Supporting Information:

Synthesis and properties of pure and intergrown CHA/PHI zeolites from inorganic multi-cation colloidal suspensions

Aymeric Magisson,^a Edwin B. Clatworthy,^{*a} Diógenes Honorato Piva,^a Sajjad Ghojavand,^a Oleg I. Lebedev^b and Svetlana Mintova^{*a}

^aUniversité de Caen Normandie, ENSICAEN, CNRS, LCS, Laboratoire Catalyse et Spectrochimie, 14000 Caen, France ^bUniversité de Caen Normandie, ENSICAEN, CNRS, CRISMAT, Laboratoire de Cristallographie et Sciences des Matériaux, 14000 Caen, France

Additional figures and tables

Figure S1. Extra-framework cations site location in the chabazite (A) and in the phillipsite (B). The structures are viewed as a projection along [100].

Figure S2. Powder XRD pattern of a chabazite/phillipsite zeolite compared to the pattern of a pure phillipsite pattern. The green arrows indicate peaks attributed to the CHA phase and the blue arrow indicates an overlapped CHA and PHI peak.

Table S1. Screening of the synthesis parameters yielding pure CHA, PHI and intergrown zeolites.

		Chemical composition								Crystallisation		Zeolitic product	
	Cs ₂ O	K ₂ O	Na ₂ O	BaO	CaO	SiO ₂	Al ₂ O ₃	H ₂ O	Ageing time (days)	HT time (h)	XRD phase	CHA/PHI	
(1) CHA ⁴²	0.2	1.5	6	-	-	16	0.7	140	7	7	CHA	1	
(2) Chabazite ⁴⁰	0.15	1.35	6	-	-	16	0.6	120	12	8	CHA	1	
(3) CHA-Na,Cs-1.3K,0.2Ba42	0.2	1.3	6	0.2	-	16	0.7	140	7	7	CHA	1	
(4) CHA-Na,K,Cs-0.2Ca42	0.2	1.5	6	-	0.2	16	0.7	140	7	10	CHA	1	
(5) CHA-Na,K,Cs-0.2Ba42	0.2	1.5	6	0.2	-	16	0.7	140	7	4	CHA	1	
(6) CHA-Na,K	-	1.5	6	-	-	16	0.7	140	7	7	CHA	1	
(7) CHA-Na,Cs-1.3K,0.2Ca42	0.2	1.3	6	-	0.2	16	0.7	140	7	7	CHA & PHI	0.81	
(8) CHA-Na,K,Cs-0.50Al	0.2	1.5	6	-	-	16	0.5	140	7	7	CHA & PHI	0.74	
(9) CHA-Na,K,Cs-0.25Al	0.2	1.5	6	-	-	16	0.25	140	7	7	CHA & PHI	0.69	
(10) CHA-Na,K,Cs-0.5Ba	0.2	1.5	6	0.5	-	16	0.7	140	7	4	CHA & PHI	0.59	
(11) CHA-Na,K,Cs-1.0Ba	0.2	1.5	6	1	-	16	0.7	140	7	4	CHA & PHI	0.42	
(12) PHI	-	1.5	6	-	0.2	16	0.7	140	7	7	PHI	0	
(13) PHI-14 days *	-	1.5	6	-	0.2	16	0.7	140	14	7	CHA & PHI	0.29	

* The suffix "14 days" refers to the ageing time that was prolonged for fourteen days instead of seven

Table S2A	. Scherre	er cry	stalline c	loma	in siz	e calcul	ation of the	PHI-	-14 d	ays samp	ple. Tl	ne Mil	ler
indices we	ere chose	en to	average	out	over	crystal	orientation	and	not	overlap	with	those	of
chabazite.													

h,k,l	B obs. [° 2θ]	B std. [° 2θ]	Peak pos. [° 2θ]	B struct. [° 2θ]	Crystallite size [Å]
100	0.121	0.003	10.806	0.118	676
020	0.148	0.003	12.392	0.145	551
120	0.108	0.003	16.505	0.105	765
22-1	0.144	0.003	21.855	0.141	574
14-2	0.18	0.003	32.566	0.177	468
34-2	0.108	0.003	37.57	0.105	799
					average: 64±13 nm

 Table S2B. Scherrer crystalline domain size calculation of the PHI sample.

h,k,l	B obs. [° 2θ]	B std. [° 2θ]	Peak pos. [° 2θ]	B struct. [° 2θ]	Crystallite size [Å]
100	0.144	0.003	10.879	0.141	566
020	0.18	0.003	12.476	0.177	452
120	0.144	0.003	16.581	0.141	569
22-1	0.144	0.003	21.855	0.141	574
14-2	0.252	0.003	32.632	0.249	332
34-2	0.18	0.003	37.65	0.177	474
					average: 49±10 nm

Figure S3. SEM images of PHI-14 days. Scale bar is 500 nm.

