Supporting Information

Construction of Ni-Co alloy/zeolite nanosheet catalysts for hydrodeoxygenation of fatty acid to alkanes

Ge Tian,^a Guangrui Chen,^{a,b} Risheng Bai,^a Guoju Yang,^a Zhenheng Diao,^{a,c} Buyuan Guan,^{*,a,b} and Jihong Yu^{*,a,b}

^aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China

^bInternational Center of Future Science, Jilin University, Changchun 130012, People's Republic of China

^cSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China

*Correspondence to: guanbuyuan@jlu.edu.cn; jihong@jlu.edu.cn

Table of Contents

Section 1. Materials and Methods

Section 2. Characterizations

Section 3. Catalytic tests

Section 4. Additional figures and tables

Section 1. Materials and Methods

Tetraethylorthosilicate (TEOS, Tianjin Fuchen Chemical Reagents Company), tetrabutylammonium hydroxide solution (TBAOH, 40 wt % Aladdin), ammonia solution (25%–28%, Sinopharm Chemical Reagent Company), aluminium isopropoxide (Al(C₃H₇O)₃, Tianjin Fuchen Chemical Reagents Company), nickel acetate (Ni(CH₃COO)₂·4H₂O, Sinopharm Chemical Reagent Company), ammonium chloride (NH₄Cl, Sinopharm Chemical Reagent Company), cobalt acetate (Co(CH₃COO)₂·4H₂O, Sinopharm Chemical Reagent Company, sodium hydroxide (NaOH, Sinopharm Chemical Reagent Company), ammonium nitrate (NH₄NO₃, Sinopharm Chemical Reagent Company), stearic acid (98%, Aladdin), dodecane (98%, Aladdin), Commercial ZSM-5 zeolite (Nankai Catalyst Corporation, China). All reagents were used without further purification. Deionized (DI) water was used in all experiments.

Synthesis of self-pillared ZSM-5 zeolites. The self-pillared ZSM-5 was synthesized using tetrabutylammonium hydroxide as the structural directing agent, with the gel molar ratio of 1SiO₂: 0.3 TBAOH: 0.01 Al(C₃H₇O)₃: 0.0125 NaOH: 10 H₂O. Firstly, 12.4 g of TBAOH solution was mixed with 3 g of deionized water, then 122 mg of aluminum isopropoxide was added and stirred for 30 minutes. After that, 12 mg of NaOH and 12.48 g of TEOS were added and stirred for 4 hours until TEOS was completely hydrolyzed. Finally, the obtained solution was transferred into a 100 mL stainless steel autoclave and crystallized in a pre-heated oven at 80 °C for 1 day and then at 160 °C for 2 days. The as-synthesized solid product was centrifuged, washed with deionized water and ethanol several times, and then dried at 80 °C in the oven

overnight, followed by calcination at 550 °C in air for 6 hours to remove the organic template agent. Finally, the calcined zeolite was converted to the proton form via the ion exchange method. 1 g of calcined zeolite was added into 50 mL 1 M NH₄NO₃ aqueous solution with continuous stirring at 80 °C for 4 hours. The solid product was centrifuged and washed with deionized water. The process was repeated three times, and the resulted solid product was calcined in air at 550 °C for 6 hours.

Synthesis of ZSM-5@Ni-Co silicate. ZSM-5@Ni-Co silicate with the Ni/Co ratio of 0.62:0.38 was prepared through a simple hydrothermal process. Typically, 8.7 mg of Ni(CH₃COO)₂·4H₂O, 4.5 mg of Co(CH₃COO)₂·4H₂O, 56.1 mg of NH₄Cl, and 95.6 mg of NH₃·H₂O (28%) were added under stirring in 5.25 g of deionized water. Then 10 mg of the self-pillared ZSM-5 was added to the above solution and ultrasonicated for 30 min to form a uniform suspension, then the mixture was heated to 100 °C for 3 h. The resulting solid precipitate was collected, washed several times with deionized water and ethanol and dried at 80 °C in the oven for 4 hours. The ZSM-5@Ni-Co silicate with the Ni/Co ratio of 0.75:0.25 was synthesized using a similar experimental process as the ZSM-5@Ni-Co silicate with the Ni/Co silicate with the Ni/Co ratio of 0.62:0.38 except involving the use of 8.7 mg of Ni(CH₃COO)₂·4H₂O, 2.25 mg of Co(CH₃COO)₂·4H₂O, 46.75 mg of NH₄Cl, 79.63 mg of NH₃·H₂O, and 4.375 g of deionized water.

