Electronic Supplementary Information (ESI) for:

Deep-ultraviolet sulfamate halides with halogen-centered secondary building units for enhanced optical anisotropy

Xuefei Wang, Qingwen Zhu, Yunseung Kuk, Hongheng Chen, Qi Wu,* Qun Jing* and Kang Min Ok*

Table of contents

Table S1. Crystallographic data of MX(NH ₃ SO ₃) (M = Rb, Cs; X = Cl, Br). 2
Table S2. Fractional atomic coordinates (×10 ⁴), equivalent isotropic displacement parameters
(Å ² ×10 ³) and bond valence sum (BVS) for the non-H atoms in MX(NH ₃ SO ₃) (M = Rb, Cs; X =
Cl, Br). U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor
Table S3. Selected bond lengths (Å) and angles (°) for RbCl(NH ₃ SO ₃)4
Table S4. Selected bond lengths (Å) and angles (°) for CsCl(NH ₃ SO ₃)5
Table S5. Selected bond lengths (Å) and angles (°) for RbBr(NH ₃ SO ₃)6
Table S6. Selected bond lengths (Å) and angles (°) for CsBr(NH ₃ SO ₃)7
Table S7. Hydrogen bonds for RbCl(NH ₃ SO ₃).
Table S8. Hydrogen bonds for CsCl(NH ₃ SO ₃).
Table S9. Hydrogen bonds for RbBr(NH ₃ SO ₃). 8
Table S10. Hydrogen bonds for CsBr(NH ₃ SO ₃). 8
Table S11. Weight and atomic ratios for $MX(NH_3SO_3)$ (M = Rb, Cs; X = Cl, Br) obtained from
SEM-EDX
Table S12. Calculated and experimental residual weight for $MX(NH_3SO_3)$ (M = Rb, Cs; X = Cl,
Br) at 800 °C in TGA9
Table S13. Assigned vibration peaks for $MX(NH_3SO_3)$ (M = Rb, Cs; X = Cl, Br)
Table S14. Comparison of the non- π -conjugated optical materials derivatives in the short-wave
UV region
Figure S1. Experimental and simulated PXRD patterns for $MX(NH_3SO_3)$ (M = Rb, Cs; X = Cl,
Br) 12
Figure S2. SEM-EDX for MX(NH ₃ SO ₃) (M = Rb, Cs; X = Cl, Br)13
Figure S3. (a) The asymmetric unit and (b) pseudo-doubled layer along the <i>ab</i> planes for
RbCl(NH ₃ SO ₃)
Figure S4. (a) The asymmetric unit for $CsCl(NH_3SO_3)$ and (b) the asymmetric unit for
RbBr(NH ₃ SO ₃) 14
Figure S5. The intersection angle of the (NH_3SO_3) tetrahedra in (a) $RbBr(NH_3SO_3)$ and (b)
CsBr(NH ₃ SO ₃)
Figure S6. TGA diagrams for $MX(NH_3SO_3)$ (M = Rb, Cs; X = Cl, Br)15
Figure S7. IR spectra for MX(NH ₃ SO ₃) (M = Rb, Cs; X = Cl, Br)15
Figure S8. Band structures of compounds for $MX(NH_3SO_3)$ (M = Rb, Cs; X = Cl, Br)16
References

	RbCl(NH ₃ SO ₃)	CsCl(NH ₃ SO ₃)	RbBr(NH ₃ SO ₃)	CsBr(NH ₃ SO ₃)
Formula weight	218.01	265.45	262.47	309.90
Temp/K	300.0	299.0	299.0	300.0
Crystal system	monoclinic	monoclinic	orthorhombic	orthorhombic
Space group	P2 ₁ /m	<i>P</i> 2 ₁ / <i>m</i>	Pnma	Pnma
a/Å	4.7178(5)	7.100(2)	13.292(3)	13.9270(9)
b/Å	6.1824(6)	5.5448(17)	5.7921(9)	5.7869(4)
c/Å	9.8402(10)	7.915(3)	7.6673(18)	7.9082(5)
α/°	90	90	90	90
β/°	91.718(3)	102.466(10)	90	90
γ/°	90	90	90	90
V/Å ³	286.88(5)	304.25(17)	590.3(2)	637.35(7)
Ζ	2	2	4	4
$ ho_{ m calc} m g/cm^3$	2.524	2.898	2.953	3.230
µ/mm⁻¹	9.362	6.777	15.417	12.320
<i>F</i> (000)	208.0	244.0	488.0	559.1
Crivital aiza/mm ³	0.259 × 0.143 ×	0.252 × 0.111 ×	0.140 × 0.115 ×	0.189 × 0.124 ×
Crystal size/mm	0.108	0.093	0.096	0.102
2 theta range/°	7.786 to 60.93	5.27 to 60.946	6.13 to 60.964	5.86 to 60.98
	-6 ≤ h ≤ 6	-10 ≤ h ≤ 10	-18 ≤ h ≤ 18	-19 ≤ h ≤ 16
Index ranges	-8 ≤ k ≤ 8	-7 ≤ k ≤ 7	-7 ≤ k ≤ 4	-8 ≤ k ≤ 8
	-14 ≤ ≤ 14	-11 ≤ ≤ 11	-10 ≤ I ≤ 10	-11 ≤ I ≤ 11
Refins collected	5991	7769	5974	10301
Indonondont rofing	936	1010	934	1049
independent reims	$(R_{\rm int} = 0.0382)$	$(R_{\rm int} = 0.0374)$	$(R_{\rm int} = 0.0538)$	$(R_{\rm int} = 0.0781)$
Data/restraints/para m	936/2/47	1010/2/45	934/2/48	1049/2/47
Goof on F ²	1.106	1.253	1.053	1.228
R₁ª/wR₂ ^b [l≥2σ (l)]	0.0201/0.0401	0.0198/0.0384	0.0323/0.0768	0.0491/0.0847
R_1^{a}/wR_2^{b} [all data]	0.0250/0.0410	0.0234/0.0520	0.0543/0.0823	0.0589/0.0875
Largest diff peak/hole / e Å ⁻³	0.44/-0.50	0.63/-0.73	0.77/-0.78	1.33/-1.90

