Supporting Information

Multiple Stimuli Dual-Optical Mode Responsive Hybrid Copper (I)

Halides for Advanced Anti-counterfeiting and Information

Encryption

Yue Guo⁺, Yi-Fan Fu⁺, Jia Jing Wu^{*}, Jing-Li Qi, Yu-Mei Zhang, Qiao-Feng Huang, Wenlong Liu, Sheng-Ping Guo^{*}

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.

R. China.

[⁺] These authors contributed equally to this work.

*E-mail: spguo@yzu.edu.cn, jiajingw@yzu.edu.cn.

Contents

Table S1. Crystal data and structure refinement for $(MePPh_3)_2Cu_2I_4 \cdot DMF$ and $(MePPh_3)_2Cu_4I_6$.**Table S2.** Fractional atomic coordinates and equivalent isotropic displacement parameters for $(MePPh_3)_2Cu_2I_4 \cdot DMF$ and $(MePPh_3)_2Cu_4I_6$.

Table S3. Important bond lengths for (MePPh₃)₂Cu₂I₄·DMF and (MePPh₃)₂Cu₄I₆.

Table S4. Important bond angles for (MePPh₃)₂Cu₂I₄·DMF and (MePPh₃)₂Cu₄I₆.

Table S5. Comparison of PL parameters for $(MePPh_3)_2Cu_2I_4$ ·DMF, $(MePPh_3)_2Cu_4I_6$ and other copper halides.

Table S6. The stimulus, response mode and trigger condition of hybrid metal halides in anticounterfeiting applications.

Figure S1. The simulated and experimental powder XRD patterns of (a) $(MePPh_3)_2Cu_2I_4$ ·DMF and (b) $(MePPh_3)_2Cu_4I_6$.

Figure S2. Asymmetric units and unit cell diagram of (a, b) (MePPh₃)₂Cu₂I₄·DMF and (c, d) (MePPh₃)₂Cu₄I₆.

Figure S3. The EDS analysis for (a) (MePPh₃)₂Cu₂I₄·DMF and (b) (MePPh₃)₂Cu₄I₆.

Figure S4. The bond lengths and bond angles of (MePPh₃)₂Cu₂I₄·DMF.

Figure S5. The bond lengths and bond angles of (MePPh₃)₂Cu₄I₆.

Figure S6. A detailed view of the distorted Cu cluster skeleton in (MePPh₃)₂Cu₄I₆.

Figure S7. The optical photographs of (a) (MePPh₃)₂Cu₂I₄·DMF and (b) (MePPh₃)₂Cu₄I₆.

Figure S8. The PL decay lifetime of for (a) (MePPh₃)₂Cu₂I₄·DMF and (b) (MePPh₃)₂Cu₄I₆.

Figure S9. Power density dependent PL intensity of (a) (MePPh₃)₂Cu₂I₄·DMF and (b) (MePPh₃)₂Cu₄I₆.

Figure S10. The simulated and experimental powder XRD patterns of (a) $(MePPh_3)_2Cu_2I_4$ ·DMF under ethanol stimulus.

Figure S11. The Powder XRD patterns of (a) $(MePPh_3)_2Cu_2I_4$ ·DMF and (b) $(MePPh_3)_2Cu_4I_6$ after storage in the ambient air for ten days.

Figure S12. The time-dependent PL intensity spectra of (a, b) $(MePPh_3)_2Cu_2I_4$ ·DMF and (c, d) $(MePPh_3)_2Cu_4I_6$ with time under the continuous irradiation with 40 W UV light.

Figure S13. The TGA curves of (a) (MePPh₃)₂Cu₂I₄·DMF and (b) (MePPh₃)₂Cu₄I₆.

