### SUPPORTING INFORMATION

## The X-ray structure of the adduct formed upon reaction of aurothiomalate with apotransferrin: gold binding sites and a unique transferrin structure along the apo/holo transition pathway

Romualdo Troisi<sup>a</sup>, Francesco Galardo<sup>a</sup>, Luigi Messori<sup>b</sup>, Filomena Sica<sup>a</sup>, and Antonello Merlino<sup>a,\*</sup>

<sup>a</sup>Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy

<sup>b</sup>Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy \*Correspondence: Antonello Merlino, <u>antonello.merlino@unina.it</u>

# Supplemental tables

**Table S1.** Features of the hTF structures deposited in the Protein Data Bank.

| PDB<br>code | Space<br>group                                                                       | Cell<br>(a=, b=,<br>c = (Å)) | Cell<br>(α=,β=,γ=<br>(°))    | TF form         | Ligand<br>bound to<br>metallic<br>ion | Additional<br>ligands                             | Resolution<br>(Å)            | χ angle<br>needed to<br>superimpo<br>se the N2<br>subdomai<br>n after the<br>best fitting<br>of N1 (°),<br>Reference<br>structure:<br>2HAV (chain<br>A) | χ angle<br>needed to<br>superimpo<br>se the C2<br>subdomai<br>n after the<br>best fitting<br>of C1 (°),<br>Reference<br>structure:<br>2HAV (chain<br>A) | χ angle<br>needed to<br>superimpo<br>se the N2<br>subdomai<br>n after the<br>best fitting<br>of N1 (°),<br>Reference<br>structure:<br>2HAV (chain<br>B) | χ angle<br>needed to<br>superimpo<br>se the C2<br>subdomai<br>n after the<br>best fitting<br>of C1 (°),<br>Reference<br>structure:<br>2HAV (chain<br>B) | References | Notes |
|-------------|--------------------------------------------------------------------------------------|------------------------------|------------------------------|-----------------|---------------------------------------|---------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
|             | 1                                                                                    | I                            | 1                            | 1               | 1                                     | 1                                                 | Apo-hTF                      | 1                                                                                                                                                       | 1                                                                                                                                                       | 1                                                                                                                                                       | 1                                                                                                                                                       | 1          |       |
| 2HAU        | <b>2HAU</b> P 2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> 88.00<br>102.16<br>197.04 | 8.00 90.00                   | Apo-hTF                      | -               | Glycerol                              | 2.70                                              | <b>(A)</b> 0.95              | 0.61                                                                                                                                                    | 0.82                                                                                                                                                    | 1.60                                                                                                                                                    |                                                                                                                                                         |            |       |
|             |                                                                                      | 197.04                       | 90.00                        |                 |                                       | Citric acid                                       |                              | <b>(B)</b> 1.39                                                                                                                                         | 0.83                                                                                                                                                    | 0.84                                                                                                                                                    | 1.13                                                                                                                                                    | 1          | -     |
|             |                                                                                      | 88.32                        | 90.00                        | Apo-hTF         |                                       | Glycerol                                          | Glycerol 2.70<br>Ditric acid | <b>(A)</b> 0                                                                                                                                            | 0                                                                                                                                                       | 0.58                                                                                                                                                    | 1.83                                                                                                                                                    |            |       |
| 2HAV        | P 21 21 21                                                                           | 103.26<br>200.36             | 90.00                        |                 | -                                     | Citric acid                                       |                              | <b>(B)</b> 0.58                                                                                                                                         | 1.83                                                                                                                                                    | 0                                                                                                                                                       | 0                                                                                                                                                       |            |       |
|             |                                                                                      | 87.63 90.00 Glycerol         |                              | <b>(A)</b> 1.19 | 0.64                                  | 1.22                                              | 2.22                         |                                                                                                                                                         |                                                                                                                                                         |                                                                                                                                                         |                                                                                                                                                         |            |       |
| 7Q1L        | P 2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub>                                       | 102.15<br>199.97             | 102.15 90.00<br>199.97 90.00 | Apo-hTF         | -                                     | Suitate ion<br>1,2-ethanediol<br>Mg <sup>2+</sup> | 3.00                         | <b>(B)</b> 1.45                                                                                                                                         | 1.91                                                                                                                                                    | 1.18                                                                                                                                                    | 0.33                                                                                                                                                    | 2          |       |