Table S1. Crystallographic data of $MX(NH_3SO_3)$ (M = Rb.	Cs: X = Cl. Br)
	00,70 01,017

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{o}||/\Sigma |F_{o}|. {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{o}^{2})^{2} / \Sigma w F_{o}^{4}]^{1/2}$

, ,			0	9						
Atom	x	У	Z	U(eq)	BVS					
	RbCl(NH ₃ SO ₃)									
Rb1	3030.4(5)	2500	8283.0(3)	26.2(1)	0.99					
CI1	7879.7(14)	2500	5742.7(6)	26.50(15)	0.24					
S1	8797.5(12)	7500	8155.7(6)	18.04(13)	5.89					
O1	7792(3)	5541(2)	8756.6(13)	27.6(3)	1.96					
O2	11760(4)	7500	7850.5(19)	30.1(4)	1.81					
N1	7173(5)	7500	6523(2)	21.6(4)	0.90					
		CsCl(I	NH ₃ SO ₃)							
Cs1	6170.5(4)	12500	8266.3(4)	24.94(9)	1.09					
CI1	1333.4(17)	2500	9124.5(16)	28.0(2)	0.40					
S1	2645.6(16)	7500	6173.5(14)	20.1(2)	5.88					
O1	4134(5)	7500	7719(4)	26.6(7)	2.09					
O2	2478(4)	5311(5)	5184(3)	31.7(5)	1.80					
N1	547(6)	7500	7037(5)	24.3(8)	0.88					
		RbBr(l	NH ₃ SO ₃)							
Rb1	4236.7(5)	2500	1122.2(8)	30.5(2)	0.79					
Br1	1978.9(5)	2500	3992.3(8)	26.1(2)	0.43					
S1	3617.0(11)	7500	4357.0(18)	19.8(3)	5.79					
O1	2867(3)	7500	3009(6)	27.5(10)	1.66					
O2	3692(2)	5409(5)	5369(4)	28.5(7)	1.64					
N1	4750(4)	7500	3125(7)	22.2(10)	1.22					
		CsBr(l	NH ₃ SO ₃)							
Cs1	1965.5(4)	2500	4013.3(6)	22.59(18)	1.08					
Br1	4241.8(7)	2500	1121.9(10)	26.6(2)	0.37					
S1	3696.4(14)	7500	4377(2)	17.7(4)	5.91					
O1	3790(3)	5407(7)	5344(5)	27.0(9)	1.85					
O2	2936(4)	7500	3139(7)	27.9(13)	1.94					
N1	4729(5)	7500	3090(8)	19.8(13)	0.97					

Table S2. Fractional atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å²×10³) and bond valence sum (BVS) for the non-H atoms in MX(NH₃SO₃) (M = Rb, Cs; X = Cl, Br). U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Table S3. Selected bo	nd lengths (Å	Å) and angles () for RbCl($NH_3SO_3)$
		/	, , ,	J J J J J J J J J J J J J J J J J J J

