1	
2	Supporting Information
3	Mn doping regulating electronic structure of Co_3O_4 to construct dual active sites
5	for Oxygen electrocatalysis
6	
7	Ziyi Shui ^a *, Huiying Tian ^c , Hang Mu ^d , Liuyun Xu ^a , Xiaoming Gao ^a *, Xi Chen ^b *
8	
9	^a College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716009, China
10	^b School of Interdisciplinary Studies, Lingnan University, Hong Kong, China
11	^c School of Chemistry and Chemical Engineering, Jining Normal University, Ulanqab 012000,
12	China
13	^d Northwest Rubber & Plastics Research & Design Institute Co., Ltd. Xian yang, 712023, China
14	
15	Corresponding Author
16	*E-mail: m18182696780@163.com (Z. S.); ydgaoxm@126.com (X. G.); xichen863@hotmail.com
17	(X. C.).
18	

Experimental Methods

2 1. Materials syntheses

The MnCo₂O₄ catalyst was synthesized by a hydrothermal method. In a typical procedure, 0.289 g of 3 Co(NO₃)₂·6H₂O and 0.125 g of Mn(NO₃)₂·4H₂O were dissolved in 50 mL of deionized water with 4 vigorous stirring to form a transparent solution. Subsequently, 50 mL of NaOH solution was 5 introduced into the mixture. After stirring for 1 hour, the resulting precipitate was collected by 6 centrifugation, washed several times with ethanol and deionized water, and then dried overnight. he 7 dried products were ground into a fine powder and calcined at 500 °C in air for 3 hours to obtain 8 MnCo₂O₄ nanoparticles. For comparison, pristine Co₃O₄ was synthesized using the same procedure, 9 excluding the addition of $Mn(NO_3)_2 \cdot 4H_2O$. 10

11 2. Materials characterization

The crystal structure and phase composition of the samples were qualitatively analyzed by powder 12 X-ray diffraction (Rigaku Ultima IV). X-ray photoelectron spectroscopy (XPS, Thermo Scientific 13 ESCALAB Xi+) was was conducted to investigate the surface chemical composition, with Al K α X-14 rays as the excitation source. The morphology and structure were observed by scanning electron 15 microscopy (SEM, JEOL (JSM-7610 F)) and transmission electron microscope (TEM, JEOLF200). 16 The surface areas of the samples were examined by the Brunauer-Emmett-Teller (BET) method with 17 a Micromeritics ASAP 2450 instrument, while the pore size distributions were determined by the 18 Barrett-Joyner-Halenda (BJH) method from the adsorption branches of the isotherms. 19

20 3. Electrochemical measurements

The electrochemical techniques of linear sweep voltammetry (LSV), Tafel plot (TAFEL), 1 electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were conducted using 2 a CHI 760E electrochemical workstation with a rotating disk-ring electrode (RRDE) in 0.1 M KOH 3 solution at room temperature (25°C). The typical three-electrode setup consisted of a glassy carbon 4 working electrode, an Ag/AgCl reference electrode, and a graphite rod counter electrode. A catalyst 5 mixture was prepared by sonicating 5 mg of catalyst, 5 mg of black carbon, 40 µL of Nafion, and 1 6 mL of ethanol for 1 hour to create a homogeneous ink. Subsequently, 5 μ L of catalyst ink was 7 deposited on the glassy carbon electrode (GC), with an area of 0.1965 cm². The polarization curves 8 for ORR/OER were measured on the electrochemical workstation, with all potentials corrected to the 9 reversible hydrogen electrode (RHE) and for IR drop. 10

11 4. Rechargeable zinc-air battery

To assess the practical application potential of the as-prepared catalysts, the catalyst inks was coated on commercial carbon cloths as air cathodes with a loading of 2 mg·cm⁻². Zinc foil anode was dissolved in a solution of 6 M KOH and 0.2 M $Zn(Ac)_2$ to form zincate. The charge-discharge cycle performance of the battery was evaluated by LADN electricity, and the open-circuit voltage along with the charge-discharge polarization curves were measured by the CHI 760E electrochemical workstation.

