Supporting Information

Praseodymium-selenium connecting selenotungstate containing mixed building blocks for catalytic synthesis of aza-heterocycles

Guoping Yang, †^a Jiawei Cao, †^a Zhoufu Lin, ^a Shixiong Li, *^b Yayu Dong, *^c Yufeng Liu*^a

^aJiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China.

^bSchool of Mechanical and Resource Engineering, Wuzhou University, Wuzhou, Guangxi 543003, P. R. China.

^cSchool of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China.

*Corresponding Author: lsx1324@163.com (S. X. Li); zmyydong@163.com (Y. Y. Dong); yfliu@ecut.edu.cn (Y. F. Liu).

[†]These authors contributed equally to this work.

Table of Contents

1.	General Information	2
2.	Experimental	2
3.	Characterization	3
4.	Characterization of Products	10
5.	Notes and References	35

1. General Information

Materials and Methods

The FT-IR spectrum was obtained by using a Fourier transform infrared (FT-IR) (4000-500 cm⁻¹) spectrometer (Thermo Nicolet iS5) at 0.5 cm⁻¹ resolution and 16 scans. Inductively coupled plasma optical emission spectrum (ICP-OES) data were obtained on an Agilent 725 ICP-OES spectrometer. Powder X-ray diffraction (PXRD) was performed on a Bruker D8 Advance diffractometer with Cu K α radiation ($\lambda = 1.5406$ Å) at room temperature. Flash column chromatography was performed using silica gel of 200-300 mesh. The GC analysis was performed on Agilent 7890B equipped with a capillary column (HP-5, 30 m × 0.25 µm) using a flame ionization detector. The GC-MS were recorded on Agilent 7890B-7000D and Thermo Fisher/ISQ7000.

X-ray Crystallography

The single crystal X-ray diffraction data were collected on Bruker D8 Smart Apex II diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Intensities were collected by ω -scan and reduced on *APEX 3* and a multi-scan absorption correction was applied.¹ The structures were solved and refined on *Olex2* using *SHELX* package.² Parameters of the crystal data collection and refinement are given in Table S1. The CCDC number is 2373607.

2. Experimental

Synthesis of Bc-Pr

 $Na_2WO_4 \cdot 2H_2O$ (1.9791 g, 6 mol), Na_2SeO_3 (0.1383 g, 0.8 mmol), NH_4Cl (0.3209 g, 6 mmol), DL-malic acid (0.0402 g, 0.3 mmol) was dissolved in 20 mL deionized water and stirred for 30 min. The pH value of the solution was adjusted to 4.5 by 6 M HCl. Then $PrCl_3 \cdot 6H_2O$ (0.2133 g, 0.6 mmol) was added, and the final pH of the solution was adjusted to 3.5 by 1 M HCl and stirred for 30 min. Ultimately, the solution was filtered. About five weeks later, light green block crystals were obtained through evaporation (yield: 36% based on W). Anal. cal. (found %) for: $C_4H_3Na_{2.5}O_{118.5}Pr_{2.5}Se_{4.25}W_{30}$: C 2.24, H 1.28, N 0.87, W 59.93, Dy 5.05, Sb 3.78, Na 2.14, O 24.34.

Typical procedure of the condensation reaction

In a reaction vial of 4 mL, 2-aminobenzamide (1, 0.2 mmol), aldehyde (2, 0.2 mmol), **BC-Pr** (0.6 mol%) and EtOH (1 mL) were added. Then the reactions were carried out in screw cap vials with a Teflon seal at 100 °C for 1.5 h. After cooling to room temperature, the mixture was further purified by column chromatography (petroleum ether/EtOAc) to afford the desired products.

3. Characterization

Code	BC-Pr
CCDC	2373607
Empirical formula	$C_4H_3Na_{2.5}O_{118.5}Pr_{2.5}Se_{4.25}W_{30}$
Fw	8207.89
<i>T</i> (K)	150
Crystal system	monoclinic
Space group	C2/c
<i>a</i> (Å)	64.919(4)
<i>b</i> (Å)	17.6777(10)
<i>c</i> (Å)	32.1895(19)
α (°)	90
$\beta(^{\circ})$	117.918(2)
$\gamma(^{\circ})$	90
$V/Å^3$	32642(3)
Ζ	8
$\rho_{\text{calcd}} (\text{g} \cdot \text{cm}^{-3})$	3.340
$\mu \text{ (mm}^{-1})$	22.809
F (000)	28116.0
Crystal size (mm ³)	$0.15 \times 0.106 \times 0.07$
2Θ range for data collection (°)	4.442 to 50
Index ranges	$-77 \le h \le 77, -21 \le k \le 20, -38 \le l \le 38$
Reflections collected	150226
Unique reflections	$28706 (R_{int} = 0.0951)$
Parameter	2305
Restraints	3243
GOOF on F ²	1.098
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0582, wR_2 = 0.1406$
Final R indexes [all data]	$R_1 = 0.0831, wR_2 = 0.1488$
Largest diff. peak/hole / e Å-3	1.97/-1.96

 Table S1. Crystallographic data and structure refinement of BC-Pr (SQUEEZE).