	0 ()	() = (0 = 0)	
Rb1-Cl1	3.4388(7)	O1 ⁶ -Rb1-O1 ³	162.18(5)
Rb1-Cl1 ³	3.4336(7)	O1 ⁶ -Rb1-O1 ⁴	74.16(4)
Rb1-O1 ⁴	3.1891(14)	O1 ⁵ -Rb1-O1 ⁴	61.38(4)
Rb1-O1 ³	3.1513(14)	O1 ⁶ -Rb1-O1 ⁵	101.12(4)
Rb1-O1 ⁵	3.1513(14)	O1-Rb1-O1 ²	74.16(4)
Rb1-O1 ⁶	2.9556(13)	O1 ² -Rb1-O1 ⁴	44.63(5)
Rb1-O1 ²	3.1891(14)	O1 ³ -Rb1-O1 ⁴	88.52(2)
Rb1-O1	2.9556(13)	O1 ⁵ -Rb1-O1 ³	73.27(5)
Rb1-O2 ³	3.1750(5)	O1 ⁶ -Rb1-O1	79.02(5)
Rb1-O2 ¹	3.1750(5)	O1 ⁵ -Rb1-O2 ¹	45.02(4)
S1-O1	1.4345(13)	O1 ³ -Rb1-O2 ³	45.02(4)
S1-O1 ⁷	1.4345(13)	O1-Rb1-O2 ¹	141.27(4)
S1-O2	1.4383(19)	O1 ⁶ -Rb1-O2 ³	141.27(4)
S1-N1	1.759(2)	O1 ³ -Rb1-O2 ¹	117.07(4)
CI1 ³ -Rb1-CI1	86.705(17)	O1-Rb1-O2 ³	62.69(4)
O1⁵-Rb1-Cl1	130.49(2)	O1 ⁵ -Rb1-O2 ³	117.07(4)
O1-Rb1-Cl1	66.15(3)	O1 ⁶ -Rb1-O2 ¹	62.69(4)
O1 ⁴ -Rb1-Cl1 ³	124.21(3)	O2 ¹ -Rb1-Cl1 ³	77.04(3)
O16-Rb1-Cl13	129.25(3)	O2 ³ -Rb1-Cl1 ³	77.04(3)
O1 ⁴ -Rb1-Cl1	139.98(3)	O2 ³ -Rb1-Cl1	91.70(4)
O1 ³ -Rb1-Cl1 ³	64.31(2)	O2 ¹ -Rb1-Cl1	91.70(4)
O1-Rb1-Cl1 ³	129.25(3)	O2 ¹ -Rb1-O1 ⁴	74.05(4)
O1 ² -Rb1-Cl1 ³	124.21(3)	O2 ³ -Rb1-O1 ²	74.05(4)
O1 ² -Rb1-Cl1	139.98(3)	O2 ³ -Rb1-O1 ⁴	117.68(4)
O1 ⁶ -Rb1-Cl1	66.15(3)	O2 ¹ -Rb1-O1 ²	117.68(4)
O1 ⁵ -Rb1-Cl1 ³	64.31(2)	O2 ³ -Rb1-O2 ¹	153.61(6)
O1 ³ -Rb1-Cl1	130.49(2)	O1 ⁸ -S1-O1	115.15(12)
O1-Rb1-O1⁵	162.18(5)	O1 ⁸ -S1-O2	114.94(7)
O1 ⁶ -Rb1-O1 ²	102.13(3)	01-S1-O2	114.94(7)
O1 ³ -Rb1-O1 ²	61.38(4)	01-S1-N1	103.65(7)
01-Rb1-01 ⁴	102.13(3)	O1 ⁸ -S1-N1	103.65(7)
O1-Rb1-O1 ³	101.12(4)	O2-S1-N1	102.05(11)
O1 ⁵ -Rb1-O1 ²	88.52(2)		

¹-1+*x*, -1+*y*, +*z*; ²1-*x*, 1-*y*, 2-*z*; ³-1+*x*, +*y*, +*z*; ⁴1-*x*, -1/2+*y*, 2-*z*; ⁵-1+*x*,1/2-*y*,+*Z*; ⁶+*x*, 1/2-*y*, +*z*; ⁷+*x*, 3/2-*y*, +*z*; ⁸+*x*, 3/2-*y*, +*z*

Table S4. Selected bond lengths (A	\dot{A}) and angles (°) for CsCl(NH ₃ SO ₃).
------------------------------------	--

	5 () 5	() = - (0 - 0)	
Cs1-O2 ¹	3.314(3)	O2 ⁶ -Cs1-O2 ⁵	84.04(5)
Cs1-Cl1 ²	3.6759(11)	O2 ¹ -Cs1-O2 ⁷	84.04(5)
Cs1-Cl1 ³	3.5808(17)	O2 ¹ -Cs1-O2 ⁵	64.73(7)
Cs1-Cl1 ⁴	3.6759(11)	O27-Cs1-O27	64.73(7)
Cs1-Cl1 ⁵	3.6418(16)	O26-Cs1-O21	42.96(9)
Cs1-O2 ⁵	3.534(3)	O1 ⁴ -Cs1-Cl1 ⁴	64.78(4)
Cs1-O2 ⁶	3.314(3)	O1 ⁴ -Cs1-Cl1 ²	64.78(4)
Cs1-O27	3.534(3)	O1 ⁵ -Cs1-Cl1 ²	154.54(7)
Cs1-O1	3.1135(17)	O1 ⁴ -Cs1-Cl1 ³	95.54(6)
Cs1-O1 ⁵	3.1135(17)	O1 ⁴ -Cs1-Cl1 ⁵	63.29(6)
Cs1-O1 ⁴	3.232(4)	O1 ⁵ -Cs1-Cl1 ⁵	66.28(6)
S1-O2 ⁷	1.435(2)	O1-Cs1-Cl13	116.87(6)
S1-O2	1.435(2)	O1 ⁵ -Cs1-Cl1 ³	116.87(6)
S1-O1	1.433(3)	O1 ⁵ -Cs1-Cl1 ⁴	63.88(6)
S1-N1	1.768(4)	O1-Cs1-Cl1 ⁴	154.54(7)
CI1 ⁵ -Cs1-CI1 ⁴	104.77(2)	O1-Cs1-Cl1 ²	63.88(6)
CI1 ⁴ -Cs1-CI1 ²	104.77(2)	O1-Cs1-Cl1 ⁵	66.28(6)
CI1 ³ -Cs1-CI1 ²	62.86(2)	O1 ⁵ -Cs1-O2 ⁶	114.81(8)
CI1 ⁴ -Cs1-CI1 ²	97.91(4)	O1 ⁵ -Cs1-O2 ⁷	92.50(7)
CI1 ³ -Cs1-CI1 ⁵	158.83(4)	01-Cs1-O2 ⁷	42.12(7)
CI1 ³ -Cs1-CI1 ⁴	62.86(2)	O1 ⁵ -Cs1-O2 ⁵	42.12(7)
O2 ⁵ -Cs1-Cl1 ⁴	104.54(5)	O1-Cs1-O21	114.81(8)
O27-Cs1-Cl12	104.54(5)	O1 ⁵ -Cs1-O2 ¹	76.55(8)
O2 ⁶ -Cs1-Cl1 ⁵	127.31(5)	O1-Cs1-O2 ⁶	76.55(8)
O2 ⁶ -Cs1-Cl1 ³	71.93(5)	O1 ⁴ -Cs1-O2 ⁷	118.80(7)
O2 ⁵ -Cs1-Cl1 ²	156.38(4)	O1 ⁴ -Cs1-O2 ⁵	118.80(7)
O2 ⁷ -Cs1-Cl1 ⁵	62.61(5)	O1 ⁴ -Cs1-O2 ¹	154.57(5)
O27-Cs1-Cl13	135.01(5)	O1-Cs1-O2 ⁵	92.50(7)
O2 ¹ -Cs1-Cl1 ⁵	127.31(5)	O1 ⁴ -Cs1-O2 ⁶	154.57(5)
O2 ⁵ -Cs1-Cl1 ⁵	62.61(5)	O1-Cs1-O1⁵	125.86(11)
O2 ⁷ -Cs1-Cl1 ⁴	156.38(4)	O1 ⁵ -Cs1-O1 ⁴	90.53(7)
O2 ⁶ -Cs1-Cl1 ⁴	123.30(5)	O1-Cs1-O1 ⁴	90.53(7)
O2 ¹ -Cs1-Cl1 ⁴	89.81(5)	O2-S1-O2 ⁷	115.5(2)
O2 ⁶ -Cs1-Cl1 ²	89.81(5)	O2 ⁷ -S1-N1	103.50(13)
O2 ¹ -Cs1-Cl1 ³	71.93(5)	O2-S1-N1	103.50(13)
O2 ⁵ -Cs1-Cl1 ³	135.01(5)	01-S1-O2	115.12(12)
O21-Cs1-Cl12	123.30(5)	01-S1-02 ⁷	115.12(13)
02 ⁷ -Cs1-O2 ⁵	52.34(8)	01-S1-N1	101.4(2)