18 5. Theoretical calculations

19 The energy barrier of Co_3O_4 and $MnCo_2O_4$ was performed using DFT with the Vienna ab initio 20 simulation package (VASP) ¹⁻². The Perdew-Burke-Ernzerhof (PBE) generalized gradient 21 approximation (GGA) was applied for the exchange-correlation energy functional³⁻⁴. The projected 22 augmented wave (PAW) pseudopotential depicted the ion core with periodic boundary conditions⁵. A 2 × 1 supercell consisting of three layers of Co₃O₄ (100) and MnCo₂O₄ (100) surfaces was
constructed for the models. Geometry optimizations and free energy assessments were carried out
with convergence thresholds of 10⁻⁶ eV for energy and 0.01 eV/Å for force. To address selfinteraction errors due to strong correlation effects in 3d transition metal oxides, the Hubbard U
parameter (GGA+U) was applied to Mn and Co with values of 3.96 eV and 3.4 eV, respectively ⁶⁻⁷.
A 15 Å vacuum in the z-direction minimized interactions between periodic images.

7 The free energy of ORR/OER was calculated by using the equation:

8
$$\Delta G = E_{surface + adsorbate} - E_{surface} - E_{adsorbate} + \Delta E_{ZPE} - T\Delta S$$
(1)

9 where G, E, ZPE and TS represent the free energy, total energy from DFT calculations, zero-point
10 energy and entropic contributions, respectively.

11 Computational hydrogen electrode (CHE) model was used to study the thermodynamics of ORR and 12 OER on catalysts. In CHE model, the free energy of $(H^+ + e^-)$ equals to $(1/2 H_2 (g))$ for standard 13 hydrogen electrode (SHE). For the four-electron pathway ORR in an alkaline electrolyte, the overall 14 reaction is divided into four elementary steps:

15 (1)
$$O_2(g) + H_2O(l) + e^- + * = OOH^* + OH^-$$
 (2)

16 (2)
$$OOH^* + e^- = O^* + OH^-$$
 (3)

17 (3)
$$O^* + H_2O(l) + e^- = OH^* + OH^-$$
 (4)

18 (4)
$$OH^* + e^- = * + OH$$
 (5)

19 where the asterisk denotes a surface-bound species. For OER in an alkaline electrolyte, the overall20 reaction is the reverse reaction of ORR.

21 The Gibbs free energies of ORR and OER were calculated according to the method developed by

22 Norskov and his co-workers⁸⁻⁹.

23
$$U_{\rm L,ORR} = 1.23 - \min \{\Delta G_{1-4}\}/e$$
 (6)

$$U_{\rm L,OER} = \max \{ \Delta G_{1-4} \} e - 1.23 \tag{7}$$

2 For OER on both RuO₂ and MnO₂, either step (2) or step (3) is potential determining, while the 3 limiting potential of ORR is raised from step (1) or step (4). Appling the linear scaling relation 4 between ΔG_{OH} and ΔG_{OOH} ($\Delta G_{OOH} = \Delta G_{OH} + 3.2$).

5
$$U_{\rm L,ORR} = 1.23 - \min \{\Delta G_{\rm OH}, 4.92 - (3.2 + \Delta G_{\rm OH})\}/e$$
 (8)

6
$$U_{\rm L,OER} = \max \{ \Delta G_{\rm O} - \Delta G_{\rm OH}, 3.2 - (\Delta G_{\rm O} - \Delta G_{\rm OH}) \} / e - 1.23$$
 (9)

7 The optimum ΔG_{OH} for ORR is derived as (4.92-3.2)/2=0.86 eV, and the optimum $\Delta G_{O} - \Delta G_{OH}$ for 8 OER is thus set to 3.2/2=1.6 eV. Notably, the above derivation of optimal descriptor value is only for 9 guiding the catalysts screening, the variation of the linear scaling relation will cause the deviation of 10 the optimal descriptor value.

