# Synthesis and Bio-evaluation of Aminoferrocene-Based Anticancer Prodrugs as Potent Ferroptosis Inducers

Qianer Zhang,<sup>[a]#</sup> Xuejing Fan,<sup>[a]#</sup> Huimei Qian,<sup>[a]</sup> Shanshan Xiao,<sup>[a]</sup> Qin Song,<sup>[a]</sup> Yicheng Wang,<sup>[a]</sup> Jing Wang,<sup>[a]</sup> Shuang Yang,<sup>[a]</sup> and Yong Wang,<sup>\*[a]</sup>

[a] Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, P.
R. China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237
E-mail: wangyong8866@ouc.edu.cn

<sup>#</sup> These two authors contributed equally

| Table S1. Antitumor activities of representative NAAF prodrugs against HT1080               |
|---------------------------------------------------------------------------------------------|
| cells                                                                                       |
| Fig. S1. Expanded regions of the spectra about I-1 and II-1 with the generation of          |
| boronic acid in the absence of $H_2O_2$ 2                                                   |
| Fig. S2. Expanded regions of the spectra about I-1 hydrolysis in the presence of $H_2O_2$ . |
|                                                                                             |
| Fig. S3. Expanded regions of the spectra about II-1 hydrolysis in the presence of           |
| H <sub>2</sub> O <sub>2</sub> 5                                                             |
| Fig. S4. Expanded regions of the spectra about II-1-B hydrolysis in the presence of         |
| H <sub>2</sub> O <sub>2</sub>                                                               |
| Fig. S5. Activation of II-1 in HT1080 cell verified by LC-MS/MS                             |
| <sup>1</sup> H, <sup>13</sup> C NMR and HRMS spectra of compounds9                          |
| HPLC analysis for compounds                                                                 |



Table S1. Antitumor activities of representative NAAF prodrugs against HT1080 cells.

<sup>*a*</sup> All values are expressed as the mean  $\pm$  SD from three independent experiments. <sup>*b*</sup> HT1080 and incubated with compounds alone. <sup>*c*</sup> HT1080 incubated with compounds and Fer-1 (1.5  $\mu$ M). <sup>*d*</sup> + Fer-1 IC<sub>50</sub>/- Fer-1 IC<sub>50</sub>.



Fig. S1. Expanded regions of the spectra of I-1 (top) and II-1 (bottom) with the generation of boronic acid in the absence of  $H_2O_2$ .





Fig. S2. Expanded regions of the spectra of I-1 hydrolysis in the presence of  $H_2O_2$ .



Fig. S3. Expanded regions of the spectra of II-1 hydrolysis in the presence of  $H_2O_2$ .



Fig. S4. Expanded regions of the spectra of II-1-b hydrolysis in the presence of  $H_2O_2$ .





Fig. S5. Activation of II-1 in HT1080 cell verified by LC-MS/MS.

#### <sup>1</sup>H, <sup>13</sup>C NMR and HRMS spectra of compounds

**I-1** <sup>1</sup>H-NMR (Chloroform-*d*)



















#### I-1 HRMS

20230821-QR-9\_230822093119 #53 RT: 0.58 AV: 1 NL: 1.42E7 T: FTMS + p ESI Full ms [180.00-2000.00]



#### I-2 HRMS



#### I-3 HRMS

20230821-QR-21\_230822104709 #60 RT: 0.53 AV: 1 NL: 2.77E6 T: FTMS + p ESI Full ms [180.00-2000.00]



#### II-1 HRMS





II-1-B LCMS



II-2 HRMS

20230821-QR-10\_230822093119 #47-48 RT: 0.39-0.40 AV: 2 NL: 1.05E6 T: FTMS + p ESI Full ms [180.00-2000.00]



#### III-1 HRMS





#### III-2 HRMS

20230821-QR-13 230822093119 #54 RT: 0.55 AV: 1 SB: 16 0.27-0.39 NL: 1.09E7 T: FTMS + p ESIFulims (180.00-2000.00]



## HPLC analysis for compounds Compound I-1

Result

|   | Ret. Time | Area    | Rel. Area (%) |
|---|-----------|---------|---------------|
| 1 | 2.576     | 176761  | 2.89          |
| 2 | 13.185    | 5900938 | 96.53         |
| 3 | 13.818    | 35208   | 0.58          |



# Compound I-2

| Result |           |         |               |  |
|--------|-----------|---------|---------------|--|
|        | Ret. Time | Area    | Rel. Area (%) |  |
| 1      | 2.292     | 33829   | 1.34          |  |
| 2      | 2.690     | 12662   | 0.50          |  |
| 3      | 13.208    | 2462095 | 97.60         |  |
| 4      | 13.765    | 7781    | 0.31          |  |
| 5      | 14.117    | 6287    | 0.25          |  |



## Compound I-3

| Result |           |         |               |
|--------|-----------|---------|---------------|
|        | Ret. Time | Area    | Rel. Area (%) |
| 1      | 14.066    | 4160493 | 97.59         |
| 2      | 14.672    | 32932   | 0.77          |
| 3      | 14.991    | 20228   | 0.47          |
| 4      | 15.286    | 49596   | 1.16          |



Compound II-1

Result

|   | Ret. Time | Area   | Rel. Area (%) |
|---|-----------|--------|---------------|
| 1 | 11.076    | 14990  | 2.65          |
| 2 | 11.810    | 550991 | 97.35         |



## Compound II-2

| Resul | t |
|-------|---|
|-------|---|

|   | Ret. Time | Area    | Rel. Area (%) |
|---|-----------|---------|---------------|
| 1 | 10.880    | 10367   | 0.88          |
| 2 | 13.819    | 1170541 | 99.12         |



# Compound III-1

| Resu | ılt |
|------|-----|

|   | Ret. Time | Area    | Rel. Area (%) |
|---|-----------|---------|---------------|
| 1 | 10.113    | 3852405 | 95.65         |
| 2 | 10.399    | 41980   | 1.04          |
| 3 | 10.775    | 100230  | 2.49          |
| 4 | 11.660    | 33113   | 0.82          |



## Compound III-2

| Resul | t |
|-------|---|
|-------|---|

|   | Ret. Time | Area    | Rel. Area (%) |
|---|-----------|---------|---------------|
| 1 | 13.981    | 3112944 | 98.36         |
| 2 | 14.482    | 51911   | 1.64          |

