Electronic Supplementary Information (ESI) for

Fabrication of p-Ni_{0.8}Cu_{0.2}WO₄/n-Si heterojunction diode and 1 MHz

rectifier operation

Inseo Kim^{1†}, Sora Yun^{1†}, Hyun Jae Kim^{2,3}, JungYup Yang^{1,4}, Kyu Hyoung Lee², Min Suk Oh^{3*}, and Kimoon Lee^{1,4*}

¹Department of Physics, Kunsan National University, Gunsan 54150, Republic of Korea.

²Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.

³Display Research Center, Korea Electronics Technology Institute (KETI), Seongnam 13509, Republic of Korea.

⁴The Institute of Basic Science, Kunsan National University, Gunsan 54150, Republic of Korea.

[†]These authors contributed equally to this work.

*Corresponding author: <u>ohms@keti.re.kr</u>, <u>kimoon.lee@kunsan.ac.kr</u>

S1. Schematic of target synthesis and deposition.

Figure S1. The schematic of $Ni_{0.8}Cu_{0.2}WO_4$ target synthesis process for e-beam evaporation.

S2. The purity of synthesized target.

Figure S2. The powder XRD pattern for the synthesized target. All the peaks are well indexed only with $NiWO_4$ and NiO peaks without other secondary phases.

Figure S3. The I-V characteristics from Au/Ni_{0.8}Cu_{0.2}WO₄/Au geometry devices for 100, 200, and 300 °C deposited samples.

S4. The Raman spectrum analysis.

Figure S4. The Raman spectrum for the pure NiWO₄ sintered bulk form as referance.

S5. Optical absorption spectra of $Ni_{0.8}Cu_{0.2}WO_4$ films.

Figure S5. The absorption coefficient *vs.* optical energy (E). The shoulder peak is marked by redarrow.

S6. Band-diagram picture for *p*-Ni_{0.8}Cu_{0.2}WO₄/*n*-Si heterojunction.

Figure S6. The schematic of band-diagram for p-Ni_{0.8}Cu_{0.2}WO₄/n-Si heterojunction. The band parameters for Ni_{0.8}Cu_{0.2}WO₄ are referred from our previous work. [*Mater. Horiz.* **11**, 6342 (2024)]

S7. The current density (J) – voltage (V) characteristics the *p*-Ni_{0.8}Cu_{0.2}WO₄/*n*-Si heterojunction diodes.

Figure S7. The ln *J* - *V* characteristics for different substrate heating temperature. The idearity factors are obtained based on following equation of $J = J_s \{ \exp [qV/nkT] - 1 \}$.

S8. The half-wave rectifications behavior of the p-Ni_{0.8}Cu_{0.2}WO₄/n-Si heterojunction diode.

Figure S8. The output signals of the half-wave rectification circuit at (a) 1 Hz, (b) 10 Hz, (c) 100 Hz, (d) 1 kHz, (e) 10 kHz, (f) 100 kHz, and (g) 1 MHz when applying a 5 V sinusoidal AC input signal.