Supporting Information

Structural Disproportionation of Ag₂₀Cu₁₀ Highlights the Impact of

Cluster Structure on Electrocatalytic Properties for CO₂ reduction

Yujiao Wang,^{≠,a}Lin Xiong,^{≠,b} Qian Cheng,^a Daqiao Hu,^a Shan Jin,^{*,a} and Manzhou Zhu^a a. Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Anhui 230601, P. R. China

b. School of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, P. R. China \neq These authors contributed equally to this work.

Email: hudaqiao@ahu.edu.cn; jinshan@ahu.edu.cn

Figure S1. The overall structure and the ORTEP drawing (50% probability) of $Ag_{20}Cu_{10}(Dppm)_2(SAdm)_{14}Cl_8$. Atom colours: Cu = brown, S = yellow, P = purple, Cl = green; C = grey. H atoms are omitted.

Figure S2. The framework of $Ag_{20}Cu_{10}(Dppm)_2(SAdm)_{14}Cl_8$ consisting of a Ag_{17} core and the big peripheral motif and two terminal Cl ligands.

Figure S3. The Ag_{17} core can be regarded as a decahedral Ag_7 unit, with each side protected by an Ag_5 face.

Figure S4. The bond lengths of the $Ag_{20}Cu_{10}(Dppm)_2(SAdm)_{14}Cl_8$ clusters.

Figure S5. The overall structure and the ORTEP drawing (50% probability) of $[Ag_8Cu_{12}(Dppm)_4(SAdm)_8Cl_8]^{2+}$. Atom colours: Cu = brown, S= yellow, P = purple, Cl = green; C = grey. H atoms are omitted.

Figure S6. The overall structure and the ORTEP drawing (50% probability) of $[Ag_{17}Cu_{15}(SAdm)_{13}(Dppm)_3Cl_9]^{2+}$. Atom colours: Cu = brown, S= yellow, P = purple, Cl = green; C = grey. H atoms are omitted.

Figure S7. The $[Ag_8Cu_{12}(Dppm)_4(SAdm)_8Cl_8]^{2+}$ consists of a Ag_8 structure, surrounding by a complex shell.

Figure S8. The $[Ag_{17}Cu_{15}(SAdm)_{13}(Dppm)_3Cl_9]^{2+}$ consists of a icosahedral Ag_{13} core, surrounding by a complex shell.

Figure S9. The Ag_8 structure in Ag_8Cu_{12} can be regarded as a combination of two Ag_4 tetrahedrons.

Figure S10. The bond lengths of the $Ag_8Cu_{12}(Dppm)_4(SAdm)_8Cl_8$ clusters.

Figure S11. The bond lengths of the $Ag_{17}Cu_{15}(Dppm)_3(SAdm)_{13}Cl_9$ clusters.

Figure S12. Energy minimum structures of $Ag_8Cu_{12}(a)$, $Ag_{20}Cu_{10}(b)$ and $Ag_{17}Cu_{15}(c)$ after geometric optimization.

Electronic configuration

Figure S13. Kohn-sham molecular orbital energy level diagram of Ag_8Cu_{12} . As an illustration, only the isosurface diagrams of two frontier MOs (HOMO and LUMO) are shown here, with an isosurface value of 0.02.

Figure S14. Kohn-sham molecular orbital energy level diagram of $Ag_{20}Cu_{10}$, with an isosurface value of 0.02.

Figure S15. Kohn-sham molecular orbital energy level diagram of $Ag_{17}Cu_{15}$, with an isosurface value of 0.02.

Figure S16. The hole-electron distribution of the lowest excited state allowed by transitions for Ag_8Cu_{12} , $Ag_{20}Cu_{10}$ and $Ag_{17}Cu_{15}$ clusters. The green and cyan isosurfaces represent the distribution of electrons and holes, respectively. The value of the hole-electron isosurface is 0.002, and the value of the Chole and Cele isosurface is 0.0005.

Figure S17. The Faradaic efficiency for the CO_2 reduction products of the series of Ag-Cu alloy nanoclusters.

Figure S18. HNMR spectra of electrolyte after 10 minutes of electrocatalytic CO_2 reduction, with deuterated D_2O as the deuterated solvent and deuterated DMSO as the internal standard.