|                               |                                                | 88.18                      | 90.00                   |                      | -            | Cisplatin<br>Citric acid                                                                           | 3.52 | <b>(A)</b> 0.70 | 0.33  | 0.86 | 1.87  |   |                                                                                                                                            |
|-------------------------------|------------------------------------------------|----------------------------|-------------------------|----------------------|--------------|----------------------------------------------------------------------------------------------------|------|-----------------|-------|------|-------|---|--------------------------------------------------------------------------------------------------------------------------------------------|
| 9H49                          | P 2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> | 103.68<br>200.28           | 90.00<br>90.00          | Apo-hTF              |              |                                                                                                    | 3.52 | <b>(B)</b> 1.02 | 0.99  | 0.87 | 1.86  | 3 |                                                                                                                                            |
| 01101                         |                                                | 84.47                      | 90.00                   | ) Διι*               | 2.02         | <b>(A)</b> 4.13                                                                                    | 3.50 | 3.73            | 5.02  |      |       |   |                                                                                                                                            |
| 9840                          | P 2121 21                                      | 99.71<br>198.39            | 90.00                   | Аро-птғ              | -            | Citric acid                                                                                        | 3.02 | <b>(B)</b> 1.74 | 2.55  | 1.28 | 1.25  |   |                                                                                                                                            |
| Monoferric (Fe <sub>c</sub> ) |                                                |                            |                         |                      |              |                                                                                                    |      |                 |       |      |       |   |                                                                                                                                            |
| 4X1B                          | C 2 2 2 <sub>1</sub>                           | 137.06<br>156.65<br>107.16 | 90.00<br>90.00<br>90.00 | Fe <sub>c</sub> -hTF | Malonate ion | Glycerol                                                                                           | 2.45 | 2.15            | 41.57 | 2.68 | 42.12 | 4 | -                                                                                                                                          |
| 8BRC                          | C 2 2 2 <sub>1</sub>                           | 136.34<br>156.40<br>107.44 | 90.00<br>90.00<br>90.00 | Fec-hTF              | Malonate ion | Cisplatin                                                                                          | 3.17 | 1.70            | 42.70 | 2.13 | 42.98 | 5 | -                                                                                                                                          |
| 5WTD                          | C 2 2 2 <sub>1</sub>                           | 137.11<br>157.35<br>107.09 | 90.00<br>90.00<br>90.00 | Fe <sub>c</sub> -hTF | Malonate ion | Ru³⁺                                                                                               | 2.50 | 1.90            | 41.46 | 2.43 | 42.01 |   |                                                                                                                                            |
| 5X5P                          | C 2 2 2 <sub>1</sub>                           | 136.75<br>158.39<br>106.61 | 90.00<br>90.00<br>90.00 | Fec-hTF              | Malonate ion | Na <sup>+</sup><br>Ru <sup>3+</sup><br>Nitrilotriacetic<br>acid (NTA)<br>bound to Ru <sup>3+</sup> | 2.70 | 1.63            | 41.72 | 2.08 | 42.29 | 6 |                                                                                                                                            |
| 7FFU                          | C 2 2 2 <sub>1</sub>                           | 137.83<br>156.72<br>107.31 | 90.00<br>90.00<br>90.00 | Fe <sub>c</sub> -hTF | Malonate ion | Os³⁺                                                                                               | 2.60 | 1.63            | 41.69 | 2.14 | 42.24 |   |                                                                                                                                            |
| 6JAS                          | C 2 2 2 <sub>1</sub>                           | 136.57<br>157.15<br>107.26 | 90.00<br>90.00<br>90.00 | Fec-hTF              | Malonate ion | Fe <sup>3+</sup><br>Citric acid                                                                    | 2.50 | 2.18            | 42.32 | 2.68 | 42.82 | ÷ | Unpublished<br>results. The<br>second Fe <sup>3+</sup><br>is close to N-<br>lobe,<br>but it does not<br>interact directly<br>with protein. |