Compound	(MePPh ₃) ₂ Cu ₂ I ₄ ·DMF	(MePPh ₃) ₂ Cu ₄ I ₆
Empirical formula	$C_{38}H_{36}P_2Cu_2I_4\cdot C_3H_7NO$	$C_{38}H_{36}P_2Cu_4I_6$
Formula weight	1262.38	1570.17
Temperature /K	296	296
Crystal system	monoclinic	trigonal
Space group (number)	C2/c	$R^{\overline{3}}c$
<i>a</i> /Å	24.6028(9)	13.9610(11)
b /Å	10.7595(4)	13.9610(11)
c /Å	18.9219(6)	40.083(5)
lpha /Å	90	90
eta /Å	116.4580(10)	90
γ/Å	90	120
Volume/ Å ³	4484.3(3)	6765.9(13)
Ζ	4	6
$ ho_{ m calc}$ /g·cm ⁻³	1.87	2.312
μ /mm $^{-1}$	3.804	6.064
<i>F</i> (000)	2416	4368.0
Radiation	$MoK_a (\lambda =$	0.71073 Å)
2θ range /°	4.214 - 58.442	5.28 - 52.752
	$-33 \le h \le 33$	$-17 \le h \le 17$
Index ranges	$-14 \le k \le 14$	$-17 \le k \le 17$
	$-25 \le 1 \le 25$	$-50 \le 1 \le 49$
Reflections collected	36008	28262
ndonondont roffertions	$6070 [R_{int} = 0.0343, R_{sigma} =$	1545 [$R_{int} = 0.0483, R_s$
ndependent reflections	0.0276]	0.0194]
Data / Restraints / Parameters	6070/57/256	1545/0/83

Table S1. Crystal data and structure refinement for $(MePPh_3)_2Cu_2I_4$ ·DMF and $(MePPh_3)_2Cu_4I_6$.

Compound	(MePPh ₃) ₂ Cu ₂ I ₄ ·DMF	(MePPh ₃) ₂ Cu ₄ I ₆
Goodness-of-fit on F^2	1.025	1.076
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0426, wR_2 = 0.0881$	$R_1 = 0.0276, wR_2 = 0.0552$
Final <i>R</i> indexes [all data]	$R_1 = 0.0745, wR_2 = 0.1004$	$R_1 = 0.0437, wR_2 = 0.0607$
Largest peak/hole /eÅ ⁻³	1.14/-1.46	0.67/-0.70

Table S1. Crystal data and structure refinement for $(MePPh_3)_2Cu_2I_4$ ·DMF and $(MePPh_3)_2Cu_4I_6$.

 $R_1 = \Sigma ||F_o| - |F_c|| \ / \ \Sigma |Fo|, \ wR_2 = \left\{ \Sigma [w(|F_o|^2 - |F_c|^2)^2] \ / \ \Sigma [w(|F_o|^4 \)]^{1/2} \ \text{and} \ w = 1/[\sigma^2(F_o^2) + (0.0462P)^2] \ \text{where} \ P = 1/[\sigma^2(F_o^2) + (0.0462P)^2] \right\}$

 $(F_o^2 + 2F_c^2)/3$

Table S2. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for $(MePPh_3)_2Cu_2I_4$ ·DMF and $(MePPh_3)_2Cu_4I_6$. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

Atom	x	У	Ζ	U_{eq}
		(MePPh ₃) ₂ Cu ₂ I ₄ ·	DMF	
I (1)	5098.1(2)	1719.2(3)	646.0(2)	57.30(11)
I (2)	6668.3(2)	89.2(4)	316.3(3)	84.06(15)
Cu (1)	5603.1(3)	105.1(6)	135.4(3)	59.17(16)
P (1)	6043.2(4)	5436.7(9)	1595.9(5)	35.6(2)
C (7)	6354.3(17)	5233(4)	908(2)	37.9(8)
C (6)	6364.7(18)	6801(3)	2180(2)	39.1(8)
C (13)	6209.7(18)	4127(3)	2241(2)	38.9(8)
C (19)	5237.7(18)	5599(4)	1052(2)	47.1(9)
C (8)	6306.7(19)	4096(4)	540(2)	46.9(9)
C (12)	6609(2)	6247(4)	706(3)	50.7(10)
C (1)	6845.3(19)	6671(4)	2927(2)	48.0(10)
C (5)	6154(2)	7976(4)	1892(3)	53.5(11)
C (2)	7099(2)	7707(5)	3380(3)	60.6(12)
C (18)	6708(2)	3381(4)	2417(3)	57.9(11)
C (9)	6514(2)	3970(5)	-26(3)	56.0(11)
C (14)	5841(2)	3896(4)	2602(3)	55.1(11)
C (3)	6892(2)	8866(4)	3090(3)	60.5(12)
C (10)	6772(2)	4973(5)	-215(3)	64.6(13)
C (4)	6427(2)	9003(4)	2349(3)	62.7(12)
C (15)	5971(3)	2919(5)	3129(3)	69.2(14)
C (11)	6817(2)	6097(5)	144(3)	65.5(13)
C (16)	6465(3)	2192(5)	3295(3)	71.8(15)
C (17)	6831(3)	2411(5)	2942(3)	74.7(15)