8 Fig. S2 The various adsorption intermediates on Mn site in the modes of $MnCo_2O_4$.

2

4 Fig. S3 Co d-band center relative to the Fermi surface of Co_3O_4 , $Mn_{0.5}Co_{2.5}O_4$, $MnCo_2O_4$, and 5 $Mn_{1.5}Co_{1.5}O_4$.

7

8

9 Fig. S4 O p-band centers relative to the Fermi surface of Co_3O_4 , $Mn_{0.5}Co_{2.5}O_4$, $MnCo_2O_4$, and 10 $Mn_{1.5}Co_{1.5}O_4$.

11

3 Fig. S5 EDS spectrum of MnCo₂O₄ catalyst.

- ,

3 Fig. S7 SEM images of (a) Co₃O₄, (b) Mn_{0.5}Co_{2.5}O₄, (c) MnCo₂O₄, (d) Mn_{1.5}Co_{1.5}O₄ catalysts.

4

2

5

 $6 \quad \mbox{Fig. S8 XRD patterns of Co_3O_4, $Mn_{0.5}Co_{2.5}O_4$, $MnCo_2O_4$, and $Mn_{1.5}-Co_{1.5}O_4$ catalysts.}$

3 Fig. S11 n and J_K values of the Co₃O₄ and MnCo₂O₄.

1

7 Fig. S12 (a) Oxygen reduction polarization curve and (b) Oxygen evolution polarization curve of

12

3 Fig. S13 CV curves at different scan rates of (a) Co_3O_4 and (b) $MnCo_2O_4$.

7 Fig. S14 double-layer capacitance (C_{dl}) values determined by electrochemically active surface area
8 (ECSA) of Co₃O₄ and MnCo₂O₄.

4 Fig. S15 SEM images of $MnCo_2O_4$ catalyst (a) before and (b) after ORR stability testing.

- 8 Fig. S16 SEM images of the $MnCo_2O_4$ catalyst (a) before and (b) after OER stability testing.

2 Fig. S17 XPS spectra of Co₃O₄, Mn_{0.5}Co_{2.5}O₄, MnCo₂O₄, and Mn_{1.5}Co_{1.5}O₄ catalysts.

1

4

5 Fig. S18 (a) High-resolution Co 2p spectra and (c) High-resolution Mn 2p spectra of Co₃O₄,
6 Mn_{0.5}Co_{2.5}O₄, MnCo₂O₄, and Mn_{1.5}Co_{1.5}O₄ catalysts.

- 1
- 2 Fig. S19 The photograph of the assembled Zn-air batteries.
- 3
- 4

Spectrum						
Element	Weight percentage (wt%)	Atomic percentage (At%)				
C K	76.58	85.98				
O K	13.98	11.79				
Mn K	2.96	0.73				
Co K	6.48	1.50				
Total	100.00	100.00				

Table S1 EDS spectrum results of $MnCo_2O_4$ catalyst.

Table S2 XPS and ICP-OES results of $Mn_XCo_{3-X}O_4$ (X = 0, 0.5, 1, 1.5) catalysts

Complex		XPS result	s	ICP-OES results		
Samples	Elements	Atomic ratio (%)	Mn/Co	Mass ratio (%)	Mn/Co	
	Mn	0	0	0	0	
Co_3O_4	Co	8.64	0	69.65	0	
	Mn	1.60	0.202	12.43	0.199	
$Mn_{0.5}Co_{2.5}O_4$	Co	7.89	0.203	65.49		
	Mn	3.29	0.401	26.21	0.485	
$MnCo_2O_4$	Co	6.70	0.491	56.90		
Mr. C. O	Mn	4.62	0.056	39.04	0.047	
$MIn_{1.5}Co_{1.5}O_4$	Co	4.83	0.956	43.45	0.947	

