Supporting Information

Ferroelectric Crystals with Naphthenic Hydrocarbon-Modified Carborane

Vertices

Wenjing Guo, Xiao Sun, Wenkang Cheng, Guoyong Chen, Ying Wei, Zhenhong Wei*, and Hu Cai*

[*]Prof. Dr. Z.-H. Wei, Prof. Dr. H. Cai School of Chemistry and Chemical Engineering, Nanchang University Nanchang City, 330031, P.R. China E-mail: <u>caihu@ncu.edu.cn</u>; <u>weizh@ncu.edu.cn</u>

Table of contents

Experimental Procedures
Materials
Measurement Methods
Single-crystal and powder X-ray crystallography
Thermal analyses
SHG and dielectric measurements4
Thin-Film Preparation4
PFM characterization4
IR measurements4
NMR measurements4
Characterization data
Figure S1. Experimental IR absorption spectra of 1 (a) and 2 (b)
$Figure \ S2. \ The \ ^1H \ NMR, \ ^1H \{B\} \ NMR, \ ^{11}B \ NMR, \ ^{11}B \{^{1}H\} \ NMR \ and \ ^{13}C \ NMR \ spectrum \ of \ 1 \ in \ CDCl_38$
$Figure \ S3. \ The \ ^1H \ NMR, \ ^1H \{B\} \ NMR, \ ^{11}B \ NMR, \ ^{11}B \{^{1}H\} \ NMR \ and \ ^{13}C \ NMR \ spectrum \ of \ \textbf{2} \ in \ CDCl_310$
Figure S4. TGA of 1 (a) and 2 (b)11
Figure S5. Crystal packing diagram of 1 (a) and 2 (b)11
Figure S6. The temperature-dependent real part (ϵ ') of the dielectric constant at different frequency for both 1 (a)
and 2 (b)11
Figure S7. Switching SHG cycles of 1 (a) and 2 (b)11
Figure S8. Pawley refinement of PXRD data of 1-2 collected at high temperature

Experimental Procedures

Materials

o-Carborane and bromoalkane were purchased from Bidepharm and Admas. All solvents were distilled from appropriate drying agents under argon before use.

1,2-(1,3-Propanediyl)-*o*-carborane (1) and 1,2-(1,4-Hexanediyl)-*o*-carborane (2): In a dry, inert argon atmosphere, *o*-carborane (2): In (288 mg, 2 mmol) was dissolved in anhydrous tetrahydrofuran (THF) as the solvent. To this solution, *n*-butyllithium in *n*-hexane (1.60 M, 2.5 mL, 4 mmol) was added dropwise at 0°C. The reaction mixture was then brought to room temperature and stirred for 1 hour. After cooling again to 0°C, 1-bromo-3-chloropropane (314.8 mg, 2 mmol) or 1,4-dibromobutane (431.8 mg, 2 mmol) was gradually added, followed by stirring overnight at room temperature. The reaction progress was monitored by thin-layer chromatography (TLC). Upon completion, the reaction mixture was quenched with 20 mL of water and extracted with diethyl ether (3 × 20 mL). The organic layers were dried over anhydrous sodium sulfate. After solvent removal, the residue was subjected to column chromatography on silica gel (300–400 mesh) using *n*-hexane as the eluent, yielding **1** and **2** as white powders. **Yield**: *I*: 213.4 mg (58%). Anal. calcd. for $C_5H_{16}B_{10}$:C, 32.60; H, 8.70; B, 58.7. Found: C, 32.50; H, 8.80; B, 58.60.; *2*: 237.6 mg (60%). Anal. calcd. for $C_6H_{18}B_{10}$:C, 36.40; H, 9.10; B, 54.50. Found: C, 36.20; H, 9.20; B, 54.60.

Measurement Methods

Single-crystal and powder X-ray crystallography.

X-ray single-crystal diffraction experiments were performed on a Rigaku Saturn 924 diffractometer with Mo-K α radiation ($\lambda = 0.71073$ Å). For X-ray diffraction (XRD) analysis, a PANalytical X'Pert3 diffractometer with a Cu K α X-ray source ($\lambda = 1.5418$ Å, 40 kV, 150 mA) was used, and measurements were conducted at a scan rate of 10° min⁻¹. Supplementary crystallographic data for this study, assigned as Deposition Numbers **2400878** (for 1,2-(1,3-Propanediyl)-*o*-carborane) and **2400879** (for 1,2-(1,4-Hexanediyl)-*o*-carborane), are available without charge through the joint Access Structures service provided by the Cambridge Crystallographic Data Centre.

Thermal analyses.

Differential scanning calorimetry (DSC) analyses were conducted using a NETZSCH DSC 200F3 instrument. Crystalline samples were subjected to both heating and cooling cycles at a

constant rate of 20 K/min, with measurements performed in aluminum crucibles under a nitrogen atmosphere.

SHG and dielectric measurements.

The second harmonic generation (SHG) measurements were conducted using INSTEC instruments. Complex dielectric permittivity was measured with the DMS-1000 dielectric temperature spectrum measurement system. Silver conductive paste was applied to the surfaces of the samples to serve as both top and bottom electrodes.

Thin-Film Preparation

Indium tin oxide (ITO) glass substrates were subjected to a preliminary cleaning process prior to use. Crystalline samples 1 and 2 (each 20 mg) were dissolved in 300 μ L of *n*-hexane. After cleaning, the ITO glass substrate was selected, and 20 μ L of the solution was spin-coated onto its surface. The solvent was then allowed to evaporate gradually at room temperature, resulting in the formation of a polycrystalline thin film.

PFM characterization.