Atom	x	у	Ζ	U _{eq}
C (22)	5294(5)	7661(9)	2888(6)	62(2)
O (1)	5169(5)	6580(6)	2688(5)	75(3)
N (1)	5031(9)	8639(6)	2429(8)	50(3)
C (21)	5202(6)	9902(8)	2717(8)	81(4)
C (20)	4540(5)	8470(12)	1643(6)	78(3)
		(MePPh ₃) ₂ Cu	14I ₆	
I (1)	10568.4(3)	2028.6(2)	5466.8(2)	54.98(12)
P (1)	6666.67	3333.33	5057.4(4)	38.0(4)
Cu (1)	9094.8(8)	375.2(9)	5147.6(2)	48.7(3)
Cu (2)	10000	0	5409.6(4)	47.6(4)
C (2)	6249(3)	1972(3)	5207.4(9)	41.4(9)
C (7)	6666.67	3333.33	4611.2(16)	64(2)
C (3)	5430(4)	1467(4)	5437.6(12)	63.9(13)
C (1)	6801(5)	1440(4)	5100.9(13)	72.9(15)
C (5)	5738(5)	-52(4)	5466.8(13)	75.1(15)
C (4)	5177(5)	445(4)	5567.2(13)	82.0(16)
C (6)	6541(5)	421(4)	5231.7(15)	86.0(17)

Table S2. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for $(MePPh_3)_2Cu_2I_4$ ·DMF and $(MePPh_3)_2Cu_4I_6$. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

Atom	Atom	Length/Å	Atom	Atom	Length/Å				
(MePPh ₃) ₂ Cu ₂ I ₄ ·DMF									
Cu (1)	I (1)	2.5619(7)	P (1)	C (7)	1.794(4)				
Cu (1)	I (2)	2.4871(7)	P (1)	C (6)	1.795(4)				
Cu (1 ¹)	I (1)	2.5965(7)	P (1)	C (13)	1.788(4)				
Cu (1)	Cu (1) ¹	2.7865(12)	P (1)	C (19)	1.789(4)				
		(MePP)	$h_3)_2Cu_4I_6$						
I (1)	Cu (1)	2.5395(11)	Cu (1)	Cu (1) ⁴	1.9834(14)				
I (1)	Cu (1) ²	2.6359(10)	Cu (1)	Cu (1) ⁵	2.7568(17)				
I (1)	Cu (1) ³	2.5775(11)	Cu (1)	Cu (2)	1.9070(13)				
I (1)	Cu (2)	2.5408(4)	Cu (1)	Cu (2) ⁶	2.7427(16)				
Cu (1)	Cu (1) ²	1.9834(14)	Cu (1)	Cu (1) ³	2.7568(17)				

Table S3. Important bond lengths for $(MePPh_3)_2Cu_2I_4$ ·DMF and $(MePPh_3)_2Cu_4I_6$.