Figure S4. Powder XRD patterns of all zeolite samples.

	Sample	Phase	GOF	wR (%)	reduced X ²	a (Å)	b (Å)	c (Å)	beta (°)	Volume (Å ³)
_	СНА	CHA	3.42	9.683	11.67	13.835607	-	15.184503	-	2517.258
	CHA-Na,Cs- 1.3K,0.2Ba	CHA	3.39	9.847	11.46	13.800795	-	15.163165	-	2501.086
	CHA-Na,K,Cs- 0.2Ca	CHA	3.76	8.906	14.14	13.779192	-	15.086180	-	2480.604
	CHA-Na,K,Cs- 0.2Ba	CHA	3.92	8.717	15.40	13.803514	-	15.118306	-	2494.670
	CHA-Na,K	CHA	4.44	11.506	19.70	13.823164	-	15.082600	-	2495.869
	CHA-Na,Cs-	CHA	2.05	0 007	0.28	13.777796	-	15.074650	-	2478.206
	1.3K,0.2Ca	PHI	5.05	0.007	9.28	9.943584	14.187387	8.678807	124.8448	1004.827
	CHA-Na,K,Cs-	CHA	2 1 4 6	9 (01	9.85	13.799675	-	15.086954	-	2488.112
	0.50A1	PHI	3.14	8.091		9.957733	14.202910	8.702450	124.8743	1009.740
	CHA-Na,K,Cs-	CHA	4 5 1	12 204	20.22	13.830740	-	15.083669	-	2498.783
	0.25A1	PHI	4.51	12.294	20.32	9.985948	14.261571	8.739134	125.2619	1016.232
	CHA-Na,K,Cs-	CHA	2 00	6.506	0.20	13.841154	-	15.052657	-	2497.402
	0.5Ba	PHI	2.89	6.396	8.38	9.886988	14.214983	8.705141	124.9366	1002.967
	CHA-Na,K,Cs-	CHA	0.56	5 007	6.56	13.829992	-	15.052693	-	2493.381
	1.0Ba	PHI	2.56	5.887	6.56	9.870288	14.210071	8.727031	124.8026	1005.081
	DIII 14 1	CHA	2.20	11.004	10.04	13.822081	-	15.069711	-	2493.345
	PHI-14 days	PHI	3.29	11.004	10.84	9.927806	14.204983	8.713394	124.9560	1007.115
	PHI	PHI	3.08	7.252	9.5	9.916595	14.202499	8.717479	125.0690	1004.884
	Table S2 L a D	oil mot	in ad w	nit aall	m a ma ma at	and of the	ahaharita	and mhilling	aita maalir	-

Table S3. Le Bail refined unit cell parameters of the chabazite and phillipsite zeolites.

ICP-MS Chemical composition									
	Cs	K	Na	Ba	Ca	Si	Al	Si/Al	CHA/PHI
СНА	3.1	5.7	2.5	-	-	24.7	11.3	2.2	1.00
Chabazite ⁶⁰	6.6	3.6	2.4	-	-	23.4	12.6	1.9	1.00
CHA-Na,Cs-1.3K,0.2Ba	3.7	5.2	1.5	0.3	-	24.9	11.1	2.2	1.00
CHA-Na,Cs-1.3K,0.2Ca	3.3	5.2	1.7	-	0.4	25.0	11.0	2.3	1.00
CHA-Na,K,Cs-0.2Ca	2.7	6.0	1.8 *	-	0.6 *	24.3	11.7	2.1	1.00
CHA-Na,K,Cs-0.2Ba	3.2	5.6	1.6	0.5	-	24.6	11.4	2.2	1.00
CHA-Na,K	-	7.7	3.5	-	-	24.5	11.2	2.2	1.00
CHA-Na,K,Cs-0.50Al	3.1	5.6	2.4	-	-	23.8	11.1	2.1	0.74
CHA-Na,K,Cs-0.25Al	2.3	5.6	3.1	-	-	24.0	11.0	2.2	0.69
CHA-Na,K,Cs-0.5Ba	2.3	4.4	0.9	1.6	-	23.5	10.8	2.2	0.59
CHA-Na,K,Cs-1.0Ba	1.4	2.1	-	3.4	-	23.2	10.3	2.3	0.42
PHI-14 days	-	6.1	3.2	-	0.7	22.6	10.7	2.1	0.29
PHI	-	5.8	3.3	-	0.7	21.6	10.5	2.1	0.00

Table S4. Chemical composition of the chabazite and phillipsite nanozeolites determined by ICP-MS. *Due to the co-existence of Ca(OH)₂ precipitates the amount of Ca²⁺ cations present in the CHA unit cell was estimated (see *Advanced Sustainable Systems* **2024**, *8* (1), 2300326).