¹1-*x*, 2-*y*, 1-*z*; ²1-*x*, 1-*y*, 2-*z*; ³1+*x*, 1+*y*, +*z*; ⁴1-*x*, 2-*y*, 2-*z*; ⁵+*x*, 1+*y*, +*z*; ⁶1-*x*, 1/2+*y*, 1-*z*; ⁷+*x*, 3/2-*y*, +*z*; ⁸+*x*, -1+*y*, +*z*; ⁹-1+*x*, -1+*y*, +*z*

	0 ()	() ()	
Br1-Rb1 ¹	3.6460(13)	N1-Rb1-Br1 ⁷	78.90(10)
Br1-Rb1 ²	3.6965(7)	N1-Rb1-Br1 ⁸	67.29(8)
Br1-Rb1 ³	3.6965(7)	N1 ¹¹ -Rb1-Br1 ⁷	78.89(10)
Br1-Rb1	3.7213(11)	N1 ¹⁰ -Rb1-Br1 ⁷	66.15(9)
Rb1-N1⁵	3.348(3)	N1 ¹¹ -Rb1-Br1	83.86(9)
Rb1-N1	3.348(3)	N1-Rb1-Br1	83.86(9)
Rb1-N1 ⁴	3.524(5)	N1 ¹¹ -Rb1-Br1 ⁹	67.29(8)
S1-O1	1.436(4)	N1 ¹¹ -Rb1-Br1 ⁸	165.77(10)
S1-O2	1.442(3)	N1 ¹⁰ -Rb1-Br1 ⁹	76.05(6)
S1-O2 ⁶	1.442(3)	N1 ¹⁰ -Rb1-Br1	148.73(9)
S1-N1	1.778(6)	N1-Rb1-N1 ¹¹	119.76(16)
Br1 ⁷ -Rb1-Br1 ⁸	115.235(16)	N1 ¹¹ -Rb1-N1 ¹⁰	110.24(9)
Br1 ⁷ -Rb1-Br1 ⁹	115.235(16)	N1-Rb1-N1 ¹⁰	110.24(9)
Br1 ⁸ -Rb1-Br1	84.765(17)	01-S1-O2 ¹²	115.82(15)
Br1 ⁷ -Rb1-Br1	145.13(2)	01-S1-O2	115.82(15)
Br1 ⁸ -Rb1-Br1 ⁹	103.15(3)	01-S1-N1	101.9(3)
Br1 ⁹ -Rb1-Br1	84.765(17)	02-S1-O2 ¹²	114.3(3)
N1-Rb1-Br1 ⁹	165.77(10)	02-S1-N1	103.13(16)
N1 ¹⁰ -Rb1-Br1 ⁸	76.05(6)	O2 ¹² -S1-N1	103.13(16)

Table S5. Selected bond lengths (Å) and angles (°) for RbBr(NH₃SO₃).