Symmetry code 1: 1-*x*, -*y*, -*z*; 2: 1+*y*, 1-*x*+*y*, 1-*z*; 3: 2+*y*-*x*, 1-*x*, +*z*; 4: -*y*+*x*, -1+*x*, 1-*z*; 5: 1-*y*, -1+*x*-*y*, +*z*; 6: 2-*x*, -*y*, 1-*z*.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
			(MePPh ₃) ₂ C	Cu ₂ I ₄ ·DMF			
Cu (1)	I (1)	Cu (1) ¹	65.39(2)	I (2)	Cu (1)	I (1)	117.72(3)
I (1)	Cu (1)	I (1) ¹	114.61(2)	I (2)	Cu (1)	I (1)	127.66(3)
I (1) ¹	Cu (1)	Cu (1) ¹	56.70(2)	I (2)	Cu (1)	Cu (1) ¹	174.40(4)
I (1)	Cu (1)	Cu (1) ¹	57.91(2)				
			(MePPh	$_{3})_{2}Cu_{4}I_{6}$			
Cu (1)	I (1)	Cu (1) ²	65.19(4)	Cu (2)	Cu (1)	Cu (1) ⁷	89.64(4)
Cu (1) ²	I (1)	Cu (1) ³	44.70(3)	Cu (2)	Cu (1)	Cu (2) ⁸	87.95(7)
Cu (1)	I (1)	Cu (1) ³	45.02(3)	I (1) ⁶	Cu (2)	I (1)	119.196(11)
Cu (1)	I (1)	Cu (2)	44.09(3)	I (1) ⁶	Cu (2)	I (1) ¹	119.197(11)
Cu (2)	I (1)	Cu (1) ²	43.74(3)	I (1) ²	Cu (2)	I (1)	119.196(11)
Cu (2)	I (1)	Cu (1) ³	63.96(4)	I (1) ²	Cu (2)	Cu (1) ⁸	59.70(3)
I (1)	Cu (1)	I (1) ⁶	117.86(4)	I (1)	Cu (2)	Cu (1) ⁷	110.82(4)
I (1)	Cu (1)	I (1) ⁷	121.59(4)	I (1) ⁶	Cu (2)	Cu (1) ³	111.68(4)
I (1) ⁶	Cu (1)	I (1) ⁷	120.11(4)	I (1)	Cu (2)	Cu (1) ³	59.71(3)
I (1) ⁶	Cu (1)	Cu (1) ²	107.97(3)	I (1) ²	Cu (2)	Cu (1) ³	110.81(4)
I (1)	Cu (1)	Cu (1) ²	58.07(4)	I (1) ²	Cu (2)	Cu (1) ⁷	111.68(4)
I (1) ⁷	Cu (1)	Cu (1) ⁶	107.56(3)	I (1) ⁶	Cu (2)	Cu (1) ⁷	59.70(3)
I (1) ⁶	Cu (1)	Cu (1) ⁶	56.73(4)	I (1)	Cu (2)	Cu (1) ⁸	111.68(4)
I (1)	Cu (1)	Cu (1) ⁶	109.09(3)	I (1) ⁶	Cu (2)	Cu (1) ⁸	110.82(4)
I (1) ⁷	Cu (1)	Cu (1) ²	108.37(3)	Cu (1)	Cu (2)	I (1)	67.91(3)
I (1) ⁷	Cu (1)	Cu (2) ⁸	56.34(3)	Cu (1) ²	Cu (2)	I (1)	69.15(3)
I (1) ⁶	Cu (1)	Cu (2) ⁸	108.89(4)	Cu (1)	Cu (2)	I (1) ²	151.74(8)
I (1)	Cu (1)	Cu (2) ⁸	110.04(4)	Cu (1)	Cu (2)	I (1) ⁶	69.15(3)
Cu (1) ³	Cu (1)	I (1)	70.06(4)	Cu (1) ⁶	Cu (2)	I (1) ⁶	67.91(3)
Cu (1) ³	Cu (1)	I (1) ⁶	146.73(4)	Cu (1) ²	Cu (2)	I (1) ²	67.91(3)