Figure S19. The EIS of three nanoclsuters catalyst.

Figure S20. A) The CV of the $Ag_{20}Cu_{10}@C$; B) The CV of the $Ag_8Cu_{12}@C$; C) The CV of the $Ag_{17}Cu_{15}@C$.

Figure S21. TEM of Ag₂₀Cu₁₀ and Ag₂₀Cu₁₀@C; B) EDS of Ag₂₀Cu₁₀@C.

Figure S22. TEM of Ag_8Cu_{12} and $Ag_8Cu_{12}@C$; B) EDS of $Ag_8Cu_{12}@C$.

Figure S23. TEM of $Ag_{17}Cu_{15}$ and $Ag_{17}Cu_{15}$ (B) EDS of $Ag_{17}Cu_{15}$ (C).

Figure S24. XPS spectra of pure clusters, catalysts and catalysts after catalysis of Ag₂₀Cu₁₀.

Figure S25. XPS spectra of pure clusters, catalysts and catalysts after catalysis of Ag₈Cu₁₂.

Figure S26. XPS spextra of pure clusters, catalysts and catalysts after catalysis of Ag₁₇Cu₁₅.

Figure S27. The XPS data of Ag and Cu for the $Ag_{20}Cu_{10}$ catalysts.

Figure S28. The XPS data of Ag and Cu for the Ag_8Cu_{12} catalysts.

Figure S29. The XPS data of Ag and Cu for the $Ag_{17}Cu_{15}$ catalysts.

Figure S30. The PXRD of the $Ag_{20}Cu_{10}$ as well as $Ag_{20}Cu_{10}$ (a) before and after the electrocatalytic reaction

Figure S31. The PXRD of the Ag_8Cu_{12} clusters as well as Ag_8Cu_{12} @C before and after the electrocatalytic reaction.

Figure S32. The PXRD of the $Ag_{17}Cu_{15}$ clusters as well as $Ag_{17}Cu_{15}@C$ before and after the electrocatalytic reaction.

Figure S33. A comparison of the steric hindrance at CO_2 adsorption sites in three different Ag@Cu alloy clusters.

Figure S34. Faradaic efficiency of CO₂ for these three Ag-Cu alloy nanoclusters at -0.9 V vs. RHE, with and without additional illumination. Values are means, and error bars represent the standard deviation from several independent measurements ($n \ge 3$).

Ag₁₇Cu₁₅(Adm)₁₃(L₁)₃Cl₉

Figure S35. The synthesis of the [Ag₈Cu₁₂(Dppm)₄(SAdm)₈Cl₈](SbF₆)₂ and $[Ag_{17}Cu_{15}(Dppm)_3(SAdm)_{13}Cl_9](SbF_6)_2$ nanocluster. The transformation of $Ag_{20}Cu_{10}$ into Ag_8Cu_{12} and $Ag_{17}Cu_{15}$ upon introducing $NaSbF_6$ likely results from ion-induced structural rearrangement. SbF_6^- ions interact with the metal-ligand framework, destabilizing Ag20Cu10 and facilitating the formation of new, thermodynamically or kinetically favored clusters (Ag₈Cu₁₂ and Ag₁₇Cu₁₅). This process may involve ligand removal or replacement, metal atom redistribution, or changes in the oxidation states of Ag and Cu, influenced by the coordination preferences of SbF₆. And experimental results indicate that varying NaSbF₆ concentration, reaction temperature, solvent polarity, and reaction time does not yield a single product. Limited studies on NaSbF₆-induced transformations highlight the need for further investigation into its mechanism, offering new strategies to control cluster structures.