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|, \ {}^{b}wR_{2} = \{\sum [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \sum [w(F_{o}{}^{2})^{2}] \}^{1/2}$

Atom	BVS	Valence	Atom	BVS	Valence
Pr1	3.03	+3	W15	6.25	+6
Pr2	3.37	+3	W16	6.03	+6
Pr3	3.29	+3	W17	6.40	+6
Se1	3.75	+4	W18	6.70	+6
Se2	3.82	+4	W19	6.55	+6
Se3	3.97	+4	W20	6.36	+6
Se4	4.06	+4	W21	5.99	+6
W1	5.72	+6	W22	5.99	+6
W2	5.95	+6	W23	6.32	+6
W3	6.23	+6	W24	6.01	+6
W4	5.98	+6	W25	6.08	+6
W5	5.97	+6	W26	6.32	+6
W6	5.88	+6	W27	6.35	+6
W7	5.32	+5	W28	5.83	+6
W8	7.28	+6	W29	5.96	+6
W9	6.15	+6	W30	6.28	+6
W10	6.34	+6	O1W	0.39	H_2O
W11	5.85	+6	O2W	0.32	H_2O
W12	5.91	+6	O3W	0.30	H_2O
W13	6.19	+6	O4W	0.36	H_2O
W14	5.74	+6	O106	1.49	O ²⁻

Table S2. Bond valence calculations for Pr, W, Se, and selected O atoms in BC-Pr.

Bond valence sum (BVS) analysis: The BVS values (V*i*) of metal atoms were calculated using the following equation:³

$$V_i = \sum \exp[(r_0 - r_{ij})/B]$$
(1)

where r_0 is the bond valence parameter for a given atom pair, r_{ij} is the bond length between atoms *i* and *j* obtained from the crystal structure.

Entry	Catalyst	Loading/mol%	Time/h	Solvent	T/ºC	Yield / %	Ref.
1	BC-Pr	0.6	1.5	EtOH	100	95	This work
2	In-MOF	1	10	EtOH	reflux	99	4
3	Nd-MOF	10	24	CH ₃ CN	rt	99	5
4	CoFe ₂ O ₄ @Pr	50 mg	2	EtOH	reflux	92	6
5	Cu-MOF Nanosheet	5	12	MeOH	70	94	7
6	NiUMo	3	2	CH ₃ CN	90	93	8
7	BC-Pr	0.6	1.5	EtOH	100	88	This work
8	In-MOF	5	24	EtOH	reflux	84	5
9	CAN-SiO ₂	5	0.15	Toluene	rt	94	9
10	Amberlyst-15	10	0.5	H_2O	ultrasound	92	10
11	Sc(OTf) ₃ / Pybox	10 / 20	24	CH_2Cl_2	-40	66	11

Table S3. Comparison of the present catalytic system with other reported catalysts in the synthesis of products **3a** (Entries 1-6) and **5a** (Entries 7-11)

Figure S1. The structure of BC-Pr.

Figure S2. The structure of BC-Pr.

Figure S3. The coordination environment of Pr1, Pr2 and Pr3.

Figure S4. The dimer constructed by two clovers.

Figure S5. The planes constructed in BC-Pr.

Figure S6. The connected mode in 1D chain.

Figure S7. The three-dimensional supramolecular structure of BC-Pr from different directions.

Figure S8. XRD pattern of BC-Pr.

Figure S9. IR spectrum of BC-Pr.

4. Characterization of Products⁴

2-phenyl-2,3-dihydroquinazolin-4(1*H*)-one (3a)

EI-MS: $C_{14}H_{12}N_2O$, m/z (%) = 223.9 (44%) [M+].

7-methyl-2-phenyl-2,3-dihydroquinazolin-4(1*H*)-one (3b)

EI-MS: $C_{15}H_{14}N_2O$, m/z (%) = 238.0 (43%) [M+].

6-fluoro-2-phenyl-2,3-dihydroquinazolin-4(1*H*)-one (3c)

EI-MS: $C_{14}H_{11}FN_2O$, m/z (%) = 242.0 (31%) [M+].

6-chloro-2-phenyl-2,3-dihydroquinazolin-4(1*H*)-one (3d)

EI-MS: $C_{14}H_{11}ClN_2O$, m/z (%) = 258.0 (24%) [M+].