Table S4. Important bond angles for $(MePPh_3)_2Cu_2I_4 \cdot DMF$ and $(MePPh_3)_2Cu_4I_6$.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cu (1) ⁷	Cu (1)	I (1) ⁷	64.92(5)	Cu (1) ²	Cu (2)	I (1) ⁶	151.75(8)
Cu (1) ⁷	Cu (1)	I (1)	148.07(4)	Cu (1) ⁶	Cu (2)	I (1)	151.75(8)
Cu (1) ⁷	Cu (1)	I (1) ⁶	69.20(4)	Cu (1) ⁶	Cu (2)	I (1) ²	69.15(3)
Cu (1) ³	Cu (1)	I (1) ⁷	66.10(5)	Cu (1) ⁶	Cu (2)	Cu (1) ²	92.58(7)
Cu (1) ³	Cu (1)	Cu (1) ⁶	90.000(1)	Cu (1) ⁶	Cu (2)	Cu (1) ³	92.06(7)
Cu (1) ³	Cu (1)	Cu (1) ²	45.97(3)	Cu (1) ⁶	Cu (2)	Cu (1) ⁸	46.31(3)
Cu (1) ⁶	Cu (1)	Cu (1) ²	60	Cu (1) ⁷	Cu (2)	Cu (1) ⁸	60.34(5)
Cu (1) ³	Cu (1)	Cu (1) ⁷	88.05(7)	Cu (1)	Cu (2)	Cu (1) ⁷	46.31(3)
Cu (1) ⁷	Cu (1)	Cu (1) ²	90	Cu (1)	Cu (2)	Cu (1) ³	46.31(3)
Cu (1) ⁷	Cu (1)	Cu (1) ⁶	45.97(3)	Cu (1) ³	Cu (2)	Cu (1) ⁸	60.34(5)
Cu (1) ⁷	Cu (1)	Cu (2) ⁸	44.05(3)	Cu (1) ⁶	Cu (2)	Cu (1)	92.58(7)
Cu (1) ³	Cu (1)	Cu (2) ⁸	44.05(3)	Cu (1) ²	Cu (2)	Cu (1) ³	46.31(3)
Cu (2)	Cu (1)	I (1) ⁶	67.10(3)	Cu (1) ²	Cu (2)	Cu (1)	92.58(7)
Cu (2)	Cu (1)	I (1)	67.99(3)	Cu (1) ⁶	Cu (2)	Cu (1) ⁷	46.31(3)
Cu (2)	Cu (1)	I (1) ⁷	144.27(6)	Cu (1) ²	Cu (2)	Cu (1) ⁷	92.06(7)
Cu (2) ⁸	Cu (1)	Cu (1) ²	59.83(2)	Cu (1)	Cu (2)	Cu (1) ⁸	92.06(7)
Cu (2)	Cu (1)	Cu (1) ⁶	43.71(3)	Cu (1) ³	Cu (2)	Cu (1) ⁷	60.34(5)
Cu (2)	Cu (1)	Cu (1) ²	43.71(3)	Cu (1) ²	Cu (2)	Cu (1) ⁸	46.32(3)
Cu (2) ⁸	Cu (1)	Cu (1) ⁶	59.83(2)	Cu (2)	Cu (1)	Cu (1) ³	89.64(4)

Table S4. Important bond angles for $(MePPh_3)_2Cu_2I_4 \cdot DMF$ and $(MePPh_3)_2Cu_4I_6$.

Symmetry code 1: 1-*x*, -*y*, -*z*; 2: 2+*y*-*x*, 1-*x*, +*z*; 3: 1+*y*, 1-*x*+*y*, 1-*z*; 4: 1+*y*-*x*, 1-*x*, +*z*; 5: 1-*y*, +*x*-*y*, +*z*; 6: 1-*y*, -1+*x*-*y*, +*z*; 7: -*y*+*x*, -1+*x*, 1-*z*; 8: 2-*x*, -*y*, 1-*z*.

Compound	PL/nm	PLQY/%	σ^2	⊿d	Ref
(MePPh ₃) ₂ Cu ₂ I ₄ ·DMF	480	3.78	46.54	2.11×10^{-4}	This work
(Bmpip) ₂ Cu ₂ Br ₄	620	48.2	36.73	5.61 × 10 ⁻⁴	[1]
$(TEP)_2Cu_2Br_4$	503	92	119.98	1.12×10^{-3}	[2]
$[N(C_2H_5)_4]_2Cu_2Br_4$	463	97.08	141.75	6.5×10^{-4}	[3]
$(MePPh_3)_2Cu_4I_6$	536	77.56	3.557 0.972	2.35×10^{-4}	This work
(TPP) ₂ Cu ₄ I ₆ ·2DMSO	515	99.5	19.13 3.38	7.01 × 10 ⁻⁶ 1.94 × 10 ⁻⁵	[4]
$[N(C_{3}H_{7})_{4}]_{2}[Cu_{4}Br_{6}]$	664	97	5.16 4.15	2.25×10^{-5} 8.88×10^{-6}	[5]
			3.80 1.30	4.3×10^{-6} 1.34×10^{-5}	
$(C_{20}H_{20}P)_2Cu_4Br_6$	580	76.59	6.61	1.88×10^{-4}	[6]
			4.02 12.27	1.47×10^{-3} 7.25×10^{-5}	
			19.71	7.97 × 10 ⁻⁴	

Table S5. Comparison of PL parameters for $(MePPh_3)_2Cu_2I_4$ ·DMF, $(MePPh_3)_2Cu_4I_6$ and other copper halides.