|       | Monometallic (M <sub>c</sub> , M replaces Fe in the C-lobe) |                            |                         |                          |                                          |                                                      |                           |                  |       |       |       |    |                                                                                                                  |
|-------|-------------------------------------------------------------|----------------------------|-------------------------|--------------------------|------------------------------------------|------------------------------------------------------|---------------------------|------------------|-------|-------|-------|----|------------------------------------------------------------------------------------------------------------------|
| 5DVII |                                                             | 88.27                      | 90.00                   | <b></b>                  | Carbonate                                |                                                      | 0.00                      | <b>(A)</b> 1.02  | 1.27  | 1.21  | 2.53  | _  |                                                                                                                  |
| סזעכ  | P 21 21 21                                                  | 197.90                     | 90.00<br>90.00          | IIC -IIIF                | ion                                      | Citric acid                                          | 2.68                      | <b>(B)</b> 1.02  | 1.27  | 1.57  | 2.33  |    | -                                                                                                                |
| 5H52  | C 2 2 2 <sub>1</sub>                                        | 138.98<br>156.67<br>107.85 | 90.00<br>90.00<br>90.00 | Tic-hTF                  | Malonate ion                             | Citric acid                                          | 3.00                      | 2.13             | 41.03 | 2.66  | 41.59 | 8  | -                                                                                                                |
| 6UJ6  | C 2 2 2 <sub>1</sub>                                        | 137.05<br>158.03<br>107.14 | 90.00<br>90.00<br>90.00 | Cr <sub>C</sub> -hTF     | Malonate ion                             | Glycerol<br>Bicarbonate<br>ion                       | 2.68                      | 1.77             | 41.35 | 2.25  | 41.90 | 9  | -                                                                                                                |
| 7FFM  | C 2 2 2 <sub>1</sub>                                        | 137.95<br>158.21<br>107.10 | 90.00<br>90.00<br>90.00 | Ti <sub>c</sub> -hTF     | Malonate ion<br>bound to Ti <sub>c</sub> | Os <sup>3+</sup><br>NTA bound to<br>Os <sup>3+</sup> | 3.06                      | 1.56             | 41.28 | 2.09  | 41.82 | 6  | H                                                                                                                |
| 4X1D  | C121                                                        | 156.50<br>1 136.86         | 90.00<br>90.41          | Yb <sub>c</sub> -hTF     | Malonate ion                             | Glycerol                                             | 2.80                      | <b>(A)</b> 1.58  | 42.02 | 2.14  | 42.47 | 4  | -                                                                                                                |
|       | 107.84 9                                                    | 90.00                      |                         |                          |                                          |                                                      | <b>(B)</b> 1.62           | 41.53            | 2.12  | 41.98 |       |    |                                                                                                                  |
|       |                                                             |                            |                         | ·                        |                                          | D                                                    | iferric (holo             | )                | •     | •     |       |    | •                                                                                                                |
|       |                                                             |                            | 90.00<br>123.26         | Eq. Eq. hTE              | Bicarbonate                              |                                                      | -                         | <b>(A)</b> 59.39 | 49.89 | 58.92 | 50.48 |    |                                                                                                                  |
|       |                                                             |                            |                         |                          |                                          |                                                      |                           | <b>(B)</b> 59.87 | 50.07 | 59.40 | 50.65 |    |                                                                                                                  |
| 3\/83 | C 1 2 1                                                     | 254.53                     |                         |                          | ion<br>bound to                          | Hexaethylene                                         | 2.10                      | <b>(C)</b> 59.70 | 49.88 | 59.21 | 50.45 | 10 | _                                                                                                                |
| 3703  | 0121                                                        | 150.15                     | 90.00                   |                          | bound to<br>both Fec and                 | glycol<br>Sulfate ion                                |                           | <b>(D)</b> 60.01 | 49.92 | 59.53 | 50.54 |    | -                                                                                                                |
|       |                                                             |                            |                         |                          | Fe <sub>N</sub>                          |                                                      |                           | <b>(E)</b> 59.86 | 49.51 | 59.38 | 50.12 | -  |                                                                                                                  |
|       |                                                             |                            |                         |                          |                                          |                                                      |                           | <b>(F)</b> 59.80 | 50.47 | 59.31 | 51.06 |    |                                                                                                                  |
|       |                                                             |                            |                         | •                        | •                                        | Dim                                                  | etallic (M <sub>N</sub> F | e <sub>c</sub> ) |       |       | •     | •  | •                                                                                                                |
| 4H0W  | P 21 21 21                                                  | 73.91<br>90.16<br>111.03   | 90.00<br>90.00<br>90.00 | Bi <sub>N</sub> *Fec-hTF | NTA<br>Carbonate<br>ion                  | -                                                    | 2.40                      | 7.55             | 50.53 | 7.25  | 51.06 | 11 | Fe <sub>N</sub> Fe <sub>C</sub> -hTF<br>crystals were<br>obtained and<br>later soaked with<br>Bi <sup>3+</sup> . |