2-(*p*-tolyl)-2,3-dihydroquinazolin-4(1*H*)-one (3e)

EI-MS: $C_{15}H_{14}N_2O$, m/z (%) = 238.0 (50%) [M+].

2-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (3f)

EI-MS: $C_{15}H_{14}N_2O_2$, m/z (%) = 254.0 (48%) [M+].

2-(4-isopropylphenyl)-2,3-dihydroquinazolin-4(1*H*)-one (3g)

EI-MS: $C_{17}H_{18}N_2O$, m/z (%) = 266.0 (39%) [M+].

2-(4-fluorophenyl)-2,3-dihydroquinazolin-4(1*H*)-one (3h)

EI-MS: $C_{14}H_{11}FN_2O$, m/z (%) = 242.0 (36%) [M+].

2-(4-chlorophenyl)-2,3-dihydroquinazolin-4(1*H*)-one (3i)

EI-MS: $C_{14}H_{11}ClN_2O$, m/z (%) = 258.0 (18%) [M+].

2-(3-chlorophenyl)-2,3-dihydroquinazolin-4(1*H*)-one (3j)

EI-MS: $C_{14}H_{11}ClN_2O$, m/z (%) = 258.0 (22%) [M+].

2-(2-chlorophenyl)-2,3-dihydroquinazolin-4(1*H*)-one (3k)

EI-MS: $C_{14}H_{11}ClN_2O$, m/z (%) = 258.0 (22%) [M+].

2-(4-bromophenyl)-2,3-dihydroquinazolin-4(1*H*)-one (3l)

EI-MS: $C_{14}H_{11}BrN_2O$, m/z (%) = 302.0 (37%) [M+].

2-(4-(trifluoromethyl)phenyl)-2,3-dihydroquinazolin-4(1*H*)-one (3m)

EI-MS: $C_{15}H_{11}F_{3}N_{2}O$, m/z (%) = 292.0 (22%) [M+].

4-(4-oxo-1,2,3,4-tetrahydroquinazolin-2-yl)benzonitrile (3n)

EI-MS: $C_{15}H_{11}N_{3}O$, m/z (%) = 249.0 (24%) [M+].

2-(naphthalen-1-yl)-2,3-dihydroquinazolin-4(1*H*)-one (30)

EI-MS: $C_{18}H_{14}N_2O$, m/z (%) = 274.0 (30%) [M+].

2-(5-methylfuran-2-yl)-2,3-dihydroquinazolin-4(1*H*)-one (3p)

EI-MS: $C_{13}H_{12}N_2O_2$, m/z (%) = 228.0 (31%) [M+].

3-phenyl-3,4-dihydro-2*H*-benzo[e][1,2,4]thiadiazine 1,1-dioxide (5a)

EI-MS: $C_{13}H_{12}N_2O_2S$, m/z (%) = 260.1 (16%) [M+].

3-(o-tolyl)-3,4-dihydro-2*H*-benzo[e][1,2,4]thiadiazine 1,1-dioxide (5b)

EI-MS: $C_{14}H_{14}N_2O_2S$, m/z (%) = 274.1 (16%) [M+].

3-(4-methoxyphenyl)-3,4-dihydro-2*H*-benzo[e][1,2,4]thiadiazine 1,1-dioxide (5c)

EI-MS: $C_{14}H_{14}N_2O_3S$, m/z (%) = 290.1 (11%) [M+].

3-(4-isopropylphenyl)-3,4-dihydro-2*H*-benzo[e][1,2,4]thiadiazine 1,1-dioxide (5d)

EI-MS: $C_{16}H_{18}N_2O_2S$, m/z (%) = 302.1 (10%) [M+].

3-(4-chlorophenyl)-3,4-dihydro-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (5e)

EI-MS: $C_{13}H_{11}CIN_2O_2S$, m/z (%) = 294.1 (6%) [M+].

3-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2*H*-benzo[e][1,2,4]thiadiazine 1,1-dioxide (5f)

EI-MS: $C_{14}H_{11}F_{3}N_{2}O_{2}S$, m/z (%) = 328.0 (12%) [M+].

4-(1,1-dioxido-3,4-dihydro-2*H*-benzo[e][1,2,4]thiadiazin-3-yl)benzonitrile (5g)

EI-MS: $C_{14}H_{11}CIN_3O_2S$, m/z (%) = 285.1 (10%) [M+].

3-(5-methylfuran-2-yl)-3,4-dihydro-2*H*-benzo[e][1,2,4]thiadiazine 1,1-dioxide (5h)

EI-MS: C₁₂H₁₂N₂O₃S, m/z (%) =264.1 (18%) [M+].