Compounds	Stimulus	Response mode	Trigger Condition	Ref.
(MePPh ₃) ₂ Cu ₂ I ₄ ·DMF	Solvent-induced	Dual response (UV+PL)	Naked eye /UV light	This work
(TEP) ₂ Cu ₂ Br ₄	Solvent-induced	Mono response (PL)	UV light	[2]
(TEP) ₂ Cu ₄ Br ₆	Solvent-induced	Mono response (PL)	UV light	[2]
[ETPP] ₂ Cu ₄ Br ₆	Thermo-induced	Triple response (PL+RL+SHG)	UV/Blue light	[7]
[ETPP]CuBr ₂	Solvent-induced	Triple response (PL+RL+SHG)	UV/Blue light	[7]
(TPA)CuBr ₂	Solvent-induced	Mono response (PL)	UV light	[8]
$(TPA)_2Cu_4Br_6$	Thermo-induced	Mono response (PL)	UV light	[8]
$[Ph_3EtP]_2Sb_2Cl_8$	Solvent-induced	Mono response (PL)	UV light	[9]
[Ph ₃ EtP] ₂ SbCl ₅ ·EtOH	Thermo-induced	Mono response (PL)	UV light	[9]
[Ph ₃ EtP] ₂ SbCl ₅	Solvent-induced	Mono response (PL)	UV light	[9]
$(PPZ)_2SbCl_7 \cdot 5H_2O$	Solvent-induced	Mono response (PL)	UV light	[10]
[Bzmim] ₃ SbCl ₆	Thermo-induced	Mono response (PL)	UV light	[11]
[Bzmim] ₂ SbCl ₅	Solvent-induced	Mono response (PL)	UV light	[11]
$(C_9H_{15}N_3)SbCl_5$	Solvent-induced	Mono response (PL)	UV light	[4]
α-[DHEP]SbCl5	Solvent-induced	Mono response (PL)	UV light	[12]
β -[DHEP]SbCl ₅ ·2H ₂ O	Solvent/Thermo- induced	Mono response (PL)	UV light	[12]
β -[DHEP]SbCl ₅	Solvent-induced	Mono response (PL)	UV light	[12]
[DPA] ₃ SbCl ₆	Solvent-induced	Mono response (PL)	UV light	[13]
β-[Bmmim] ₂ SbCl ₅	Crystalline-Phase- Recognition- Induced	Mono response (PL)	UV light	[14]

Table S6. The stimulus, response mode and trigger condition of hybrid metal halides in anticounterfeiting applications.

Compounds	Stimulus	Stimulus Response mode		Ref.
$(C_6N_2H_{16})MnBr_4$	Solvent-induced	Mono response (PL)	UV light	[15]
$C_6N_2H_{16}MnBr_4(H_2O)_2$	Solvent-induced	Mono response (PL)	UV light	[15]
(EtTPP) ₂ MnBr ₄	Solvent-induced	Mono response (PL)	UV light	[16]
(R/S)-(C ₁₂ H ₁₆ N ₂)ZnBr ₄	Thermo-induced	Dual response (PL+CD)	UV light/CPL detector	[16]
$(R/S)-(C_{12}H_{15}N_2)_2ZnBr_4$	Solvent-induced	Dual response (PL+CD)	UV light/CPL detector	[17]

Table S6. The stimulus, response mode and trigger condition of hybrid metal halides in anticounterfeiting applications.

Figure S1. The simulated and experimental powder XRD patterns of (a) $(MePPh_3)_2Cu_2I_4$ ·DMF and (b) $(MePPh_3)_2Cu_4I_6$.