|                                                                                                   |                                                                                                   |                            |                          |                                                     | Coi              | mplex with Tr                                    | ansferrin R                                                              | eceptor 1 (T       | fR1)        |               |        |    |                                                                                                                |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------|--------------------------|-----------------------------------------------------|------------------|--------------------------------------------------|--------------------------------------------------------------------------|--------------------|-------------|---------------|--------|----|----------------------------------------------------------------------------------------------------------------|--|
| 3S9L                                                                                              | P 43 2 2                                                                                          | 231.68<br>231.68<br>168.95 | 90.00<br>90.00<br>90.00  | Fe <sub>N</sub> -hTF/TfR1                           | Carbonate<br>ion | Ca <sup>2+</sup>                                 | 3.22                                                                     | 59.34              | -           | 59.72         | -      |    |                                                                                                                |  |
| 3S9M                                                                                              | P 43 2 2                                                                                          | 232.19<br>232.19<br>168.31 | 90.00<br>90.00<br>90.00  | Fe <sub>N</sub> -hTF/TfR1                           | Carbonate<br>ion | Ca <sup>2+</sup>                                 | 3.32                                                                     | 60.20              | -           | 59.70         | -      | 12 | The C-lobe is not<br>fully modelled                                                                            |  |
| 3S9N                                                                                              | P 43 2 2                                                                                          | 234.42<br>234.42<br>169.65 | 90.00<br>90.00<br>90.00  | Fe <sub>N</sub> -hTF/TfR1                           | Carbonate<br>ion | Ca <sup>2+</sup>                                 | 3.25                                                                     | 60.89              | -           | 60.39         | -      |    |                                                                                                                |  |
|                                                                                                   |                                                                                                   |                            | Co                       | mplex with tr                                       | ansferrin bi     | nding proteir                                    | n A (TbpA) fr                                                            | om Neisser         | ial meningi | tidis serogro | oup B  |    |                                                                                                                |  |
| 3V8X                                                                                              | P 21 21 21                                                                                        | 91.01<br>129.36<br>198.59  | 90.00<br>90.00<br>90.00  | Apo-hTF/TbpA                                        | -                | (Hydroxyethylo<br>xy)tri<br>(ethyloxy)octa<br>ne | 2.60                                                                     | 157.30             | 164.32      | 157.49        | 161.95 | 10 | Interaction with<br>TbpA causes the<br>C-lobe to adopt a<br>conformation<br>midway between<br>open and closed. |  |
| Complex with transferrin binding protein B (TbpB) from <i>Neisserial meningitidis</i> serogroup B |                                                                                                   |                            |                          |                                                     |                  |                                                  |                                                                          |                    |             |               |        |    |                                                                                                                |  |
| 3VE1                                                                                              | P 212121                                                                                          | 128.02<br>153.51<br>169.51 | 90.00<br>90.00<br>90.00  | Fec-hTF/TbpB                                        | Carbonate<br>ion | Glycerol                                         | 2.96                                                                     | 2.43               | 49.47       | 2.12          | 50.07  | 13 | -                                                                                                              |  |
|                                                                                                   | Complex with subunit of heterodimeric transferrin receptor (ESAG6) from <i>Trvpanosoma brucei</i> |                            |                          |                                                     |                  |                                                  |                                                                          |                    |             |               |        |    |                                                                                                                |  |
| 6SOY                                                                                              | C 1 2 1                                                                                           | 163.49<br>108.11<br>115.00 | 90.00<br>128.74<br>90.00 | Fe <sub>c</sub> -<br>hTF/ESAG6                      | -                | -                                                | 2.75                                                                     | 5.41               | 49.82       | 4.92          | 50.57  |    |                                                                                                                |  |
| 6SOZ                                                                                              | C121                                                                                              | 128.18<br>117.87<br>134.55 | 90.00<br>111.45<br>90.00 | Fec-<br>hTF/ESAG6                                   | -                | -                                                | 3.42                                                                     | 4.63               | 47.70       | 4.13          | 48.47  | 14 | -                                                                                                              |  |
|                                                                                                   |                                                                                                   |                            | Multip                   | otein comple                                        | ex with TfR1     | and reticulo                                     | and reticulocite binding protein 2b (RBP2b) from <i>Plasmodium vivax</i> |                    |             |               |        |    |                                                                                                                |  |
| 6D03                                                                                              | -                                                                                                 | -                          | -                        | RBP2b/Fe <sub>N</sub> Fe <sub>C</sub> -<br>hTF/TfR1 | Carbonate<br>ion | Ca <sup>2+</sup>                                 | 3.68                                                                     | ( <b>C)</b> 61.03  | 50.07       | 60.54         | 50.64  |    | One molecule of parasite ligand.                                                                               |  |
|                                                                                                   |                                                                                                   |                            |                          |                                                     |                  |                                                  |                                                                          | ( <b>D</b> ) 60.82 | 50.25       | 60.33         | 50.81  | 15 |                                                                                                                |  |
| 6D04                                                                                              | -                                                                                                 | -                          | -                        | RBP2b/Fe <sub>N</sub> Fe <sub>C</sub> -<br>hTF/TfR1 | Carbonate        | Ca <sup>2+</sup>                                 | 3 74                                                                     | ( <b>C)</b> 61.02  | 49.94       | 60.53         | 50.49  |    | Two molecules<br>of parasite                                                                                   |  |
| 0004                                                                                              |                                                                                                   | -                          |                          |                                                     | ion              |                                                  |                                                                          | <b>(D)</b> 61.02   | 49.93       | 60.53         | 50.49  |    | ugand, subclass<br>1.                                                                                          |  |