PFM measurements were performed using a piezoresponse force microscopy (PFM) system (Cypher ES by Oxford Instruments), equipped with a high-voltage package. PFM, an extension of atomic force microscopy (AFM), applies an AC drive voltage to a conductive tip to probe piezoelectric properties. In our experiments, we used conductive Pt/Ir-coated silicon probes (EFM, Nanoworld) with an approximate nominal spring constant of 2.8 nN/nm and a free-air resonance frequency of around 75 kHz. All PFM experiments were conducted in Dual Frequency Tracking mode, which enabled both high-resolution domain imaging and analysis of polarization switching behaviors.

IR measurements.

The powder was ground to a uniform particle size and its infrared spectrum was measured at room temperature. Fourier Transform Infrared (FTIR) spectra were recorded using a Bruker Alpha II instrument.

NMR measurements.

The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were acquired using a Bruker Advance III 400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C and 128 MHz for ¹¹B NMR). The samples were dissolved in either CDCl₃ or CD₃CN, with TMS serving as the internal reference standard. The chemical shifts (δ) were measured in ppm and referenced to TMS ($\delta = 0$) for ¹H, chloroform ($\delta = 77.0$) for ¹³C, and acetonitrile ($\delta = 118.26$) for ¹³C as internal standards. For ¹¹B and ¹¹B{¹H} NMR spectra, data were calibrated using external BF₃·Et₂O as the reference compound.

Characterization data.

1: White solid, 77%; ¹H NMR (400 MHz, CDCl₃, room temperature spectrum): δ 2.51-2.48 (m, 4H), 2.45-2.39 (m, 2H); ¹H{¹¹B} NMR (400 MHz, CDCl₃, room temperature spectrum): δ 2.51-2.47 (m, 4H), 2.45-2.39 (m, 2H), 2.26 (s, 6H), 2.15 (s, 2H), 2.11 (s, 2H). ¹³C NMR (100 MHz, CDCl₃, room temperature spectrum): δ 83.81, 34.68, 32.02; ¹¹B NMR (128 MHz, CDCl₃, room temperature spectrum): δ -6.24 (s, 1B), -7.46 (s, 2B), -8.49 (s, 2B), -9.70 (s, 1B), -11.08 (s, 2B), -12.36 (s, 2B); ¹¹B{¹H}NMR (128 MHz, CDCl₃, room temperature spectrum): δ -6.79 (2B), -8.07 (2B), -8.99 (2B), -11.69 (4B).

2: White solid, 83%; ¹H NMR (400 MHz, CDCl₃, room temperature spectrum): δ 2.43 (m, 4H), 1.60-1.56 (m, 4H); ¹H{¹¹B} NMR (400 MHz, CDCl₃, room temperature spectrum): δ 2.42-2.39 (m, 4H), 2.30-2.26 (m, 2H), 2.19-2.01 (m, 8H), 1.58-1.48 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, room temperature spectrum): δ 73.08, 32.74, 19.63; ¹¹B NMR (128 MHz, CDCl₃, room temperature spectrum): δ -5.19 – -6.34 (d, 2B), -8.93 – -10.22 (d, 1B), -10.91 – -12.28 (d, 2B); ¹¹B{¹H} NMR (128 MHz, CDCl₃, room temperature spectrum): δ -5.79 (2B), -9.59 (6B), -11.65 (2B).

Figure S1. Experimental IR absorption spectra of 1 (a) and 2 (b).

Figure S2. The ¹H NMR, ¹H{B} NMR, ¹¹B NMR, ¹¹B{¹H} NMR and ¹³C NMR spectrum of **1** in CDCl₃.

Figure S3. The ¹H NMR, ¹H{B} NMR, ¹¹B NMR, ¹¹B{¹H} NMR and ¹³C NMR spectrum of **2** in CDCl₃.

Figure S4. TGA of 1 (a) and 2 (b).

Figure S5. Crystal packing diagram of 1 (a) and 2 (b).

Figure S6. The temperature-dependent real part (ϵ ') of the dielectric constant at different frequency for both 1 (a) and 2 (b).

Figure S7. Switching SHG cycles of 1 (a) and 2 (b).

Figure S8. Pawley refinement of PXRD data of 1–2 collected at high temperature. **Table S1.** Crystal data and structure refinement for 1–2.

Formula	$C_5H_{16}B_{10}$	$C_6H_{18}B_{10}$
Temperature	296 K	296 K
Formula weight	184.28	198.30
Crystal system	orthorhombic	trigonal
Space group	Aea 2	<i>P</i> 3 ₁
<i>a</i> (Å)	9.807(3)	7.2478(4)
<i>b</i> (Å)	9.951(4)	7.2478(4)
<i>c</i> (Å)	12.038(4)	20.608(2)
$V(\text{\AA})^3$	1174.8(7)	937.52(14)
Ζ	4	3
D_{calc} (g.cm ⁻³)	1.042	1.054
F(000)	384.0	312.0
$ heta_{ m max}$	27.193	30.945
μ (Mo Ka,mm ⁻¹)	0.045	0.047
Reflections collected	3170	7026

Unique reflections	1195 [$R(_{int}) = 0.0414$]	1999 [$R(_{int}) = 0.0667$]
No. of variables	69	145
Final <i>R</i> indices $(I \ge 2\sigma)$	$R_1 = 0.0737, wR_2 = 0.1985$	$R_1 = 0.0704, wR_2 = 0.1676$
R indices (all data)	$R_1 = 0.1136, wR_2 = 0.2338$	$R_1 = 0.1258, wR_2 = 0.1899$
Goodness-of-fit	1.037	0.944