Electronic Supplementary Information

Luminescent iridium(III) 2-cyanobenzothiazole complexes as site-specific labels to afford peptide-based phosphorogenic probes and hydrogels for enzyme activity sensing, cancer imaging and photodynamic therapy

Jun-Wen Xu,^a Lawrence Cho-Cheung Lee,^a Alex Man-Hei Yip,^{a,b} Guang-Xi Xu,^a Peter Kam-Keung Leung^{a,c} and Kenneth Kam-Wing Lo^{*a,c}

^a Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China; Email: bhkenlo@cityu.edu.hk
 ^b Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503–1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
 ^c State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat

Chee Avenue, Kowloon, Hong Kong, P. R. China

Table of Contents

Table S1	Electronic absorption spectral data of complexes $1 - 3$ at 298 K.	S6
Table S2	Singlet oxygen (1O2) generation quantum yields ($arPhi_{\Delta}$) of complexes ${f 1}$	S7
	– 3 and conjugates 2-MMP and 2-MMP-QSY7 in aerated CH_3CN at	
	298 К.	
Table S3	Photophysical data of conjugates 2-MMP, 2-MMP-QSY7 and 2-	S8
	VPMS at 298 K.	
Table S4	Förster resonance energy transfer (FRET) parameters of conjugate 2 -	S9
	MMP-QSY7.	
Table S5	(Photo)cytotoxicity (IC ₅₀) of conjugate 2-MMP-QSY7 towards MDA-	S10
	MB-231 and HEK-293 cells. Photocytotoxicity index (PI) =	
	IC _{50,drak} /IC _{50,light} .	
Table S6	Cellular uptake of conjugate 2-MMP-QSY7 .	S11
Fig. S1	Electronic absorption spectra of complexes $1 - 3$ in CH ₂ Cl ₂ (black)	S12
	and CH₃CN (red) at 298 K.	
Fig. S2	Normalised emission spectra of complexes $1-3$ in degassed CH_2Cl_2	S13
	(black) and CH $_3$ CN (red) at 298 K and in alcohol glass at 77 K (blue)	
	$(\lambda_{\rm ex} = 350 \text{ nm}).$	
Fig. S3	HPLC chromatograms (λ_{abs} = 350 nm) of complexes 1 – 3 (100 μ M)	S14
	(black) and the reaction mixtures of complexes ${\bf 1}-{\bf 3}$ (100 $\mu M)$ and	
	L-cysteine (L-Cys) (250 μ M) in phosphate-buffered saline (PBS) (pH	

7.4)/CH₃CN (9:1, v/v) containing tris(2-carboxyethyl) phosphine (TCEP) (100 μ M) after incubation at 298 K for 4 h (red).

- Fig. S4ESI mass spectra of the eluent collected at $t_{\rm R}$ = 20.2 min (1-Cys), 18.2S15min (2-Cys) and 20.9 min (3-Cys).
- **Fig. S5** ESI mass spectra of a mixture of complex **2** (100 μ M) and glutathione S16 (250 μ M), histidine (250 μ M), lysine (250 μ M), serine (250 μ M), or threonine (250 μ M) in PBS (pH 7.4)/CH₃CN (9:1, *v*/*v*) after incubation at 37°C for 12 h.
- Fig. S6
 HPLC chromatograms (λ_{abs} = 350 nm) of conjugates 2-MMP (t_R = 517

 15.56 min), 2-MMP-QSY7 (t_R = 15.83 min) and 2-VPMS (t_R = 14.12

 min).
- Fig. S7 ESI mass spectra of purified conjugates 2-MMP, 2-MMP-QSY7 and S182-VPMS in CH₃OH at 298 K.
- Fig. S8Spectral overlap of the absorption spectrum of the acceptor QSY-7S19(black) and normalised emission spectrum of the donor conjugate 2-MMP (red) in H_2O/CH_3CN (1:1, v/v) at 298 K.
- **Fig. S9** HPLC chromatograms (λ_{abs} = 350 and 560 nm) of (a) conjugate **2**-S20 **MMP-QSY7** (5 µM) before (black) and after (red) incubation with matrix metalloproteinase (MMP)-2 (0.002 mg mL⁻¹ in PBS) in aerated MMP reaction buffer/DMSO (99:1, ν/ν) at 37°C for 12 h. ESI mass spectra of cleavage products (b) **2-CVPMS** and (c) MRGGK-QSY7.
- Fig. S10 (a) SEM image and (b) EDS images and spectrum of Gel-1. Scale bar S21
 = 100 μm.