Samu la	ORR						
Sample	E _{onset} (V)	$E_{1/2}(V)$	$J_L(mA \cdot cm^{-2})$	Tafel slope (mV·dec ⁻¹)	n	$J_{K}(mA \cdot cm^{-2})$	
Co ₃ O ₄	0.871	0.747	4.16	84.3	3.49	14.89	
Mn _{0.5} Co _{2.5} O ₄	0.947	0.745	5.43	/	/	/	
MnCo ₂ O ₄	0.976	0.775	5.58	81.6	3.67	16.36	
$Mn_{1.5}Co_{1.5}O_4$	0.933	0.667	4.98	/	/	/	
Pt/C	0.977	0.849	5.92	59.6	3.98	17.71	

 $Mn_{1.5}Co_{1.5}O_4$ and Pt/C catalysts

- 7 Table S4 Potential at 10 mA cm⁻², overpotential, Tafel slope, charge transfer resistance and mass
- 8 activity of Co_3O_4 , $Mn_{0.5}Co_{2.5}O_4$, $MnCo_2O_4$, $Mn_{1.5}Co_{1.5}O_4$ and RuO_2 catalysts

Samula	OER						
Sample	$E_{j=10}(V)$	η (mV)	Tafel slope (mV·dec ⁻¹)	Rct (Ω)	$MA (A \cdot g^{-1})$		
Co ₃ O ₄	1.70	470	82.6	44.3	34.4		
Mn _{0.5} Co _{2.5} O ₄	1.706	476	/	/	/		
MnCo ₂ O ₄	1.646	416	62.9	26.14	87.6		
$Mn_{1.5}Co_{1.5}O_4$	1.777	547	/	/	/		
RuO ₂	1.646	416	108.6	/	87.8		

Q	Surface Content (%)					
Sample -	Co ²⁺ /Co ³⁺	Mn^{3+}/Mn^{4+}	O_{ads}/O_{latt}			
MnO ₂	/	1.58	0.51			
Co ₃ O ₄	0.90	/	0.49			
$Mn_{0.5}Co_{2.5}O_{4}$	0.95	1.38	/			
MnCo ₂ O ₄	1.18	1.98	0.68			
Mn _{1.5} Co _{1.5} O ₄	1.15	1.88	/			

2 Table S5 Cobalt, manganese and oxygen content obtained from XPS of Co₃O₄, Mn_{0.5}Co_{2.5}O₄,

3 $MnCo_2O_4$, and $Mn_{1.5}Co_{1.5}O_4$ catalysts.

4

Commite	ORR		OER				740 4114	
Sample	E _{1/2}	Tafel slope	Stability	E _{j=10}	Tafel slope	Stability	ΔE	ZAB stablity
Mn-Co ₂ O ₄	0.775	81.6	1.14%	1.646	62.9	1.55%	0.871	70
Co ₃ O ₄	0.747	84.3	8%	1.70	82.6	2.82%	0.953	
Pt/C	0.849	59.6		1.99	201.5		1.141	
RuO ₂	0.6	100.3		1.646	63.5		1.046	
α -MnO ₂ -H ₂ ¹⁰	0.73	84.6	5%	1.742	199.6	40%	1.012	
RuO ₂ -carbon nanofiber arrays ¹¹	0.75			1.65			0.9	33.3
La _{1.5} Sr _{0.5} NiMn _{0.5} Ru _{0.5} O ₆ ¹²	0.73			1.66			0.93	
NiFe ₂ O ₄ -FeNi ₂ S ₄ ¹³	0.507			1.659			1.152	125
ZNCO-NCNTs ¹⁴	0.78	78		1.64	118.3		0.86	33.3
Co ₃ O ₄ -LSC ¹⁵	0.69	54		1.61	75		0.92	
NDC-800 ¹⁶	0.85	79.53	3.38%	1.63	170.28		0.80	50
Co/Co ₉ S ₈ /rGO/MWCNT-800 ¹⁷	0.75	72	1.8%	1.68	166		0.89	

Table S6 Performance comparison between Mn-Co₂O₄ and other recently reported electrocatalysts.