| 6D05             | -                    | -                          | -                       | RBP2b/Fe∾Fec-<br>hTF/TfR1             | BP2b/Fe <sub>N</sub> Fe <sub>C</sub> - Carbonate<br>hTF/TfR1 ion                                                                                                                                               | Ca <sup>2+</sup> | 3.80 | ( <b>C)</b> 60.69 | 50.45 | 60.21 | 51.01 |    | Two molecules<br>of parasite<br>ligand, subclass<br>2. |
|------------------|----------------------|----------------------------|-------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|-------------------|-------|-------|-------|----|--------------------------------------------------------|
|                  |                      |                            |                         |                                       |                                                                                                                                                                                                                |                  |      | <b>(D)</b> 60.69  | 50.45 | 60.21 | 51.01 |    |                                                        |
| Other structures |                      |                            |                         |                                       |                                                                                                                                                                                                                |                  |      |                   |       |       |       |    |                                                        |
| здүт             | P 21 21 21           | 73.84<br>90.43<br>112.30   | 90.00<br>90.00<br>90.00 | Fe <sub>N</sub> *Fe <sub>C</sub> -hTF | $\begin{array}{c} \text{Sulfate ion} \\ \text{bound to } \text{Fe}_{\text{N}} \\ \text{Carbonate} \\ \text{ion bound to} \\ \text{both } \text{Fe}_{\text{C}} \text{ and} \\ \text{Fe}_{\text{N}} \end{array}$ | -                | 2.80 | 13.76             | 50.68 | 13.40 | 51.21 | 11 | -                                                      |
| 5Y6K             | C 2 2 2 <sub>1</sub> | 138.01<br>155.75<br>107.55 | 90.00<br>90.00<br>90.00 | Fe <sub>N</sub> *Fe <sub>C</sub> -hTF | TRACER<br>bound to Fe <sub>N</sub><br>Malonate ion<br>bound to Fe <sub>C</sub>                                                                                                                                 | -                | 2.86 | 1.80              | 41.79 | 2.34  | 42.35 | 16 | TRACER is a fluorescent ligand.                        |
| 6CTC             | P 21 21 21           | 74.37<br>90.16<br>110.43   | 90.00<br>90.00<br>90.00 | Fe⊾*Fec-hTF                           | Ferric<br>pyrophospha<br>te citrate<br>(FPC) bound<br>to Fe <sub>N</sub> ,<br>Carbonate<br>bound to Fec                                                                                                        | -                | 2.60 | 7.80              | 50.69 | 7.47  | 51.21 | 17 | -                                                      |