Fig. S11Photographs of (a) Gel-1 ([Ir] = 80 μ M, 100 μ L) and (b) Gel-2 ([Ir] = S2240 μ M, 100 μ L) upon addition of Dulbecco's Modified Eagle Medium(DMEM) (150 μ L) and incubation for 24, 48 and 72 h.

Fig. S12 Optical microscopy images of MDA-MB-231 cells encapsulated by S23 **Gel-1** ([Ir] = 40 μ M, 100 μ L) at different focal lengths.

- **Fig. S13** Analysis of live/dead MDA-MB-231 and HEK-293 cells using Calcein-S24 AM (1 μM, 30 min; λ_{ex} = 488 nm, λ_{em} = 510 540 nm) and propidium iodide (PI) (3 μM, 30 min; λ_{ex} = 532 nm, λ_{em} = 610 640 nm). The cells were encapsulated by **Gel-1** ([Ir] = 40 μM) for 72 h. Scale bar = 100 μm.
- Fig. S14Laser-scanning confocal microscopy (LSCM) images of MDA-MB-231S25cells encapsulated by Gel-1 ([Ir] = 40 μ M; λ_{ex} = 405 nm, λ_{em} = 570 –620 nm) at 0, 6 and 18 h at 37°C. Scale bar = 20 μ m.
- Fig. S15 (a) SEM image and (b) EDS images and spectrum of Gel-2. Scale bar S26= 100 μm.
- **Fig. S16** Intracellular reactive oxygen species (ROS) levels of **Gel-2** ([Ir] = 80 S27 μ M, 24 h)-pretreated MDA-MB-231 cells incubated with chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H₂DCFDA) (10 μ M, 30 min; λ_{ex} = 488 nm, λ_{em} = 500 550 nm) without (left) or with (right) photoirradiation at 450 nm (15 mW cm⁻²) for 30 min. Scale bar = 100 μ m.
- Fig. S17 1 H NMR spectrum of the ligand bpy-CBT in (CD3)2SO at 298 K.S28

Fig. S18 1 H NMR spectrum of complex 1 in (CD₃)₂CO at 298 K.S29

S4

Fig. S19	13 C NMR spectrum of complex 1 in (CD ₃) ₂ SO at 298 K.	S30
Fig. S20	HR-ESI mass spectrum of complex ${f 1}$ in CH ₃ OH at 298 K.	S31
Fig. S21	¹ H NMR spectrum of complex 2 in $(CD_3)_2CO$ at 298 K.	S32
Fig. S22	13 C NMR spectrum of complex 2 in (CD ₃) ₂ SO at 298 K.	S33
Fig. S23	HR-ESI mass spectrum of complex 2 in CH ₃ OH at 298 K.	S34
Fig. S24	¹ H NMR spectrum of complex 3 in $(CD_3)_2CO$ at 298 K.	S35
Fig. S25	13 C NMR spectrum of complex 3 in (CD ₃) ₂ SO at 298 K.	S36
Fig. S26	HR-ESI mass spectrum of complex 3 in CH ₃ OH at 298 K.	S37
Reference		S38

Table S1 Electronic absorption spectral data of complexes 1 - 3 at 298 K.

Complex	Solvent	λ_{abs}/nm ($\varepsilon/dm^3 mol^{-1} cm^{-1}$)
1	CH_2CI_2	256 sh (48,300), 309 (43,000), 364 sh (7,550)
	CH₃CN	259 sh (37,130), 308 (27,000), 360 sh (4,590)
2		258 (67 070) 308 (46 005) 385 sh (7 655) 417 sh (3 560)
-		
		257 (62 425) 200 (42 025) 270 cb (7 255) 414 cb (2 750)
	CHISCIN	257 (05,425), 505 (42,525), 575 511 (7,555), 414 511 (5,750)
2		
3	CH_2CI_2	261 (59,325), 293 (63,290), 349 (28,125), 370 sn (27,490), 472 sn
		(4,920)
	CH₃CN	261 (53,550), 291 (53,110), 346 (25,075), 366 sh (23,275), 475 sh
		(3.920)

Table S2 Singlet oxygen (${}^{1}O_{2}$) generation quantum yields (Φ_{Δ}) of complexes **1** – **3** and conjugates **2-MMP** and **2-MMP-QSY7** in aerated CH₃CN at 298 K.