¹-1/2+*x*, +*y*, 1/2-*z*; ²1/2-*x*, 1-*y*, 1/2+*z*; ³1/2-*x*, 1-*y*, 1/2+*z*; ⁴1-*x*, 1-*y*, -*z*; ⁵+*x*, -1+*y*, +*z*; ⁶+*x*, 3/2-*y*, +*z*; ⁷1/2+*x*, +*y*, 1/2-*z*; ⁸1/2-*x*, 1-*y*, -1/2+*z*; ⁹1/2-*x*, -*y*, -1/2+*z*; ¹⁰1-*x*, 1-*y*, -*z*; ¹¹+*x*, -1+*y*, +*z*; ¹²+*x*, 3/2-*y*, +*z*

Table S6.	Selected	bond le	ngths (Å)	and and	gles (°	') for	CsBr(NH ₃ SO	3)
			<u> </u>				<i>,</i>			~,

	3 ()	() ()	
Cs1-Br1 ¹	3.7390(7)	O1-Cs1-O1 ¹³	136.59(11)
Cs1-Br1 ²	3.7390(7)	01-Cs1-01 ¹¹	110.20(8)
Cs1-S1 ³	3.7809(18)	O1 ¹² -Cs1-O2	101.83(12)
Cs1-S1 ⁴	3.7769(13)	O1 ¹² -Cs1-O2 ¹⁰	44.03(12)
Cs1-S1	3.7770(13)	O1-Cs1-O2	44.03(12)
Cs1-O1 ⁵	3.316(4)	O1 ¹² -Cs1-O2 ⁸	68.95(11)
Cs1-O1	3.224(4)	O1-Cs1-O2 ¹⁰	101.83(12)
Cs1-O1 ⁶	3.224(4)	O1-Cs1-O2 ⁸	68.95(11)
Cs1-O1 ³	3.316(4)	O2-Cs1-Br1 ⁸	66.11(9)
Cs1-O2 ²	3.266(6)	O2 ⁸ -Cs1-Br1 ⁸	64.74(5)
Cs1-O2	3.268(3)	O2 ¹⁰ -Cs1-Br1 ⁹	66.11(9)
Cs1-O2 ⁴	3.268(3)	O2-Cs1-Br1 ⁹	164.93(10)
S1-O1	1.439(4)	O2 ⁸ -Cs1-Br1 ⁹	64.74(5)
S1-O1 ⁷	1.439(4)	O2-Cs1-O1 ¹¹	67.84(13)
S1-O2	1.442(6)	O2 ¹⁰ -Cs1-O1 ¹³	67.84(13)
S1-N1	1.761(7)	O2 ¹⁰ -Cs1-O1 ¹¹	105.65(12)
Br1 ⁸ -Cs1-Br1 ⁹	101.40(2)	O28-Cs1-O111	152.58(10)
O1 ¹² -Cs1-Br1 ⁹	78.76(8)	O2-Cs1-O1 ¹³	105.65(12)
O1-Cs1-Br1 ⁸	78.76(8)	O28-Cs1-O113	152.58(10)
O1 ¹¹ -Cs1-Br1 ⁸	87.99(7)	O2 ¹⁰ -Cs1-O2	124.63(18)
O1 ¹³ -Cs1-Br1 ⁸	122.02(8)	O28-Cs1-O211	101.18(10)
O1 ¹² -Cs1-Br1 ⁸	127.78(7)	O2 ⁸ -Cs1-O2	101.18(10)
O1 ¹³ -Cs1-Br1 ⁹	87.99(7)	O1 ¹⁴ -S1-O1	114.7(4)
O1-Cs1-Br1 ⁹	127.78(7)	01-S1-O2	115.3(2)
O1 ¹¹ -Cs1-Br1 ⁹	122.02(8)	O1 ¹⁴ -S1-O2	115.3(2)
O1 ¹³ -Cs1-O1 ¹¹	42.85(14)	O1 ¹⁴ -S1-N1	103.5(2)
O1 ¹² -Cs1-O1 ¹³	110.20(8)	O1-S1-N1	103.5(2)
01-Cs1-01 ¹²	62.90(14)	O2-S1-N1	102.0(3)
O1 ¹² -Cs1-O1 ¹¹	136.59(11)		

¹1/2-*x*, -*y*, 1/2+*z*; ²1/2-*x*, 1-*y*, 1/2+*z*; ³1/2-*x*, 1-*y*, -1/2+*z*; ⁴+*x*, -1+*y*, +*z*; ⁵1/2-*x*, -1/2+*y*, -1/2+*z*; ⁶+*x*, 1/2-*y*, +*z*; ⁷+*x*, 3/2-*y*, +*z*; ⁸1/2-*x*, 1-*y*, 1/2+*z*; ⁹1/2-*x*, -*y*, 1/2+*z*; ¹⁰+*x*, -1+*y*, +*z*; ¹¹1/2-*x*, 1-*y*, -1/2+*z*; ¹²+*x*, 1/2-*y*, +*z*; ¹³1/2-*x*, -1/2+*y*, -1/2+*z*; ¹⁴+*x*, 3/2-*y*, +*z*

Table S7. Hydrogen bonds for RbCl(NH₃SO₃).