\* indicates that the metal is bound to some residues of the iron-binding site, but the lobe is not in the closed conformation.

|                                         | Au-hTF adduct                                                                                                    |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Crystal data                            |                                                                                                                  |
| Space group                             | $P2_{1}2_{1}2_{1}$                                                                                               |
| Unit-cell parameters                    |                                                                                                                  |
| a, b, c (Å)                             | 84.47, 99.71, 198.39                                                                                             |
| α, β, γ (°)                             | 90.00, 90.00, 90.00                                                                                              |
| No. of molecules in the asymmetric unit | 2                                                                                                                |
| Data collection                         |                                                                                                                  |
| Resolution limits (Å)                   | 89.25 - 3.02 (3.07 - 3.02)                                                                                       |
| No. of observations                     | 439558 (22042)                                                                                                   |
| No. of unique reflections               | 33617 (1641)                                                                                                     |
| Completeness (%)                        | 100.0 (100.0)                                                                                                    |
| <i σ(i)=""></i>                         | 7.8 (1.3)                                                                                                        |
| Average multiplicity                    | 13.1 (13.4)                                                                                                      |
| CC1/2                                   | 1.0 (0.4)                                                                                                        |
| Anomalous completeness (%)              | 100.0 (100.0)                                                                                                    |
| Anomalous multiplicity                  | 6.9 (7.0)                                                                                                        |
| DANO /sd(DANO)                          | 0.840 (0.760)                                                                                                    |
| Refinement                              |                                                                                                                  |
| Resolution limits (Å)                   | 89.25 - 3.02                                                                                                     |
| No. of reflections                      | 31963                                                                                                            |
| R <sub>factor</sub> /R <sub>free</sub>  | 0.243/0.296                                                                                                      |
| No. of atoms                            | 10649                                                                                                            |
| Mean B value (Ų)                        | 84.6                                                                                                             |
| <b>RMSD from ideal values</b>           |                                                                                                                  |
| Bond lengths (Å)                        | 0.002                                                                                                            |
| Bond angles (°)                         | 0.960                                                                                                            |
| Ramachandran plot, residues in (%)      |                                                                                                                  |
| Most favoured region                    | 92.5                                                                                                             |
| Additionally allowed region             | 7.5                                                                                                              |
| Generously allowed region               | 0                                                                                                                |
| Au occupancies                          | 0.65/0.70/0.30/0.20/0.20/0.20/0.20/0.20/0.20/0.2                                                                 |
| Au B-factors (Ų)                        | 71.8/103.1/99.0/97.5/95.8/95.8/77.2/76.3/80.8/90.5/76.7<br>107.9/121.6/80.1/91.2/117.2/80.1/140.4/94.1/97.0/79.6 |
| PDB code                                | 9H4V                                                                                                             |

**Table S2.** Data collection and refinement statistics. Values in brackets refer to the highest resolution shell.

#### Supplemental figures



**Figure S1.** Fluorescence spectra of apo-hTF (0.5  $\mu$ M) in the absence and in the presence of increasing concentration of aurothiomalate in 10 mM HEPES at pH 7.5 and 25 °C upon excitation at A) 280 nm (excitation bandwidth = 5 nm; emission bandwidth = 5 nm) and B) 295 nm (excitation bandwidth = 10 nm; emission bandwidth = 5 nm). Protein emission intensity dropped steadily with increasing concentration of the metal compound.



**Figure S2.** Far-UV CD spectra of apo-hTF  $(3 \mu M)$  in the absence and in the presence of aurothiomalate in 1:1, 1:3, 1:5, 1:20 protein to metal molar ratio in 10 mM HEPES at pH 7.5 and 25 °C after A) 16 h or B) 5 days of incubation at 20 °C. The protein retains its secondary structure upon the metal compound binding.



**Figure S3**. N-acetylglucosamine (NAG) moieties close to residues Asn413 (chains B) in the structure of Au-hTF.  $2F_o$ - $F_c$  electron density maps are shown at 1.0  $\sigma$  in gray.



**Figure S4**. Au-hTF N-lobe iron binding residues in A) A and B) B chains and Au-hTF C-lobe iron binding residues in C) A and D) B chains.  $2F_0$ - $F_c$  electron density maps are shown at 1.0  $\sigma$  in gray.



