrotia, A. V. Nidhi, J. Ahmed, S. Thakurf, A. Kandwal, M. Fazil, S. M. Alshehri, T. Ahmad, A. Verma, N. Sharma, R. Kumar, Photo/electro catalytic green hydrogen production promoted by Ga modified  $Co_{0.6}Cu_{0.4}Fe_2O_4$  nano catalysts, *Environ. Res.* 2024, **241**, 117669.

[S17] Q. Qiu, T. Wang, L. H. Jing, K. Huang, D B. Qin, Tetra-carboxylic acid based metal-organic framework as a high-performance bifunctional electrocatalyst for HER

and OER, Int. J. Hydrogen Energ. 2020, 45, 11077-11088.

| Samples  | Со-НОГ | Co <sub>9.5</sub> Ni <sub>0.5</sub> -HOF | Co <sub>9</sub> Ni <sub>1</sub> -HOF | Co <sub>8</sub> Ni <sub>2</sub> -HOF |
|----------|--------|------------------------------------------|--------------------------------------|--------------------------------------|
| k values | 0.0027 | 0.0047                                   | 0.0068                               | 0.0031                               |

**Table S4.** k values of the different samples.