Figure S2. Asymmetric units and unit cell diagram of (a, b) (MePPh₃)₂Cu₂I₄·DMF and (c, d) (MePPh₃)₂Cu₄I₆.

Figure S3. The EDS analysis for (a) $(MePPh_3)_2Cu_2I_4$ ·DMF and (b) $(MePPh_3)_2Cu_4I_6$.

Figure S4. The bond lengths and bond angles of (MePPh₃)₂Cu₂I₄·DMF.

Figure S5. The bond lengths and bond angles of $(MePPh_3)_2Cu_4I_6$.

Figure S6. A detailed view of the distorted Cu cluster skeleton in (MePPh₃)₂Cu₄I₆.

Figure S7. The optical photographs of (a) (MePPh₃)₂Cu₂I₄·DMF and (b) (MePPh₃)₂Cu₄I₆.

Figure S8. The PL decay lifetime of for (a) (MePPh₃)₂Cu₂I₄·DMF and (b) (MePPh₃)₂Cu₄I₆.

Figure S9. Power density dependent PL intensity of (a) $(MePPh_3)_2Cu_2I_4$ ·DMF and (b) $(MePPh_3)_2Cu_4I_6$.

Figure S10. The simulated and experimental powder XRD patterns of (a) $(MePPh_3)_2Cu_2I_4$ ·DMF under ethanol stimulus.

Figure S11 The Powder XRD patterns of (a) $(MePPh_3)_2Cu_2I_4$ ·DMF and (b) $(MePPh_3)_2Cu_4I_6$ after storage in the ambient air for ten days.

Figure S12. The time-dependent PL intensity spectra of (a, b) $(MePPh_3)_2Cu_2I_4$ ·DMF and (c, d) $(MePPh_3)_2Cu_4I_6$ with time under the continuous irradiation with 40 W UV light.

Figure S13. The TGA curves of (a) $(MePPh_3)_2Cu_2I_4$ ·DMF and (b) $(MePPh_3)_2Cu_4I_6$.

[1]. T. Xu, Y. Li, M. Nikl, R. Kucerkova, Z. Zhou, J. Chen, Y. Y. Sun, G. Niu, J. Tang, Q. Wang, G. Ren, Y. Wu, Lead-Free Zero-Dimensional Organic-Copper(I) Halides as Stable and Sensitive X-ray Scintillators, *ACS Appl. Mater. Interfaces*, 2022, 14, 14157.

[2]. D. A. Popy, Y. Singh, Y. Tratsiak, A. M. Cardoza, J. M. Lane, L. Stand, M. Zhuravleva,
N. Rai, B. Saparov, Stimuli-responsive Photoluminescent Copper(I) Halides for Scintillation,
Anticounterfeiting, and Light-Emitting Diode Applications, *Aggregate*, 2024, 5, e602.

[3]. X. Liu, F. Yuan, C. Zhu, J. Li, X. Lv, G. Xing, Q. Wei, G. Wang, J. Dai, H. Dong, J. Xu,
B. Jiao, Z. Wu, Near-Unity Blue Luminance from Lead-Free Copper Halides for Light-Emitting
Diodes, *Nano Energy*, 2022, **91**, 106664.

[4]. K. Chen, B. Chen, L. Xie, X. Li, X. Chen, N. Lv, K. Zheng, Z. Liu, H. Pi, Z. Lin, A. L. Rogach, Organic–Inorganic Copper Halide Compound with a Near-Unity Emission: Large-Scale Synthesis and Diverse Light-Emitting Applications, *Adv. Funct. Mater.*, 2024, **34**, 2310561.

[5]. S. Chen, J. Gao, J. Chang, Y. Li, C. Huangfu, H. Meng, Y. Wang, G. Xia, L. Feng, Family of Highly Luminescent Pure Ionic Copper(I) Bromide Based Hybrid Materials, *ACS. Appl. Mater. Interfaces*, 2019, **11**, 17513.

[6]. J. Wu, J.-L. Qi, Y. Guo, S. Yan, W. Liu, S.-P. Guo, Reversible Tri-sate Structural Transitions of Hybrid Copper(I) Bromides toward Tunable Multiple Emissions. *Inorg. Chem. Front.*, 2024, **11**, 156.