Identification code	AgCu) ₃₀
Empirical formula	$C_{191}H_{256}Ag_{20}Cl_{10}Cu_{10}P_4S_{14}$
Formula weight	6271.96
Temperature/K	120(2)
Crystal system	monoclinic
Space group	P21
a/Å	21.403(2)
b/Å	20.1937(18)
c/Å	25.418(2)
α/°	90
β/°	94.635(7)
γ/°	90
Volume/Å ³	10949.9(17)
Z	2
$\rho_{calc}g/cm^3$	1.902
Radiation	$CuK\alpha (\lambda = 1.54186)$
2θ range for data collection/°	11.206 to 139.512
Index ranges	$-25 \le h \le 25, -18 \le k \le 24, -30 \le l \le 26$
Reflections collected	55554
Independent reflections	27000 [$R_{int} = 0.0288, R_{sigma} = 0.0241$]
Data/restraints/parameters	27000/2895/2170
Goodness-of-fit on F ²	1.022
Final R indexes [I>=2σ (I)]	$R_1 = 0.0551, wR_2 = 0.1491$
Final R indexes [all data]	$R_1 = 0.0578, wR_2 = 0.1524$
Largest diff. peak/hole / e Å ⁻³	1.24/-1.44
Flack parameter	0.449(5)

Table S1. Crystal data and structure refinement for $AgCu)_{30}$.

Identification code	AgCu) ₂₀
Empirical formula	$C_{193.6}H_{237.2}Ag_8Cl_{19.2}Cu_{12}F_{12}O_2P_8S_8Sb_2$
Formula weight	5878.04
Temperature/K	120(2)
Crystal system	orthorhombic
Space group	Pnna
a/Å	28.677(2)
b/Å	27.162(2)
c/Å	27.948(2)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	21770(3)
Z	4
$\rho_{calc}g/cm^3$	1.793
Radiation	$CuK\alpha (\lambda = 1.54186)$
2θ range for data collection/°	11.68 to 140.478
Index ranges	$-34 \le h \le 23, -24 \le k \le 32, -34 \le l \le 30$
Reflections collected	127801
Independent reflections	20348 [$R_{int} = 0.0636, R_{sigma} = 0.0435$]
Data/restraints/parameters	20348/664/1220
Goodness-of-fit on F ²	1.080
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0700, wR_2 = 0.2052$
Final R indexes [all data]	$R_1 = 0.0858, wR_2 = 0.2196$
Largest diff. peak/hole / e Å ⁻³	4.21/-1.31

Table S2. Crystal data and structure refinement for AgCu)₂₀.

Table S3.	Crystal	data	and structure	refinement	for	AgCu)32.
-----------	---------	------	---------------	------------	-----	----------

Identification code	AgCu) ₃₂
Empirical formula	$C_{205}H_{261}Ag_{17.11}Cl_9Cu_{14.89}F_{12.06}P_6S_{13}Sb_{2.01}$
Formula weight	6912.46
Temperature/K	120(2)
Crystal system	trigonal
Space group	R-3
a/Å	26.715(4)
b/Å	26.715(4)
c/Å	68.924(9)
α/°	90
β/°	90
γ/°	120
Volume/Å ³	42602(14)
Z	5.99994
$\rho_{calc}g/cm^3$	1.617
Radiation	$CuK\alpha \ (\lambda = 1.54186)$
2θ range for data collection/°	7.656 to 129.986
Index ranges	$-31 \le h \le 23, -31 \le k \le 30, -73 \le l \le 80$
Reflections collected	76725
Independent reflections	15477 [$R_{int} = 0.0977, R_{sigma} = 0.0955$]
Data/restraints/parameters	15477/1127/820
Goodness-of-fit on F ²	1.233
Final R indexes [I>=2 σ (I)]	$R_1 = 0.1507, wR_2 = 0.3664$
Final R indexes [all data]	$R_1 = 0.1839, wR_2 = 0.3850$
Largest diff. peak/hole / e Å ⁻³	4.30/-2.09

