Supporting Information

Engineering tri-channel orthogonal luminescence in a single nanoparticle for Information Encryption

Jianhao Zheng^{ab}, Pengye Du^{ab}, Ran An^{*a}, Yuan Liang^a, Yi Wei^a, Shuyu Liu^{ab}, Pengpeng Lei^{*a}, Hongjie Zhang^{*abc}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin Changchun 130022, China.

E-mail: anran@ciac.ac.cn; leipp@ciac.ac.cn; hongjie@ciac.ac.cn

^bSchool of Applied Chemistry and Engineering, University of Science and Technology of China, Anhui Hefei 230026, China

^cDepartment of Chemistry, Tsinghua University, Beijing 100084, China

nanoparticles.

Figure S2. The high-resolution transmission electron microscopy images of the a) NaErF₄, b) NaErF₄@NaYF₄:Eu³⁺, and c) NaErF₄@NaYF₄:Eu³⁺@NaBiF₄:Yb³⁺,Tm³⁺ nanoparticles.

Figure S3. High-resolution X-ray photoelectron spectroscopy, a) Bi 4f and Y 3d, b) Na 1s, c) Yb 4d, Tm 4d, and Er 4d, d) F 1s, and e) Eu 4d.

Figure S4. X-ray diffraction patterns of NaErF₄@NaYF₄:X% Eu³⁺ nanoparticles. (X = 0, 5, 10, and 15).

Figure S5. TEM images of the a) $NaErF_4@NaYF_4:0\% Eu^{3+}$, b) $NaErF_4@NaYF_4:5\% Eu^{3+}$, c) $NaErF_4@NaYF_4:10\% Eu^{3+}$, and d) $NaErF_4@NaYF_4:15\% Eu^{3+}$ nanoparticles. (scale bar is 50 nm).

Figure S6. The relative intensity ratio of the green emission $({}^{2}H_{11/2}, {}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2})$ and the red emission $({}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2})$ of the NaErF₄@NaYF₄:X% Eu³⁺ nanoparticles under 808 nm excitation. (X = 0, 5, 10, and 15).

Figure S7. The lifetimes of the ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ transition of NaErF₄@NaYF₄:X% Eu³⁺ nanoparticles under 808 nm excitation. (X = 0, 5, 10, and 15).

Figure S8. The excitation spectrum of the $NaErF_4@NaYF_4:Eu^{3+}$ nanoparticles.

Figure S9. The lifetimes of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition of NaErF₄@NaYF₄:X% Eu³⁺ nanoparticles. (X = 5, 10, and 15).

Figure S10. The time-resolved photoluminescence (TRPL) decay curves and the corresponding fitting curve of the NaErF₄@NaYF₄:10% Eu³⁺@NaBiF₄:Yb³⁺,Tm³⁺ samples under 980 nm excitation.

Figure S11. Pump power dependence of the ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ transitions under 980 nm excitation.

Figure S12. Demonstration the double-color emissions of the construction of four 8-shapedpatternusingNaErF4@NaYF4:Eu3+nanoparticlesandNaErF4@NaYF4:Eu3+@NaBiF4:Yb3+,Tm3+nanoparticles.(i):NaErF4@NaYF4:10%Eu3+andNaErF4@NaYF4:10%Eu3+@NaBiF4:Yb3+,Tm3+nanoparticles.(ii):NaErF4@NaYF4:10%Eu3+@NaBiF4:Yb3+,Tm3+nanoparticles.(ii):NaErF4@NaYF4:10%Eu3+@NaBiF4:Yb3+,Tm3+nanoparticles.(ii):