Synthesis of ZSM-5@Ni-Co/SiO2. ZSM-5@Ni-Co silicate was reduced under a H2 flow (flow

rate: 20 mL min⁻¹) at 550 °C for 0.5 h with a heating rate of 5 °C min⁻¹, and black power of ZSM-5@Ni-Co/SiO₂ was collected. The obtained catalysts were designated as ZSM-5@Ni_{0.62}Co_{0.38}/SiO₂ and ZSM-5@Ni_{0.75}Co_{0.25}/SiO₂ separately.

Synthesis of commercial ZSM-5@Ni_{0.62}Co_{0.38}/SiO₂. Commercial ZSM-5@Ni_{0.62}Co_{0.38}/SiO₂ (C-ZSM-5@Ni_{0.62}Co_{0.38}/SiO₂) was prepared using a similar experimental process as ZSM-5@Ni_{0.62}Co_{0.38}/SiO₂, with the only difference being the substitution of self-pillared ZSM-5 zeolites with commercial ZSM-5 zeolites.

*Synthesis of ZSM-5@Ni*₃*Si*₂*O*₅*(OH)*₄. Typically, 8.7 mg of Ni(CH₃COO)₂·4H₂O, 37.4 mg of NH₄Cl, and 63.7 mg of NH₃·H₂O (28%) were added under stirring in 3.5 g of deionized water. Then 10 mg of the self-pillared ZSM-5 was added to the above solution and ultrasonicated for 30 min to form a uniform suspension, then the mixture was heated to 100 °C for 3 h. The resulting solid precipitate was collected, washed several times with deionized water and ethanol and dried at 80 °C in the oven for 4 hours.

*Synthesis of ZSM-5@Ni/SiO*₂. ZSM-5@Ni₃Si₂O₅(OH)₄ was reduced under a H₂ flow (flow rate: 20 mL min⁻¹) at 550 °C for 0.5 h with a heating rate of 5 °C min⁻¹, and black power of ZSM-5@Ni/SiO₂ was collected.

Synthesis of ZSM-5@Co₃Si₂O₅(OH)₄. ZSM-5@Co₃Si₂O₅(OH)₄ was prepared under a similar

experimental process as ZSM-5@Ni₃Si₂O₅(OH)₄, with the only difference being the substitution of the Ni(CH₃COO)₂·4H₂O with Co(CH₃COO)₂·4H₂O.

*Synthesis of ZSM-5@Co/SiO*₂. ZSM-5@Co₃Si₂O₅(OH)₄ was reduced under a H₂ flow (flow rate: 20 mL min⁻¹) at 550 °C for 0.5 h with a heating rate of 5 °C min⁻¹, and black power of ZSM-5@Co/SiO₂ was collected.

Section 2. Characterizations

The powder X-ray diffraction measurements were performed on a Rigaku D-Max 2550 diffractometer by using Cu Kα radiation. Scanning electron microscopy images were measured with JEOL JSM-7800F. The transmission electron microscopy images and the elemental mappings were measured with a Tecnai F20 electron microscope. High resolution transmission electron microscopy (HRTEM) and energy dispersive spectrometer (EDS) mapping were performed on a JEOL JEM-2100F microscope. The H₂-TPR measurements were measured on a Micromeritics AutoChem II 2920 instrument. Chemical compositions of samples were analyzed by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) using iCAP 7000 Series. Nitrogen adsorption/desorption measurements were carried out on a Micromeritics ASAP 3-flex analyzer at 77 K after the samples were degassed at 350 °C under vacuum. XPS spectra of the catalysts were performed using a Thermo ESCALAB 250 spectrometer (Thermo Scientific, NY, USA). Fourier transform infrared (FTIR) spectra were recorded on a BRUKER vertex 80v; samples before testing were pelleted with KBr powder.

