Regulating the coordination environment of single-atom catalysts anchored on nitrogen-doped graphene for efficient nitrogen reduction reaction

Shuo Wang, Bo Zhu*, Likai Yan*

Institute of Functional Material Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China

Density functional theory calculation

1.1 Formation energy and binding energy of Mo-N₄-SACs

The stabilities of different Mo-N₄-SAC structures were quantified by calculating the formation energies (E_f) as follows:

 $E_{\rm f} = (E_{\rm Mo-N4-SAC} - n_{\rm C}\mu_{\rm C} - n_{\rm N}\mu_{\rm N} - n_{\rm H}\mu_{\rm H} - n_{\rm Mo}\mu_{\rm Mo})/{\rm M},$

where is $E_{\text{Mo-N4-SAC}}$ the total energy of the Mo-N₄-SAC, and n_C, n_N, n_H and n_{Mo} are the atom numbers of C, N, H and Mo. μ_{C} , μ_{N} , μ_{H} and μ_{Mo} are defined as the energies of a carbon atom in graphene, the energy of half N₂ molecule and H₂ molecule, and the energy of the isolated Mo atoms in a bulk, respectively. M is the total number of atoms in Mo-N₄-SAC.

The binding energy (E_b) of Mo atom with porous graphene is calculated according to the following equation:

 $E_{\rm b} = (E_{\rm Mo-N4-SAC} - E_{\rm S} - E_{\rm Mo}),$

where $E_{A-B@S}$, E_S , and E_{Mo} are the energies of Mo-N₄-SAC, substrate, and the isolated Mo atom, respectively.

The electrochemical stability of Mo-N₄-SAC structures were evaluated by dissolution potential (U_{diss}) which is calculated by equation:

 $U_{diss} = U_{diss}^{\circ}(metal, bulk) - E_{f}/ne,$

where U_{diss}° (metal, bulk), E_{f} and n are the standard dissolution potential of bulk metal, formation energy and the number of electrons involved in the dissolution, respectively. The U_{diss} of Mo-ACG, Mo-AC-edge, Mo-ZZG and Mo-ZZ-edge are 0.08, 0.06, 0.09, and 0.05, respectively.

The formation energies (E_f) of the doping systems by substituting N with the O atom or S atom were calculated. E_f is defined as follows:

 $E_{\rm f} = (E_{\rm O/S(1/2)-ZZ-edge} - n_{\rm C}\mu_{\rm C} - n_{\rm N}\mu_{\rm N} - n_{\rm H}\mu_{\rm H} - n_{\rm Mo}\mu_{\rm Mo} - n_{\rm s/o}\mu_{\rm s/o})/M,$

where $E_{O/S(1/2)-ZZ-edge}$ is the total energy of O/S-doped Mo-ZZ-edge system, n_{s/o} are the atom numbers of S or O, $\mu_{S/O}$ is the chemical potentials of single S or O atom. In addition, μ_S is the energy per S atom in its reference phase, and μ_O is defined as $\mu_{O2}/2$.

1.2 Calculation method of NRR activity

The change in free energy is calculated by the following formula:

$\Delta G = \Delta E + \Delta E_{\text{ZPE}} - T\Delta S + \Delta G_{\text{U}} + \Delta G_{\text{pH}}$

Where ΔE refers to the energy obtained by DFT calculation, where U is $\Delta G_{\rm U} = -n \times e \times U$, the electrode potential, e is the number of transferred electrons; $\Delta G_{\rm pH} = -kB \times T \times \ln[H^+] = -kB \times T \times pH \times \ln 10$, in this work, pH = 0 was employed. $\Delta E_{\rm ZPE}$ is the difference between the zero point energy (ZPE) of adsorbed intermediates and gas phase intermediates, T is the temperature (298.15 K), and ΔS is the change of entropy between the adsorption state and the gas phase.

The potential-determining step (PDS), which can be used to evaluate the catalytic activity of catalysts, is identified as the elementary reaction step with the largest increase in free energy ΔG . The applied potential of at least $U = -\Delta G_{max}/e$ to make every step in the hypothetical mechanism exothermal can be an estimate of the onset potential of the overall reaction.

Fig. S1. Temperature and energy fluctuations of (a) Mo-ACG, (b) Mo-AC-edge, (c) Mo-ZZG, and (d) Mo-ZZ-edge. The insets illustrate the top and side view of Mo-N₄-SACs after 10 ps AIMD simulation at T = 500 K.

Fig. S2. Computed bond lengths of N-TM (d_{N-TM} , Å) and N-N (d_{N-N} , Å) of adsorbed N₂ with end-on and side-on adsorption configurations.

Fig. S3. Optimized structures of the involved NRR species on the (a) Mo-ACG, (b) Mo-AC-edge, (c) Mo-ZZG, and (d) Mo-ZZ-edge via the optimal pathway.

Fig. S4. Projected density of states (PDOS) of Mo 4d for Mo-ZZG and Mo-ZZ-edge. Positive and negative PDOS values represent spin-up and spin-down components, respectively.

Fig. S5. Crystal orbital Hamilton population (COHP) between nitrogen atoms of N_2 on (a) Mo-ACG, (b) Mo-AC-edge, (c) Mo-ZZG, and (d) Mo-ZZ-edge.

Fig. S6. (a) Schematic structure of three moieties for N_xH_y adsorbed on Mo-N₄-SACs. The charge variations of the three moieties on (a) Mo-ACG, (b) Mo-AC-edge, (c) Mo-ZZG, (d) Mo-ZZ-edge along the optimal pathway.

Fig. S7. Under implicit + explicit solvation condition, (a) top view and side view of Mo-ZZG; (b) Free energy diagram of NRR via the most favorable pathway on Mo-ZZG and (c) corresponding intermediate structures.

Fig. S8. (a) The optimized structural models of the O1-ZZ-edge, O2-ZZ-edge, S1-ZZ-edge, and S2-ZZ-edge. Color code: the brown, grey, purple, red, yellow, and pink balls refer to C, N, Co, O, S, and H atoms, respectively. (b) Bader charge transfer and magnetic moment of Mo atom in doped-ZZ-edge catalysts.

Fig. S9 (a) Gibbs free energy change ΔG_{*N2} . (b) Free energy change of the first protonation step (ΔG_{N2-NNH}) considering end-on configurations, which is compared to the free energy change of the other crucial NRR step ($\Delta G_{NH2-NH3}$).

Fig. S10. Optimized structures of the involved NRR species on the (a) O1-ZZ-edge, (b) O2-ZZ-edge, (c) S1-ZZ-edge, and (b) S2-ZZ-edge.

(1 - 2)(0, 10 K) and entropy (5), and energy(6, $(0, 1)$).				
	Ε	E_{ZPE}	TS	G
N ₂	-16.64	0.15	0.59	-17.08
H_2	-6.77	0.28	0.42	-6.91
NH ₃	-19.73	0.91	0.60	-19.42

Table S1. The calculated energy (E, eV), zero-point energy (E_{ZPE} , eV), the product (TS, eV) of temperature (T = 298.15 K) and entropy (S), and Gibbs free energy(G, eV).