**Figure S5**. Representation of C $\alpha$  trace of the N-lobes of Au-hTF chain B, apo-hTF (PDB code 2HAV, chain B), Fe<sub>N</sub>\*Fe<sub>C</sub>-hTF (PDB code 3QYT), Bi<sub>N</sub>\*Fe<sub>C</sub>-hTF (PDB code 4H0W), and holo-hTF (PDB code 3V83, chain B) after superimposition of the N2 subdomain. "Fully closed" (holo-hTF) and "fully opened" (apo-hTF) conformations are in green and blue, respectively. The "partially opened" conformations of hTF observed in Fe<sub>N</sub>\*Fe<sub>C</sub>-hTF and Bi<sub>N</sub>\*Fe<sub>C</sub>-hTF structures are in gray and pink, respectively. The structure of Au-hTF chain B is in orange.



**Figure S6**. Crystal packing close to side chain of His289 in chain A; this residue has been identified as an Au binding site in chain B. Symmetry-related molecules are in light gray.



**Figure S7**. Conformations adopted by the side chains of His207 and Tyr238 in A) chain A, where a gold ion is observed, and B) chain B.  $2F_o$ - $F_c$  electron density maps are shown at 1.0  $\sigma$  in gray.



**Figure S8**. Gold ion binding close to the side chains of A) His473, B) His25 and His273, and C) His598, His606 and His642 in the Au-hTF chain B (light orange for N-lobe and light green for C-lobe) superimposed to the corresponding residues of apo-hTF chain B (blue, PDB code 2HAV). Residues 461-470 were superimposed in panel A; residues 13-25 were superimposed in panel B; residues 594-608 were superimposed in panel C.



**Figure S9.** The "di-lysine interaction" in the structures of apo-hTF (blue, PDB code 2HAV, chain A),  $Fe_N^*Fe_C$ -hTF (gray, PDB code 3QYT),  $Bi_N^*Fe_C$ -hTF (pink, PDB code 4H0W), and holo-hTF (green, PDB code 3V83, chain A). The N1-subdomains of the four proteins are superimposed. The interaction between Lys206 (from N1-subdomain) and Lys296 (from N2-subdomain) stabilizes its "fully closed" conformation of the holo-form.



**Figure S10**. Salt bridge formed by Lys296 and Asp63 in A) chain A and B) chain B of apo-hTF (PDB code 2HAV).



**Figure S11**. On the top, comparison of the N-lobes in A) chain A and B) chain B of Au-hTF and apohTF (blue, PDB code 2HAV) after superimposition of the N2 subdomain. On the bottom, comparison of the C-lobes in C) chain A and D) chain B of Au-hTF and apo-hTF (blue, PDB code 2HAV) after superimposition of the C2 subdomain.