Peak	Excited	Excited	C C	Contribution	Transition
(nm)	state (S _n)	energy (eV)	J	for Peak*	mode/contribution for S _n
551	1	2.14	0.0616	11.74%	$H-1 \rightarrow L 48.7\%$
					$H \rightarrow L 43.7\%$
	2	2.166	0.10596	24.14%	$H \rightarrow L 44.4\%$
					$H-1 \rightarrow L 42.0\%$
	3	2.25	0.01681	24.14%	H-2 → L 88.1%
	4	2.273	0.10177	28.39%	$H \rightarrow L+1 \ 63.9\%$
					$H-5 \rightarrow L \ 12.0\%$
					$\text{H-1} \rightarrow \text{L+1 6.9\%}$
					$H-4 \rightarrow L 6.8\%$
	5	2.324	0.05253	12.60%	$H-3 \rightarrow L \ 61.1\%$
					$\text{H-1} \rightarrow \text{L+1 } 22.7\%$
	6	2.337	0.03765	8.46%	H-4 → L 35.7%
					$H-5 \rightarrow L 25.6\%$
					$H \rightarrow L+1 \ 13.2\%$
					$H-3 \rightarrow L \ 13.2\%$
	7	2.339	0.03401	7.56%	$\text{H-1} \rightarrow \text{L+1 } 60.1\%$
					$H-3 \rightarrow L \ 18.2\%$
					$H \rightarrow L+1 \ 10.2\%$
382	50	3.206	0.01343	5.40%	H-26 → L 72.0%
					$\text{H-20} \rightarrow \text{L+1 7.2\%}$
					$H-22 \rightarrow L 5.9\%$
	52	3.245	0.09616	40.60%	$H \rightarrow L+2 71.6\%$
					$\text{H-21} \rightarrow \text{L+1 6.1\%}$
	54	3.277	0.0173	7.08%	$\text{H-23} \rightarrow \text{L+1 41.3\%}$
					$\text{H-24} \rightarrow \text{L+1 28.6\%}$
					$\text{H-25} \rightarrow \text{L+1 8.1\%}$
					$\text{H-22} \rightarrow \text{L+1 7.3\%}$
	55	3.3	0.02779	10.72%	$\text{H-24} \rightarrow \text{L+1 42.0\%}$
					$\text{H-25} \rightarrow \text{L+1 29.7\%}$
					$\text{H-23} \rightarrow \text{L+1 6.6\%}$
					$H-9 \rightarrow L+2$ 31.7%, $H-8 \rightarrow$
					L+2 11.9%, H-42 → L 9.9%,
324*	93	3.787	0.02604	7.33%	$\text{H-41} \rightarrow \text{L 6.7\%, H-46} \rightarrow \text{L}$
					$6.1\%, \text{H-}37 \rightarrow \text{L+}1 5.8\%, \text{H-}$
					$40 \rightarrow L 5.6\%$
	95	3.802	0.02123	6.16%	H-38 → L+1 55.5%
					$\text{H-10} \rightarrow \text{L+2 33.9\%, H-12} \rightarrow$
	102	3.894	0.02519	6.48%	L+2 9.8%, H-47 \rightarrow L 6.1%, H-
					$52 \rightarrow L 6.1\%$

Table S4. Attribution of absorption peaks in the computed spectrum of Ag_8Cu_{12} .

* refers to the contribution of transition mode $S_0 \rightarrow S_n$ to the absorption peak.