Figure S5. Plot of Cs, K, Na, Ba amount over the initial BaO molar content (A) or the CHA/PHI ratio (B), for samples CHA, CHA-Na,K,Cs-0.2Ba, CHA-Na,K,Cs-0.5Ba and CHA-Na,K,Cs-1.0Ba.

		molar ratio				%		
	CHA:PHI ratio	Al + K	Ca or Ba	Cs	Al+K	Ca or Ba	Cs	
CHA	1.00	2.20	0.00	0.20	0.92	0.00	0.08	
Chabazite ⁶⁰	1.00	1.95	0.00	0.15	0.93	0.00	0.07	
CHA-Na,Cs-1.3K,0.2Ba	1.00	2.00	0.20	0.20	0.83	0.08	0.08	
CHA-Na,Cs-1.3K,0.2Ca	0.81	2.00	0.20	0.20	0.83	0.08	0.09	
CHA-Na,K,Cs-0.2Ca	1.00	2.20	0.20	0.20	0.85	0.08	0.08	
CHA-Na,K,Cs-0.2Ba	1.00	2.20	0.20	0.20	0.85	0.08	0.08	
CHA-Na,K	1.00	2.20	0.00	0.00	1.00	0.00	0.00	
CHA-Na,K,Cs-0.50Al	0.74	2.00	0.00	0.20	0.91	0.00	0.09	
CHA-Na,K,Cs-0.25Al	0.69	1.76	0.00	0.20	0.90	0.00	0.10	
CHA-Na,K,Cs-0.5Ba	0.59	2.20	0.50	0.20	0.76	0.17	0.07	
CHA-Na,K,Cs-1.0Ba	0.42	2.20	1.00	0.20	0.65	0.29	0.06	
PHI*	0.00	2.20	0.20	0.00	0.92	0.08	0.00	

Table S5. Detailed molar ratio and coordinates of samples presented in the ternary phase diagram.

*PHI-14 days is not included as its precursor chemical composition is the same as PHI

Figure S6. Thermogravimetric (solid) and differential thermogravimetic (dotted) curves of all zeolite samples.

	Mass loss at 800 °C
CHA*	14.5 %
CHA-Na,Cs-1.3K,0.2Ba*	14.3 %
CHA-Na,Cs-1.3K,0.2Ca*	14.7 %
CHA-Na,K,Cs-0.2Ca*	14.3 %
CHA-Na,K,Cs-0.2Ba*	14.7 %
CHA-Na,K	19.9 %
CHA-Na,K,Cs-0.50Al	12.8 %
CHA-Na,K,Cs-0.25Al	12.4 %
CHA-Na,K,Cs-0.5Ba	14.3 %
CHA-Na,K,Cs-1.0Ba	13.4 %
PHI-14 days	15.4 %
PHI	15.2 %

Table S6. Mass loss at 800 $^{\circ}$ C of all nanosized zeolites calculated from thermogravimetric analysis.

* Samples described in Advanced Sustainable Systems 2024, 8 (1), 2300326.

Figure S7. SEM picture and EDS mapping of caesium in the sample CHA-Na,K,Cs-0.25Al (left), overlay of the SEM and EDS pictures highlighting the greater amount of caesium in chabazite crystals (right). Scale bar is 500 nm.

	BET specific surface areas (m^2/g)	Microporous volumes (cm ³ /g)
CHA*	136	0.04
CHA-Na,Cs-1.3K,0.2Ba*	155	0.04
CHA-Na,Cs-1.3K,0.2Ca*	172	0.04
CHA-Na,K,Cs-0.2Ca*	290	0.07
CHA-Na,K,Cs-0.2Ba*	169	0.05
CHA-Na,K	233	0.06
CHA-Na,K,Cs-0.50Al	83	0.02
CHA-Na,K,Cs-0.25Al	24	0.00
CHA-Na,K,Cs-0.5Ba	98	0.03
CHA-Na,K,Cs-1.0Ba	66	0.02
PHI-14 days	86	0.03
PHI	60	0.00

Table S7. BET specific surface areas and microporous volumes of the synthesised nanozeolites from N_2 adsorption isotherms recorded at $-196^{\circ}C$.

* Samples described in Advanced Sustainable Systems 2024, 8 (1), 2300326.

Figure S8. N_2 adsorption (full symbols) and desorption (empty symbols) isotherms of all zeolite samples measured at -196 °C.

Pareto Chart of the Standardized Effects

(response is CO2; $\alpha = 0.15$)

A gray bar represents a term not in the model.

Coded Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	2.267	0.252	8.99	0.000	
Κ	1.275	0.434	2.93	0.013	1.13
CHAPHI ratio	1.201	0.285	4.21	0.001	1.13

Figure S9. Pareto chart of the standardised effects of elements from ICP-MS and CHA/PHI ratio from RiR method on the CO₂ adsorption capacity at 90 kPa. Based on a screening design model, parameters H and B are statistically significant at the 15% threshold (CHA/PHI ratio uncertainty) using the terms of the current model, computed by Minitab.