3-butyl-3,4-dihydro-2*H*-benzo[e][1,2,4]thiadiazine 1,1-dioxide (5i)

EI-MS: C₁₁H₁₆N₂O₂S, m/z (%) =240.1 (6%) [M+].

5. Notes and References

- (1) Bruker, A. APEX3 Package, APEX3, SAINT and SADABS. 2016.
- (2) (a) Spek, A. L. Single-Crystal Structure Validation with the Program *PLATON. J. Appl. Crystal.* 2003, 36, 7-13; (b) Spek, A. L. Structure Validation in Chemical Crystallography. *Acta Crystal.* 2009, *D65*, 148-155; (c) Spek, A. L. What Makes a Crystal Structure Report Valid? *Inorg. Chim. Acta* 2018, 470, 232-237; (d) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. *OLEX2*: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Crystal.* 2009, 42, 339-341; (e) Sheldrick, G. M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. *Acta Crystal.* 2015, *A71*, 3-8; (f) Sheldrick, G. M. Crystal Structure Refinement with *SHELXL. Acta Crystal.* 2015, *C71*, 3-8.
- (3) (a) Brese, N.; O'keeffe, M. Bond-Valence Parameters for Solids. *Acta Crystal.* 1991, *B47*, 192-197; (b) Brown,
 I.; Altermatt, D. Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database. *Acta Crystal.* 1985, *B41*, 244-247.
- (4) Velusamy, J.; Gopal, C. S.; Kesavan, M.; Ajithkumar, A.; Swaminathan S. Construction of Indium(III)-Organic Framework Based on a Flexible Cyclotriphosphazene-Derived Hexacarboxylate as a Reusable Green Catalyst for the Synthesis of Bioactive Aza-Heterocycles. *Inorg. Chem.* 2024, 63, 5446-5463.
- (5) Liu, Y.; Zhao, P.; Duan, C.; He, C. Three-Dimensional Neodymium Metal-Organic Framework for Catalyzing the Cyanosilylation of Aldehyde and the Synthesis of 2,3-Dihydroquinazolin-4(1*H*)-one Derivatives. *Inorg. Chem.* 2023, 62, 10359-10368.
- (6) Tamoradi, T.; Mousavi, S. M.; Mohammadi, M. Praseodymium(Iii) Anchored on CoFe₂O₄ MNPs: An Efficient Heterogeneous Magnetic Nanocatalyst for One-Pot, Multi-Component Domino Synthesis of Polyhydroquinoline and 2,3-Dihydroquinazolin-4(1*H*)-one Derivatives. *New J. Chem.* **2020**, 44, 3012-3020.
- (7) Xia, Q. C.; Zhang, S. Z.; Zhang, Y. X.; Bai, R. X.; Li, S. J.; Zhang, J.; Chen X. N. Few-Layered Metal-Organic Framework Nanosheets as Catalysts for the Synthesis of 2,3-Dihydroquinazolinone and Propargylamines. ACS Appl. Nano Mater. 2021, 4, 12108-12118.
- (8) Li, K.; Liu, Y. F.; Yang, G. P.; Zheng, Z. J.; Lin, X. L.; Zhang, Z. B.; Li, S. J.; Liu, Y. H.; Wei Y. G. Highlystable Silverton-type U^{IV}-containing Polyoxomolybdate Frameworks for the Heterogeneous Catalytic Synthesis of Quinazolinones. *Green Chem.* **2024**, 26, 6454-6460.
- (9) Someshwar, D. D.; Kwon, T. L.; Byung, K. C.; Yeon, T. J. Green Approach toward One Pot Cascade Synthesis of 3-Aryl-3,4-Dihydro-1,2,4-Benzothiadiazine-1,1-Dioxides. *Phosphorus, Sulfur Silicon Relat. Elem.* 2014, 189, 40-51.
- (10) Kumar, S. K.; Rambabu, D.; Kumar, C. H. V.; Sreenivas, B. Y.; Prasad, K. R. S.; Rao, M. V. B.; Pal, M. Catalysis by Amberlyst-15 under Ultrasound in Water: A Green Synthesis of 1,2,4-Benzothiadiazine-1,1-Dioxides and Their Spiro Derivatives. *RSC Adv.* **2013**, 3, 24863-24867.
- (11) Du, P.; Zhou, H.; Sui, Y.; Liu, Q.; Zou, K. Asymmetric Synthesis of 3,4-Dihydro-2H-1,2,4-Benzothiadiazine-1,1-Dioxides Catalyzed by Scandium(III)-Inda-Pybox. *Tetrahedron*. 2016, 72, 1573-1578.