Peak	Excited	Excited	ſ	Contribution	Transition mode/contribution
(nm)	state (S _n)	energy (eV)	J	for Peak*	for S _n
					$H-3 \rightarrow L+1$ 30.8%, $H-2 \rightarrow L+3$
186	15	2.46	0.0681	7.13%	$30.6\%, \text{H-2} \rightarrow \text{L+2} 6.9\%, \text{H-3} \rightarrow$
480	15	2.40	0.0081	7.1370	L+2 6.8%, H-1 → L+4 6.5%, H
					→ L+4 5.3%
					$\text{H-5} \rightarrow \text{L 56.0\%, H-2} \rightarrow \text{L 6.0\%,}$
	17	2.484	0.12093	14.63%	$\text{H-4} \rightarrow \text{L+2 5.5\%, H-4} \rightarrow \text{L+1}$
					5.3%
					$\text{H-5} \rightarrow \text{L}$ 29.1%, $\text{H-4} \rightarrow \text{L+1}$
	18	2.501	0.17217	22.10%	10.6%, H-2 \rightarrow L 9.6%, H-4 \rightarrow
					L+2 6.8%
					$H-4 \rightarrow L+2$ 39.2%, $H-4 \rightarrow L+1$
	19	2.522	0.10913	14.76%	$22.3\%, \text{H-6} \rightarrow \text{L } 6.3\%, \text{H-2} \rightarrow \text{L}$
					5.6%
	20	2.560	0.04495	6 160/	$\text{H-6} \rightarrow \text{L 64.5\%},$
	20	2.309	0.04465	0.1076	$H-5 \rightarrow L+1 7.4\%$
					$\mathrm{H} \rightarrow \mathrm{L}{+}4 \ 15.3\%, \mathrm{H}{-}1 \rightarrow \mathrm{L}{+}4$
	29	2.71	0.0821	5.21%	11.3%, H-3 \rightarrow L+3 8.9%, H-7 \rightarrow
					L+1 7.3%, H-11 → L 6.5%
					$\text{H-7} \rightarrow \text{L+3 25.9\%, H-10} \rightarrow \text{L+2}$
406	47	2.966	0.03588	5.49%	$10.3\%, \text{H-2} \rightarrow \text{L+4} 9.6\%, \text{H-13}$
					\rightarrow L 7.5%, H-5 \rightarrow L+3 5.1%
					$\text{H-2} \rightarrow \text{L+4 20.4\%, H-14} \rightarrow \text{L}$
	48	2.97	0.04559	7.15%	19.9%, H-6 \rightarrow L+3 6.7%, H-7 \rightarrow
					L+3 5.2%, H-10 → L+2 5.0%
					$\text{H-6} \rightarrow \text{L+3 15.5\%, H-15} \rightarrow \text{L}$
					13.2%, H-7 → L+3 10.3%, H-2
	51	2.999	0.05034	8.92%	\rightarrow L+4 8.6%, H-12 \rightarrow L+1 6.1%,
					$\text{H-16} \rightarrow \text{L 5.7\%, H-10} \rightarrow \text{L+2}$
					5.5%
					$\text{H-12} \rightarrow \text{L+2 10.7\%, H-13} \rightarrow \text{L+1}$
	57	3.068	0.03819	7.38%	$10.3\%, \text{H-15} \rightarrow \text{L+2} 9.8\%, \text{H-15}$
					\rightarrow L+1 8.7%, H-20 \rightarrow L 5.9%
					$\text{H-19} \rightarrow \text{L+3 24.0\%, H-30} \rightarrow \text{L}$
357	107	3.439	0.05654	5.77%	$17.1\%, \text{H-}21 \rightarrow \text{L+}3 \ 9.8\%, \text{H-}20$
					\rightarrow L+2 6.3%, H-17 \rightarrow L+3 5.2%
					$H-19 \rightarrow L+3 \ 10.4\%, H-24 \rightarrow L+1$
					$9.8\%, \text{H-}25 \rightarrow \text{L+}1 \ 8.8\%, \text{H-}16$
	110	3.463	0.14526	15.30%	\rightarrow L+3 7.2%, H \rightarrow L+5 5.5%, H-
					$30 \rightarrow L 5.4\%, H-1 \rightarrow L+5 5.2\%,$
					$\text{H-20} \rightarrow \text{L+2 5.0\%}$

Table S5. Attribution of absorption peaks in the computed spectrum of $Ag_{20}Cu_{10}$.

* refers to the contribution of transition mode $S_0 \rightarrow S_n$ to the absorption peak.