D-HA	<i>d</i> _{D-H} (Å)	d _{H-A} (Å)	<i>d</i> _{D-A} (Å)
N1-H1A-Cl1 ¹	0.848(15)	2.420(16)	3.2049(7)
N1-H1B-Cl1 ²	0.842(18)	2.72(3)	3.214(2)
N1-H1B-O2 ³	0.842(18)	2.15(2)	2.903(3)

¹+*x*, 1+*y*, +*z*; ²1-*x*, 1-*y*, 1-*z*; ³-1+*x*, +*y*, +*z*

Table S8. Hydrogen bonds for CsCl(NH₃SO₃).

D-HA	<i>d</i> _{D-H} (Å)	d _{H-A} (Å)	d _{D-A} (Å)
N1-H1A-Cl1 ¹	0.826(18)	2.42(2)	3.214(2)
N1-H1B-O2 ²	0.871(19)	2.234(16)	2.916(4)
N1-H1B-O2 ³	0.871(19)	2.234(16)	2.916(4)

¹+*x*, 1+*y*, +*z*; ²-*x*, 1-*y*, 1-*z*; ³-*x*, 1/2+*y*, 1-*z*

Table S9. Hydrogen bonds for RbBr(NH₃SO₃).

D-HA	d _{D-H} (Å)	d _{H-A} (Å)	d _{D-A} (Å)
N1-H1A-O2 ¹	0.84(2)	2.289(18)	2.908(5)
N1-H1B-Br1 ²	0.870(18)	3.57(4)	3.914(6)

¹1-*x*, 1-*y*, 1-*z*; ²1/2-*x*, 1-*y*, -1/2+*z*

Table S10. Hydrogen bonds for CsBr(NH₃SO₃).

D-HA	d _{D-H} (Å)	d _{H-A} (Å)	d _{D-A} (Å)
N1-H1A-Br1 ¹	0.853(19)	2.55(3)	3.355(3)
N1-H1B-O1 ²	0.84(2)	2.299(18)	2.936(7)
N1-H1B-O1 ³	0.84(2)	2.299(18)	2.936(7)

¹+*x*, 1+*y*, +*z*; ²1-*x*, 1-*y*, 1-*z*; ³1-*x*, 1/2+*y*, 1-*z*

	RbCl(NH₃SO₃)	CsCl	(NH ₃ SO ₃)	RbBr	(NH ₃ SO ₃	CsBr	(NH ₃ SO ₃)
Element	Wt %	Atomic	Wt %	Atomic %	Wt %	Atomic	Wt %	Atomic
		%				%		%
Rb	38.24	12.79	/	/	28.81	11.47	/	/
Cs	/	/	39.30	8.43	/	/	37.41	9.87
CI	15.23	12.28	10.93	8.79	/	/	/	/
Br	/	/	/	/	30.92	13.16	22.56	9.90
0	25.79	46.07	29.17	52.02	20.84	44.32	22.46	49.24
S	11.73	10.46	9.76	8.69	11.80	12.52	9.24	10.11
Ν	9.01	18.40	10.84	22.07	7.63	18.53	8.33	20.87
Total		100		100		100		100

Table S11. Weight and atomic ratios for $MX(NH_3SO_3)$ (M = Rb, Cs; X = Cl, Br) obtained from SEM-EDX.

Table S12. Calculated and experimental residual weight for $MX(NH_3SO_3)$ (M = Rb, Cs; X = Cl, Br) at 800 °C in TGA.

Compound	Cal. (%)	Exp. (%)
RbCl(NH ₃ SO ₃)	61.24	68.41
CsCI(NH ₃ SO ₃)	68.30	73.01
RbBr(NH ₃ SO ₃)	50.86	58.12
CsBr(NH ₃ SO ₃)	58.41	61.97

Table S13. Assigned vibration peaks for MX(NH₃SO₃) (M = Rb, Cs; X = Cl, Br).

		RbCl(NH ₃ SO ₃)	CsCl(NH ₃ SO ₃)	RbBr(NH ₃ SO ₃)	CsBr(NH ₃ SO ₃)
Functional group	Vibration type		Wavenum	nber (cm ⁻¹)	
NH ₃	stretching	3166	3161	3202	3207
NH ₃	Wagging	2436	2432		
NH ₃	bending	1425	1424	1410	1414
SO3	Antisymmet ric and symmetric stretching	1265 1060 978 691	1273 1063 987 704	1260 1067 990 694	1249 1061 1002 680