Complex/Conjugate	$arPhi_{\Delta}{}^{a}$
1	0.85
2	0.59
3	0.66
2-MMP	0.52
2-MMP-QSY7	0.06

^{*a*} [Ru(bpy)₃]Cl₂ was used (Φ_{Δ} = 0.57 in aerated CH₃CN, λ_{ex} = 450 nm).

Conjugate	Solvent	$\lambda_{ m em}/ m nm^a$	τ _o /μs ^b	$arPsi_{em}{}^{c}$
2-MMP	H ₂ O/CH ₃ CN ^d	608	0.15	0.07
2-MMP-QSY7	H ₂ O/CH ₃ CN ^d	623	0.13	< 0.005
2-VPMS	H ₂ O/CH ₃ CN ^d	590	0.19	0.08

^{*a*} λ_{ex} = 350 nm.

^{*b*} The lifetimes were measured at the emission maxima (λ_{ex} = 355 nm).

 c The emission quantum yields were determined using [Ru(bpy)_3]Cl_2 (${\it {\it P}}_{\rm em}$ = 0.04 in aerated

H₂O, λ_{ex} = 455 nm) as a reference.¹

^d H₂O/CH₃CN (1:1, v/v).

 Table S4 Förster resonance energy transfer (FRET) parameters of conjugate 2-MMP-QSY7.

Donor	Acceptor	$J(\lambda)/\text{nm}^4 \text{ M}^{-1} \text{ cm}^{-1a}$	R₀/Å	D/Å ^b	Ecalc	E _{expt}
2-MMP	QSY-7	3.20×10^{15}	40.0	12.9	0.99	0.93

^{*a*} Overlap integral of the emission spectrum of the QSY-7-free conjugate **2-MMP** and the absorption spectrum of QSY-7 (acceptor).

^b Distance between the iridium(III) metal centre and centroid of QSY-7 in conjugate **2-MMP-**

QSY7.

Table S5 (Photo)cytotoxicity (IC50) of conjugate **2-MMP-QSY7** towards MDA-MB-231 and HEK-293 cells. Photocytotoxicity index (PI) = $IC_{50,drak}/IC_{50,light}$.

Cell line	IC _{50,dark} /μM	IC _{50,light} /µM	PI
MDA-MB-231	> 40	1.93 ± 0.18	> 20.7
НЕК-293	> 40	$\textbf{10.17} \pm \textbf{0.86}$	> 3.9

 Table S6 Cellular uptake of conjugate 2-MMP-QSY7.

Conjugate	Amount of iridium per cell/fmol ^a	
	MDA-MB-231	НЕК-293
2-MMP-QSY7	0.38 ± 0.03	0.03 ± 0.004

^a Amount of iridium associated with an average MDA-MB-231 or HEK-293 cell upon incubation

with the conjugate (10 μ M) at 37°C for 4 h, as determined by ICP-MS.

Fig. S1 Electronic absorption spectra of complexes 1 - 3 in CH₂Cl₂ (black) and CH₃CN (red) at 298 K.

Fig. S2 Normalised emission spectra of complexes $\mathbf{1} - \mathbf{3}$ in degassed CH₂Cl₂ (black) and CH₃CN (red) at 298 K and in alcohol glass at 77 K (blue) ($\lambda_{ex} = 350$ nm).

Fig. S3 HPLC chromatograms (λ_{abs} = 350 nm) of complexes **1** – **3** (100 µM) (black) and the reaction mixtures of complexes **1** – **3** (100 µM) and L-cysteine (L-Cys) (250 µM) in phosphatebuffered saline (PBS) (pH 7.4)/CH₃CN (9:1, *v*/*v*) containing tris(2-carboxyethyl) phosphine (TCEP) (100 µM) after incubation at 298 K for 4 h (red).

Fig. S4 ESI mass spectra of the eluent collected at $t_R = 20.2 \text{ min} (1-Cys)$, 18.2 min (2-Cys) and 20.9 min (3-Cys).

Fig. S5 ESI mass spectra of a mixture of complex **2** (100 μ M) and glutathione (250 μ M), histidine (250 μ M), lysine (250 μ M), serine (250 μ M), or threonine (250 μ M) in PBS (pH 7.4)/CH₃CN (9:1, *v*/*v*) after incubation at 37°C for 12 h.