Peak	Excited	Excited	C	Contribution	Transition mode/contribution
(nm)	state (S _n)	energy (eV)	J	for Peak*	for S _n
					$\text{H-1} \rightarrow \text{L+1 28.3\%, H-2} \rightarrow \text{L}$
625	1	1 866	0.02307	6 03%	$17.7\%, \text{H-4} \rightarrow \text{L+1}\ 15.0\%, \text{H}$
025	4	1.800	0.02307	0.9370	\rightarrow L 10.3%, H-1 \rightarrow L 7.9%, H
					\rightarrow L+2 5.0%
					$\text{H-2} \rightarrow \text{L+1 27.5\%, H-2} \rightarrow \text{L}$
	5	1.878	0.02733	8.93%	$20.2\%, \text{H-}3 \rightarrow \text{L}\ 18.3\%, \text{H} \rightarrow \text{L}$
					14.2%
					$\text{H-1} \rightarrow \text{L+1 35.3\%, H-2} \rightarrow \text{L}$
	6	1.888	0.03503	12.16%	$23.2\%, \text{H-3} \rightarrow \text{L } 9.1\%, \text{H} \rightarrow$
					L+1 7.6%, H-3 \rightarrow L+1 5.3%
	8	1 986	0.05001	23.07%	$\text{H-4} \rightarrow \text{L 36.1\%, H-3} \rightarrow \text{L+1}$
		1.900	0.00001	23.0770	$26.5\%, \text{H-1} \rightarrow \text{L+1} \ 6.7\%$
					$\text{H-3} \rightarrow \text{L 27.9\%, H-4} \rightarrow \text{L+1}$
	9	1.997	0.06928	31.80%	$27.8\%, H \rightarrow L 7.1\%, H-3 \rightarrow$
					L+1 6.6%, H \rightarrow L+1 6.1%
					$\text{H-1} \rightarrow \text{L+3 22.5\%, H} \rightarrow \text{L+5}$
451	27	2.588	0.08123	5.41%	$15.6\%, \text{H-8} \rightarrow \text{L+1} \ 13.6\%, \text{H-2}$
					\rightarrow L+4 8.5%, H \rightarrow L+2 6.7%,
					$H \rightarrow L+3 \ 6.6\%$
					$\text{H-2} \rightarrow \text{L+3 24.3\%, H-4} \rightarrow \text{L+3}$
	28	2.619	0.06645	5.59%	$21.7\%, \text{H-1} \rightarrow \text{L+4} \ 18.5\%, \text{H-8}$
					\rightarrow L 13.0%
	•	a (a -			$H-10 \rightarrow L \ 21.4\%, \ H-2 \rightarrow L+4$
	30	2.635	0.05595	5.57%	$18.0\%, H \rightarrow L+4 \ 8.0\%, H-13$
					\rightarrow L 7.5%, H-12 \rightarrow L+1 5.3%
	33	2.662	0.05873	6.90%	$H-4 \rightarrow L+3 \ 55.1\%, H-1 \rightarrow L+4$
					/.9%
	15	2.016	0 20127	26 100/	$H \rightarrow L+3 13.1\%, H \rightarrow L+2$
	43	2.810	0.20137	20.1076	$0.5\%, \Pi - 15 \rightarrow L^{+1} 5.6\%, \Pi - 15$
					$ \begin{array}{c} \rightarrow L + 1 \ 3.8\% \\ H_{-} 15 \rightarrow L + 2 \ 10 \ 8\% \\ H_{-} 2 \rightarrow \end{array} $
					$I + 6.89\% H - 10 \rightarrow I + 4.73\%$
353	109	3.418	0.05569	5.37%	$H-29 \rightarrow I_{*}7.0\% H-11 \rightarrow I+3$
					5.6%
					$H-4 \rightarrow L+6 33.0\% H-32 \rightarrow L$
	120	3.481	0.05661	6.95%	12.5%
					H-13 → L+3 25.8%. H-4 →
					L+6 11.7%, H-3 → L+6 8.7%.
	122	3.487	0.04112	5.10%	H-31 → L+1 7.1%, H-11 →
					L+3 6.3%

Table S6. Attribution of absorption peaks in the computed spectrum of $Ag_{17}Cu_{15}$.

* refers to the contribution of transition mode $S_0 \rightarrow S_n$ to the absorption peak.

AgCu) ₃₀ @C	FE _{CO}	$\overline{FE_{H2}}$	FE _{total}
-0.7V	0	0	0
-0.8V	54.85	41.03	95.88
-0.9V	70.80	26.09	96.17
-1.0V	58.74	37.06	95.80
-1.1V	54.09	44.05	98.14
AgCu) ₂₀ @C	$\overline{FE_{CO}}$	\overline{FE}_{H2}	FE _{total}
-0.7V	16.27	0	16.27
-0.8V	40.54	0	40.54
-0.9V	52.70	42.90	95.60
-1.0V	43.19	54.10	97.29
-1.1V	38.05	58.19	96.24
AgCu) ₃₂ @C	FE _{CO}	$\overline{FE_{H2}}$	FE _{total}
-0.7V	14.22	0	14.22
-0.8V	34.49	65.12	99.61
-0.9V	55.1	43.51	98.61
-1.0V	59.83	39.03	98.86
-1.1V	41.21	58.86	100.07

Table S7. Summary of Faradaic Efficiency Data for Electrocatalytic CO₂ Reduction.