### References

- Wally, J., Halbrooks, P.J., Vonrhein, C., Rould, M.A., Everse, S.J., Mason, A.B., and Buchanan, S.K. (2006). The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. J. Biol. Chem. 281, 24934–24944. https://doi.org/10.1074/jbc.M604592200.
- Campos-Escamilla, C., Siliqi, D., Gonzalez-Ramirez, L.A., Lopez-Sanchez, C., Gavira, J.A., and Moreno, A. (2021). X-ray characterization of conformational changes of human apo- and holo-transferrin. Int. J. Mol. Sci. 22, 13392. https://doi.org/10.3390/ijms222413392.
- 3. Troisi, R., Galardo, F., Ferraro, G., Lucignano, R., Picone, D., Marano, A., Trifuoggi, M., Sica, F., and Merlino, A. (2025). Cisplatin/apo-transferrin adduct: X-ray structure and binding to the transferrin receptor 1. Inorg. Chem. *64*, 761–765. https://doi.org/10.1021/acs.inorgchem.4c04435.
- 4. Wang, M., Lai, T.P., Wang, L., Zhang, H., Yang, N., Sadler, P.J., and Sun, H. (2015). "Anion clamp" allows flexible protein to impose coordination geometry on metal ions. Chem. Commun. *51*, 7867–7870. https://doi.org/10.1039/C4CC09642H.
- 5. Troisi, R., Galardo, F., Ferraro, G., Sica, F., and Merlino, A. (2023). Cisplatin binding to human serum transferrin: a crystallographic study. Inorg. Chem. *62*, 675–678. https://doi.org/10.1021/acs.inorg-chem.2c04206.
- Wang, M., Wang, H., Xu, X., Lai, T.-P., Zhou, Y., Hao, Q., Li, H., and Sun, H. (2022). Binding of ruthenium and osmium at non-iron sites of transferrin accounts for their iron-independent cellular uptake. J. Inorg. Biochem. 234, 111885. https://doi.org/10.1016/j.jinorgbio.2022.111885.
- Tinoco, A.D., Saxena, M., Sharma, S., Noinaj, N., Delgado, Y., Quiñones González, E.P., Conklin, S.E., Zambrana, N., Loza-Rosas, S.A., and Parks, T.B. (2016). Unusual synergism of transferrin and citrate in the regulation of Ti(IV) speciation, transport, and toxicity. J. Am. Chem. Soc. *138*, 5659–5665. https://doi.org/10.1021/jacs.6b01966.
- Curtin, J.P., Wang, M., Cheng, T., Jin, L., and Sun, H. (2018). The role of citrate, lactate and transferrin in determining titanium release from surgical devices into human serum. JBIC J. Biol. Inorg. Chem. 23, 471–480. https://doi.org/10.1007/s00775-018-1557-5.
- Petersen, C.M., Edwards, K.C., Gilbert, N.C., Vincent, J.B., and Thompson, M.K. (2020). X-ray structure of chromium(III)-containing transferrin: first structure of a physiological Cr(III)-binding protein. J. Inorg. Biochem. 210, 111101. https://doi.org/10.1016/j.jinorgbio.2020.111101.
- Noinaj, N., Easley, N.C., Oke, M., Mizuno, N., Gumbart, J., Boura, E., Steere, A.N., Zak, O., Aisen, P., Tajkhorshid, E., et al. (2012). Structural basis for iron piracy by pathogenic *Neisseria*. Nature 483, 53– 58. https://doi.org/10.1038/nature10823.
- Yang, N., Zhang, H., Wang, M., Hao, Q., and Sun, H. (2012). Iron and bismuth bound human serum transferrin reveals a partially-opened conformation in the N-lobe. Sci. Rep. 2, 999. https://doi.org/10.1038/srep00999.
- Eckenroth, B.E., Steere, A.N., Chasteen, N.D., Everse, S.J., and Mason, A.B. (2011). How the binding of human transferrin primes the transferrin receptor potentiating iron release at endosomal pH. Proc. Natl. Acad. Sci. 108, 13089–13094. https://doi.org/10.1073/pnas.1105786108.
- Calmettes, C., Alcantara, J., Yu, R.-H., Schryvers, A.B., and Moraes, T.F. (2012). The structural basis of transferrin sequestration by transferrin-binding protein B. Nat. Struct. Mol. Biol. 19, 358–360. https://doi.org/10.1038/nsmb.2251.
- Trevor, C.E., Gonzalez-Munoz, A.L., Macleod, O.J.S., Woodcock, P.G., Rust, S., Vaughan, T.J., Garman, E.F., Minter, R., Carrington, M., and Higgins, M.K. (2019). Structure of the trypanosome transferrin receptor reveals mechanisms of ligand recognition and immune evasion. Nat. Microbiol. *4*, 2074–2081. https://doi.org/10.1038/s41564-019-0589-0.
- Gruszczyk, J., Huang, R.K., Chan, L.-J., Menant, S., Hong, C., Murphy, J.M., Mok, Y.-F., Griffin, M.D.W., Pearson, R.D., Wong, W., et al. (2018). Cryo-EM structure of an essential *Plasmodium vivax* invasion complex. Nature 559, 135–139. https://doi.org/10.1038/s41586-018-0249-1.
- Jiang, N., Cheng, T., Wang, M., Chan, G.C.-F., Jin, L., Li, H., and Sun, H. (2018). Tracking iron-associated proteomes in pathogens by a fluorescence approach. Metallomics 10, 77–82. https://doi.org/10.1039/C7MT00275K.
- 17. Pratt, R., Handelman, G.J., Edwards, T.E., and Gupta, A. (2018). Ferric pyrophosphate citrate: interactions with transferrin. BioMetals *31*, 1081–1089. https://doi.org/10.1007/s10534-018-0142-2.