	Compound	Space	Cut-off edge	Birefringence	
1	RbCl(NH ₃ SO ₃)	P2 ₁ /m	185	0.069 @ 546 nmª	This work
2	CsCl(NH ₃ SO ₃)	P2 ₁ /m	185	0.073 @ 546 nmª	This work
3	RbBr(NH ₃ SO ₃)	Pnma	193	0.072 @ 546 nmª	This work
4	CsBr(NH ₃ SO ₃)	Pnma	195	0.075 @ 546 nmª	This work
			Phosphates		
5	NaBaAl(PO ₄) ₂	P21/c	<190	0.005 @ 589 nmª	[1]
6	Na ₂ Ca ₁₇ Al ₂ (PO ₄) ₁₄	R3c	179	0.012 @ 1064 nm⁵	[2]
7	Mg ₂ PO ₄ CI	Pna2 ₁	<190	0.046 @ 1064 nm⁵	[3]
8	$K_2SrP_4O_{12}$	<i>I</i> Ā	<200	0.016 @ 1064 nm⁵	[4]
9	LiRb ₂ PO ₄	$Cmc2_1$	<170	0.009 @ 1064 nm⁵	[5]
10	LiCs ₂ PO ₄	$Cmc2_1$	174	0.010 @ 1064 nm ^ь	[6]
11	KMg(H ₂ O)PO ₄	$Pmn2_1$	<200	0.017 @ 1064 nm⁵	[7]
12	KH ₂ PO ₄	l ⁴ 2d	180	0.035 @ 1064 nmª	[8]
13	NaBa ₂ Al(P ₂ O ₇) ₂	PĪ	<190	0.007 @ 589 nmª	[1]
14	$K_4Mg_4(P_2O_7)_3$	Pc	170	0.0108 @ 1064 nmª	[9]
15	RbNaMgP ₂ O ₇	Pna2 ₁ /Cmc2 ₁	185	0.035 @1064 nm ^ь	[10]
16	β -Cd(PO ₃) ₂	P212121	<190	0.059 @ 1064 nm⁵	[11]
17	La(PO ₃) ₃	C222 ₁	<190	0.040 @ 1064 nm⁵	[11]
18	CsLa(PO ₃) ₄	P 2 ₁	167	0.006 @ 1064 nm⁵	[12]
19	RbBa ₂ (PO ₃) ₅	Pc	163	0.009 @ 1064 nm⁵	[13]
20	KLa(PO ₃) ₄	<i>P</i> 2 ₁	163	0.0084 @ 1064 nm ^ь	[14]
21	Ba ₃ P ₃ O ₁₀ Cl	Pca2₁	180	0.028 @ 1064 nm⁵	[15]
22	Ba ₃ P ₃ O ₁₀ Br	P212121	<200	0.023 @ 1064 nm⁵	[15]
23	LiHgPO ₄	P4 ₂ /m	<300	0.0068 @ 1064 nm ^ь	[16]
24	K ₂ TeP ₂ O ₈	P212121	270	0.05 @ 1064 nm ^ь	[18]
25	CsMgPO ₄ ·6H ₂ O	P6 ₃ /mmc	258	0.006 @ 1064 nm⁵	[18]
26	RbMgPO ₄ ·6H ₂ O	$Pmn2_1$	288	0.005 @ 1064 nm⁵	[18]
			Sulfates		
27	Li ₈ NaRb ₃ (SO ₄) ₆ ·2H ₂ O	C2	<190	0.021 @ 1064 nmª	[19]
28	NH ₄ NaLi ₂ (SO ₄) ₂	C2	<186	0.008 @ 1064 nm ^b	[20]
29	La(NH ₄)(SO ₄) ₂	$Pmn2_1$	<190	0.03 @1064 nm ^ь	[21]
30	LiKSO ₄	$P6_{3}$	160	0.03 @ 1064 nm⁵	[22]
31	$LiN_2H_5SO_4$	Pna2 ₁	<190	0.0126 @1064 nm⁵	[23]
32	$K_2Zn_3(SO_4)(HSO_4)_2F_4$	Cmc2 ₁	<200	0.01268 @ 546 nmª	[24]
33	KZnSO₄F	Pna21	<190	0.022 @ 550 nm ^b	[25]
34	KMgSO₄F	Pna2 ₁	170	0.012 @ 550 nm⁵	[26]
35	KSO₃CF₃	<i>P</i> 2 ₁	156	0.017 @ 1064 nm ^ь	[27]
36	a-RbSO $_3CF_3$	Ст	<200	0.035 @ 1064 nm⁵	[28]

Table S14. Comparison of the non- π -conjugated optical materials derivatives in the short-wave UV region.