References

- 1. P. C. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, B864.
- G. Kresse, J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, *Phys. Rev. B, Condens. Matter*, 1996, 54, 11169.
- 3. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, 3865-3868.
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, *Comput. Mater. Sci.*, 1996, 6, 15-50.
- 5. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 6. L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA+U framework, *Phys. Rev. B, Condens. Matter*, 2006, **73**, 195107.
- M. T. Curnan, J. R. Kitchin, Effects of Concentration, Crystal Structure, Magnetism, and Electronic Structure Method on First-Principles Oxygen Vacancy Formation Energy Trends in Perovskites, J. Phys. Chem. C, 2014, 18, 28776-28790.
- V. Viswanathan, H. A. Hansen, J. Rossmeisl, J. K. Nørskov, Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces, ACS Catal. 2012, 2, 1654-1660.
- 9. I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces, *ChemCatChem*, 2011, **3**, 1159-1165.
- Q. Zhuang, N. Ma, Z. Yin, X. Yang, Z. Yin, J. Gao, Y. Xu, Z. Gao, H. Wang, J. Kang, D. Xiao, J. Li, X. Li, D. Ma, Rich Surface Oxygen Vacancies of MnO₂ for Enhancing Electrocatalytic Oxygen Reduction and Oxygen Evolution Reactions, *Adv. Energy Sustain. Res.*, 2021, 2, 2100030.
- 11. Z. Guo, C. Li, W. Li, H. Guo, X. Su, P. He, Y. Wang, Y. Xia, Ruthenium oxide coated ordered mesoporous carbon nanofiber arrays: a highly bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries, *J. Mater. Chem. A*, 2016, **4**, 6282-6289.
- M. Retuerto, F. Calle-Vallejo, L. Pascual, G. Lumbeeck, M. T. Fernandez-Diaz, M. Croft, J. Gopalakrishnan, M. A. Peña, J. Hadermann, M. Greenblatt, S. Rojas, La_{1.5}Sr_{0.5}NiMn_{0.5}Ru_{0.5}O₆ Double Perovskite with Enhanced ORR/OER Bifunctional Catalytic Activity, ACS Appl. Mater. Interfaces, 2019, **11**, 21454-21464.
- L. An, Z. Zhang, J. Feng, F. Lv, Y. Li, R. Wang, M. Lu, R. B. Gupta, P. Xi, S. Zhang, Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc–Air Battery with Neutral Aqueous Electrolyte, *J. Am. Chem. Soc.*, 2018, 140, 17624-17631.
- X.-T. Wang, T. Ouyang, L. Wang, J.-H. Zhong, Z.-Q. Liu, Surface Reorganization on Electrochemically-Induced Zn–Ni–Co Spinel Oxides for Enhanced Oxygen Electrocatalysis, *Angew. Chem. Int. Ed.*, 2020, 59, 6492-6499.
- X. Wang, Z. Pan, X. Chu, K. Huang, Y. Cong, R. Cao, R. Sarangi, L. Li, G. Li, S. Feng, Atomic-Scale Insights into Surface Lattice Oxygen Activation at the Spinel/Perovskite interface of Co₃O₄/La_{0.3}Sr_{0.7}CoO₃, *Angew. Chem. Int. Ed.*, 2019, **58**, 11720-11725.
- P. Li, J. Wen, Y. Xiang, M. Li, Y. Zhao, S. Wang, J. Dou, Y. Li, H. Ma, L. Xu, Hierarchical mesoporous N-doped carbon as an efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc–air battery, *Inorg. Chem. Front.*, 2024, 11, 5345-5358.
- Z.-D. Wang, C.-K. Bai, X.-Y. Chen, B.-D. Wang, G.-L. Lu, H. Sun, Z.-N. Liu, H. Huang, S. Liang, H.-Y. Zang, Co/Co₉S₈ nanoparticles coupled with N,S-doped graphene-based mixed-dimensional heterostructures as bifunctional electrocatalysts for the overall oxygen electrode, *Inorg. Chem. Front.*, 2019, 6, 2558-2565.