Fig. S6 HPLC chromatograms (λ_{abs} = 350 nm) of conjugates **2-MMP** (t_R = 15.56 min), **2-MMP**-**QSY7** (t_R = 15.83 min) and **2-VPMS** (t_R = 14.12 min).

Fig. S7 ESI mass spectra of purified conjugates **2-MMP**, **2-MMP-QSY7** and **2-VPMS** in CH₃OH at 298 K.

Fig. S8 Spectral overlap of the absorption spectrum of the acceptor QSY-7 (black) and normalised emission spectrum of the donor conjugate **2-MMP** (red) in H_2O/CH_3CN (1:1, v/v) at 298 K.

Fig. S9 HPLC chromatograms (λ_{abs} = 350 and 560 nm) of (a) conjugate **2-MMP-QSY7** (5 µM) before (black) and after (red) incubation with matrix metalloproteinase (MMP)-2 (0.002 mg mL⁻¹ in PBS) in aerated MMP reaction buffer/DMSO (99:1, *v*/*v*) at 37°C for 12 h. ESI mass spectra of cleavage products (b) **2-CVPMS** and (c) MRGGK-QSY7.

Fig. S10 (a) SEM image and (b) EDS images and spectrum of Gel-1. Scale bar = 100 μ m.

Fig. S11 Photographs of (a) **Gel-1** ([Ir] = 80 μ M, 100 μ L) and (b) **Gel-2** ([Ir] = 40 μ M, 100 μ L) upon addition of Dulbecco's Modified Eagle Medium (DMEM) (150 μ L) and incubation for 24, 48 and 72 h.

Fig. S12 Optical microscopy images of MDA-MB-231 cells encapsulated by Gel-1 ([Ir] = 40 μ M, 100 μ L) at different focal lengths.

Fig. S13 Analysis of live/dead MDA-MB-231 and HEK-293 cells using Calcein-AM (1 μ M, 30 min; $\lambda_{ex} = 488$ nm, $\lambda_{em} = 510 - 540$ nm) and propidium iodide (PI) (3 μ M, 30 min; $\lambda_{ex} = 532$ nm, $\lambda_{em} = 610 - 640$ nm). The cells were encapsulated by **Gel-1** ([Ir] = 40 μ M) for 72 h. Scale bar = 100 μ m.

Fig. S14 Laser-scanning confocal microscopy (LSCM) images of MDA-MB-231 cells encapsulated by **Gel-1** ([Ir] = 40 μ M; λ_{ex} = 405 nm, λ_{em} = 570 – 620 nm) at 0, 6 and 18 h at 37°C. Scale bar = 20 μ m.

Fig. S15 (a) SEM image and (b) EDS images and spectrum of Gel-2. Scale bar = 100 μ m.

Fig. S16 Intracellular reactive oxygen species (ROS) levels of **Gel-2** ([Ir] = 80 μ M, 24 h)pretreated MDA-MB-231 cells incubated with chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H₂DCFDA) (10 μ M, 30 min; λ_{ex} = 488 nm, λ_{em} = 500 – 550 nm) without (left) or with (right) photoirradiation at 450 nm (15 mW cm⁻²) for 30 min. Scale bar = 100 μ m.

Fig. S17 ¹H NMR spectrum of the ligand bpy-CBT in (CD₃)₂SO at 298 K.

Fig. S18 ¹H NMR spectrum of complex **1** in (CD₃)₂CO at 298 K.

Fig. S19 ¹³C NMR spectrum of complex 1 in (CD₃)₂SO at 298 K.

Fig. S20 HR-ESI mass spectrum of complex 1 in CH₃OH at 298 K.

Fig. S21 ¹H NMR spectrum of complex **2** in (CD₃)₂CO at 298 K.

Fig. S22 ¹³C NMR spectrum of complex 2 in (CD₃)₂SO at 298 K.

Fig. S23 HR-ESI mass spectrum of complex 2 in CH₃OH at 298 K.

Fig. S24 ¹H NMR spectrum of complex **3** in (CD₃)₂CO at 298 K.

Fig. S25 13 C NMR spectrum of complex 3 in (CD₃)₂SO at 298 K.

Fig. S26 HR-ESI mass spectrum of complex 3 in CH₃OH at 298 K.

Reference

1. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi and S. Tobita, *Phys. Chem. Chem. Phys.*, 2009, **11**, 9850–9860.