[7]. D.-Y. Li, J.-H. Wu, X.-Y. Wang, X.-Y. Zhang, C.-Y. Yue, X.-W. Lei, Reversible Triple-Mode Photo- and Radioluminescence and Nonlinear Optical Switching in Highly Efficient 0D Hybrid Cuprous Halides, *Chem. Mater.*, 2023, **35**, 6598.

[8]. Y. Tian, H. Peng, Q. Wei, Y. Chen, J. Xia, W. Lin, C. Peng, X. He, B. Zou, Moisture-Induced Reversible Structure Conversion of Zero-Dimensional Organic Cuprous Bromide Hybrids for Multiple Photoluminescent Anti-Counterfeiting, Information Encryption and Rewritable Luminescent Paper, *Chem. Eng. J.*, 2023, **458**, 141436.

[9]. J. Q. Zhao, Y. Y. Ma, X. J. Zhao, Y. J. Gao, Z. Y. Xu, P. C. Xiao, C. Y. Yue, X. W. Lei, Stepwise Crystalline Structural Transformation in 0D Hybrid Antimony Halides with Triplet Turn-on and Color-Adjustable Luminescence Switching, *Research*, 2023, **6**, 0094. [10]. J. B. Luo, J. H. Wei, Z. Z. Zhang, D. B. Kuang, Water-Molecule-Induced Emission Transformation of Zero-Dimension Antimony-Based Metal Halide, *Inorg. Chem.*, 2022, 61, 338.

[11]. Z. Wang, Z. Zhang, L. Tao, N. Shen, B. Hu, L. Gong, J. Li, X. Chen, X. Huang, Hybrid Chloroantimonates(III): Thermally Induced Triple-Mode Reversible Luminescent Switching and Laser-Printable Rewritable Luminescent Paper, *Angew. Chem. Int. Ed.* 2019, **58**, 9974.

[12]. D.-Y. Li, J.-H. Song, Z.-Y. Xu, Y.-J. Gao, X. Yin, Y.-H. Hou, L.-J. Feng, C.-Y. Yue, H. Fei, X.-W. Lei, Reversible Triple-Mode Switching in Photoluminescence from 0D Hybrid Antimony Halides, *Chem. Mater.*, 2022, **34**, 6985.

[13]. J.-Q. Zhao, H.-S. Shi, L.-R. Zeng, H. Ge, Y.-H. Hou, X.-M. Wu, C.-Y. Yue, X.-W. Lei, Highly Emissive Zero-Dimensional Antimony Halide for Anti-counterfeiting and Confidential Information Encryption-Decryption, *Chem. Eng. J.*, 2022, **431**, 134336.

[14]. Z. Zhang, Y. Lin, J. Jin, L. Gong, Y. Peng, Y. Song, N. Shen, Z. Wang, K. Du, X. Huang, Crystalline-Phase-Recognition-Induced Domino Phase Transition and Luminescence Switching for Advanced Information Encryption, *Angew. Chem. Int. Ed.*, 2021, **60**, 23373.

[15]. H. L. Liu, H. Y. Ru, M. E. Sun, Z. Y. Wang, S. Q. Zang, Organic–Inorganic Manganese Bromide Hybrids with Water-Triggered Luminescence for Rewritable Paper, *Adv. Opt. Mater.*, 2022, 10, 2101700.

[16]. C. Sun, H. Lu, C. Y. Yue, H. Fei, S. Wu, S. Wang, X. W. Lei, Multiple Light Source-Excited Organic Manganese Halides for Water-Jet Rewritable Luminescent Paper and Anti-Counterfeiting, *ACS Appl. Mater. Interfaces*, 2022, **14**, 56176.

[17]. D. Y. Liu, L. Y. Xiong, X. Y. Dong, Z. Han, H. L. Liu, S. Q. Zang, Reversible Local Protonation-Deprotonation: Tuning Stimuli-Responsive Circularly Polarized Luminescence in Chiral Hybrid Zinc Halides for Anti-Counterfeiting and Encryption, *Angew. Chem. Int. Ed.*, 2024, **63**, e202410416.