Section 3. Catalytic tests

The deoxygenation reaction of stearic acid (SA) was carried out in a batch autoclave (CHEMN Instrument, 100 mL). In a typical run, 0.1 g of catalysts, 1 g of SA and 40 mL of dodecane were introduced into the batch autoclave. The autoclave was sealed and firstly purged with N₂ (30 bar) three times to remove the residual air, followed by filling it with the reaction gas H₂ (40 bar) at room temperature. The reaction was performed at 260 °C at a stirring speed of 1000 rpm. The liquid products were obtained by *in-situ* sampling every 20 min and analyzed by gas chromatography (GC, Agilent 7890B) equipped with HP-innowax column (30 m × 320 μ m × 25 μ m) and FID detector. The methyl heptadecanoate was used as a quantitative internal standard in GC measurement. The mass balance was above 98%.

The yield, conversion, and normalized rate were calculated based on the following equations:

The conversion (%) = mass of the converted SA (g)/mass of the starting SA (g) ×100% (By GC analysis) (Equation S1) The selectivity (%) = mass of one product (g)/mass of all the products (g) ×100% (By GC analysis) (Equation S2)

The yield (%) = conversion×selectivity×100% (Equation S3)

The reaction rate $(g_{SA} g_{cat}^{-1} h^{-1}) = mass of converted SA (g)/mass of catalyst (g)/reaction time (h)$ (Equation S4)

Section 4. Additional figures and tables

Fig. S1 (a, b) SEM and (c, d) TEM images of ZSM-5 zeolites with self-pillared nanosheet morphology.

Fig. S2 (a, b) SEM and (c, d) TEM images of ZSM-5@Ni-Co silicate with the Ni/Co ratio of 0.62:0.38.

Fig. S3 TEM image of ZSM-5@Ni $_{0.62}$ Co $_{0.38}$ /SiO₂ catalysts.

Fig. S4 H₂-TPR profile of ZSM-5@Ni-Co silicate with the Ni/Co ratio of 0.62:0.38.

Fig. S5 NH₃-TPD profiles of ZSM-5 and ZSM-5@Ni_{0.62}Co_{0.38}/SiO₂.

Fig. S6 (a, d, g) SEM and (b, c, e, f, h, i) TEM images of (a–c) ZSM-5@Ni-Co silicate with the Ni/Co ratio of 0.75:0.25, (d–f) ZSM-5@Ni₃Si₂O₅(OH)₄, and (g–i) ZSM- $5@Co_3Si_2O_5(OH)_4$.

Fig. S7 XRD patterns of (a) ZSM-5@Ni-Co silicate with the Ni/Co ratio of 0.75:0.25, (b) $ZSM-5@Ni_3Si_2O_5(OH)_4$, and (c) $ZSM-5@Co_3Si_2O_5(OH)_4$.

Fig. S8 XRD patterns of (a) ZSM-5@Ni $_{0.75}$ Co $_{0.25}$ /SiO₂, (b) ZSM-5@Ni/SiO₂, and (c) ZSM-5@Co/SiO₂.

Fig. S9 (a, b) SEM and (c, d) TEM images of commercial ZSM-5 zeolites.

Fig. S10 (a, b) SEM and (c, d) TEM images of C-ZSM-5@Ni-Co silicate with the Ni/Co ratio of 0.62:0.38.

Fig. S11 (a) SEM image, (b, c) TEM images of C-ZSM-5@ $Ni_{0.62}Co_{0.38}/SiO_2$, and (d) the corresponding size distribution of Ni-Co alloy nanoparticles.

Fig. S12 XRD patterns of (a) C-ZSM-5@Ni-Co silicate with the Ni/Co ratio of 0.62:0.38 and (b) C-ZSM-5@Ni_{0.62}Co_{0.38}/SiO₂.

Fig. S13 N_2 adsorption-desorption isotherms of C-ZSM-5@Ni_{0.62}Co_{0.38}/SiO₂.

Fig. S14 Time-dependent product yields with ZSM-5@Ni $_{0.75}$ Co $_{0.25}$ /SiO₂ catalysts.

Fig. S15 Time-dependent product yields with ZSM-5@Ni/SiO₂ catalysts.

Fig. S16 Time-dependent product yields with ZSM-5@Co/SiO₂ catalysts.

Fig. S17 Time-dependent product yields with C-ZSM-5@Ni_{0.62}Co_{0.38}/SiO₂ catalysts.

Fig. S18 The ratio of $n-C_{18}/n-C_{17}$ in the product over different ZSM-5@Ni-Co alloy/SiO₂ catalysts.

	S_{BET}^{a}	S _{micro} ^b	$\mathbf{S}_{\mathrm{ext}}^{b}$	V _{micro} ^b	V_{total}^{c}	V _{meso} ^d
Sample	(m ² /g)	(m ² /g)	(m ² /g)	(cm ³ /g)	(cm ³ /g)	(cm ³ /g)
ZSM-5	464	359	105	0.14	0.72	0.58
ZSM-5@Ni-Co silicate	477	175	302	0.07	0.67	0.60
$ZSM-5@Ni_{0.62}Co_{0.38}/SiO_2$	448	162	286	0.07	0.66	0.59
C-ZSM-5@Ni _{0.62} Co _{0.38} /SiO ₂	323	214	109	0.10	0.42	0.32

 Table S1. The textural properties of the various samples.

^{*a*} Specific surface area calculated from the nitrogen adsorption isotherm using the BET method. ^b S_{micro} (micropore area), S_{ext} (external surface area), and V_{micro} (micropore volume) calculated using the t-plot method. ^c Total pore volume at P/P₀ = 0.99. ^d V_{meso} = V_{total} - V_{micro}.

Catalyst	Metal loading (wt%)	Reaction composition ^a	Reaction conditions	Time (min)	Con. (%)	Rate $(g g_{cat}^{-1} h^{-1})$	HDO/DCO _x ^b	Ref.
ZSM-5@Ni _{0.62} Co _{0.38} /SiO ₂	22.6	10/1	T=260 °C P=4.0 MPa H ₂	50	100	12	8.63	This work
Ni/Co-S	4	3/5	T=290 °C P=4.0 MPa H ₂	180	99.0	0.20	12.3	1
Co _x Ni _{1-x} P/SiO ₂	10	50/3	T=320 °C P=2.0 MPa H ₂	240	96.9	4.0	0.06	2
NiCo/SiO ₂	20	5/3	T=280 °C P=1.0 MPa H ₂	180	83.0	0.46	mainly DCO	3
NiCo/C-Na	20	5/3	T=280 °C P=1.0 MPa H ₂	180	100	0.55	mainly DCO	4

Table S2. Comparisons of catalytic activities for hydrodeoxygenation of fatty acids over literature reported catalysts with this work.

^a The reaction composition refers to the mass ratio of the substrate to the catalyst in the reaction slurry.

^{*b*} HDO/DCO_x was calculated based on (selectivity of hydrodeoxygenation (HDO) products)/(selectivity of decarboxylation (DCO) or decarbonylation (DCO₂) products).

Reference

- D. Zheng, D. Guo, Z. Wang, X. Wang, Y. Shan, X. Liu, Z. Yan, S. Yu and Y. Liu, Synergistic effect of CoO_x and Ni-Co alloy in Ni-Co/SAPO-11 catalysts for the deoxygenation of stearic acids, *Chem. Eng. J.*, 2023, 451, 138929.
- Z. Zhang, G. Bi, H. Zhang, A. Zhang, X. Li and J. Xie, Highly active and selective hydrodeoxygenation of oleic acid to second generation bio-diesel over SiO₂-supported Co_xNi_{1-x}P catalysts, *Fuel*, 2019, 247, 26-35.
- 3. H. Lin, Y. Chu, M. Xie, L. Yang and G. Ouyang, NiCo/SiO₂ nanospheres for efficient synergetic decarboxylation of fatty acids and upgrading of municipal sludge HTL biocrude to biofuels, *J. Environ. Chem. Eng.*, 2023, **11**, 110825.
- 4. H. Lin, F. Liao, Y. Chu, M. Xie, L. Pan, Y. Wang, L. Leng, D. Xu, L. Yang and G. Ouyang, Hierarchical porous honeycomb NiCo/C catalyst for decarboxylation of fatty acids and upgrading of sludge bio-crude, *Chem. Eng. Sci.*, 2024, **284**, 119439.