37	β -RbSO ₃ CF ₃	<i>P</i> 2 ₁	<200	0.034 @ 1064 nm ^b	[28]
38	$CsSO_3CF_3$	P 2 ₁	<200	0.027 @ 1064 nm ^b	[29]
39	KYSO ₄ F ₂	<i>P</i> 2₁/ <i>m</i>	<190	0.015 @ 546.1 nmª	[30]
40	$RbYSO_4F_2$	<i>P</i> 2₁/ <i>m</i>	<190	0.02 @ 546.1 nmª	[30]
41	(NH ₄) ₂ BeS ₂ O ₈	l42d	<200	0.019 @ 546.1 nmª	[31]
42	K ₂ BeS ₂ O ₈	l ⁴ 2d	<200	0.024 @ 546.1 nmª	[31]
43	Rb ₂ BeS ₂ O ₈	l ⁴ 2d	<200	0.024 @ 546.1 nmª	[31]
44	$Cs_2BeS_2O_8$	l ⁷ 42d	<200	0.013 @ 546.1 nmª	[31]
45	Li ₂ SO ₄ ·H ₂ O	P 2 ₁	240	0.023 @ 1064 nm⁵	[32]
46	K ₂ Bi ₂ (SO ₄) ₂ Cl ₄	P 2 ₁ 2 ₁ 2 ₁	278	0.056 @ 1064 nm⁵	[33]
47	(NH ₄₎₂ Bi ₂ (SO ₄) ₂ C _{l4}	P 2 ₁ 2 ₁ 2 ₁	273	0.055 @ 1064 nm⁵	[33]
48	Rb ₂ Bi ₂ (SO ₄) ₂ Cl ₄	P 2 ₁ 2 ₁ 2 ₁	276	0.047 @ 1064 nm ^ь	[33]
49	Rb ₃ In(SO ₄) ₃	R3c	215	0.019 @ 1064 nm ^ь	[34]
50	$Sb_6O_7(SO_4)_2$	Ccc2	286	0.052 @ 1064 nm ^b	[35]
51	CsY(SO ₄) ₂ ·4H ₂ O	P21/c	200	0.045 @ 546 nm⁵	[36]
52	NaRbY ₂ (SO ₄) ₄	C2/c	200	0.045 @ 550 nmª	[37]
53	NaBi(SO ₄) ₂ ·H ₂ O	P3 ₂ 2 ₁	280	0.068 @ 546 nmª	[38]
54	$ZrF_2(SO_4)$	Pca2₁	206	0.052 @ 1064 nmª	[39]
55	(NH ₄) ₂ S ₂ O ₃	C2	238	0.077 @ 546 nmª	[40]
		5	Sulfamates		
56	Pb(NH ₂ SO ₃) ₂ ·H ₂ O	P2 ₁ /c	226	0.032 @ 1064 nm ^b	[41]
57	Pb(NH ₂ SO ₃) ₂	P2 ₁ /c	208	0.023 @ 1064 nm ^b	[41]
58	Ca(NH ₂ SO ₃) ₂ ·4H ₂ O	C2/c	<200	0.025 @ 1064 nm ^b	[41]
59	Ca(NH ₂ SO ₃) ₂ ·H ₂ O	$P2_{1}2_{1}2_{1}$	<200	0.033 @ 1064 nm ^b	[41]
60	$Cs_2Mg(NH_2SO_3)_4 \cdot 4H_2O$	Cm	<180	0.054 @ 546.1 nmª	[42]
61	K ₂ Ca(NH ₂ SO ₃) ₄	PĪ	<200	0.035 @ 523 nm⁵	[42]
62	Rb ₂ Ca(NH ₂ SO ₃) ₄	PÌ	<200	0.036 @ 523 nm⁵	[42]
63	$Cd(NH_2SO_3)_2 \cdot 2H_2O$	PÌ	212	0.052 @ 1064 nm ^b	[43]
64	Cd(NH ₂ SO ₃) ₂	$P2_{1}2_{1}2_{1}$	210	0.037 @ 1064 nm ^b	[43]
65	Ba(SO ₃ NH ₂) ₂	Pna2 ₁	<190	0.028 @ 546.1 nmª	[44]
66	Sr(SO ₃ NH ₂) ₂	Pc	<190	0.056 @ 589.3 nmª	[44]
			Others		
67	NH_3BH_3	l4mm	<190	0.056 @ 550 nmª	[45]
68	$KN(SO_2F)_2$	Pbca	182	0.061 @ 546 nm⁵	[46]
69	(NH ₄) ₂ PO ₃ F	Pna2 ₁	176	0.035 @ 532 nm ^b	[47]
70	$NaNH_4PO_3F \cdot H_2O$	Pn	176	0.053 @ 532 nm ^b	[48]
71	Na ₂ PO ₃ F	$P2_{1}2_{1}2_{1}$	<190	0.036 @ 532 nm ^b	[49]
72	KHPO₃F	P 2 ₁	<190	0.028 @ 532 nm⁵	[50]
73	$NaPO_3NH_3$	P 6 ₃	<190	0.062 @ 546.1 nmª	[51]
74	Ba(SO ₃ CH ₃) ₂	$Cmc2_1$	159	0.04 @ 589.3 nmª	[52]
75	$Na_2S_3O_6$	Fdd2	212	0.056 @ 546 nmª	[53]
76	$K_2S_4O_6$	Сс	298	0.066 @ 1064 nm ^b	[54]

^aMeasured birefringence, ^bcalculated birefringence.

Figure S1. Experimental and simulated PXRD patterns for MX(NH₃SO₃) (M = Rb, Cs; X = Cl, Br).

Figure S2. SEM-EDX for MX(NH₃SO₃) (M = Rb, Cs; X = Cl, Br).

Figure S3. (a) The asymmetric unit and (b) pseudo-doubled layer along the *ab* planes for RbCl(NH₃SO₃).

Figure S4. (a) The asymmetric unit for $CsCl(NH_3SO_3)$ and (b) the asymmetric unit for $RbBr(NH_3SO_3)$.

Figure S5. The intersection angle of the NH_3SO_3 tetrahedra in (a) $RbBr(NH_3SO_3)$ and (b) $CsBr(NH_3SO_3)$.

Figure S6. TGA diagrams for MX(NH₃SO₃) (M = Rb, Cs; X = CI, Br).

Figure S7. IR spectra for MX(NH₃SO₃) (M = Rb, Cs; X = Cl, Br).

Figure S8. Band structures of compounds for $MX(NH_3SO_3)$ (M = Rb, Cs; X = Cl, Br).

References

- 1 F. Wang, X.-N. Yao, Y. Guo, L. Yang, Y.-G. Chen and X.-M. Zhang, Insights into Varying Dimension Structures for Deep-UV Optical Crystals NaBa₂Al(P₂O₇)₂ and NaBaAl(PO₄)₂ Constructed Separately from Unique [Al(P₂O₇)₂] Chains and [Al(PO₄)₂] Layers, *J. Solid. State. Chem.*, 2021, **301**, 8.
- Y.-G. Chen, X. Yu, Y. Guo, Y. Xue, X. H. Hao, X. Yao and X.-M. Zhang, Ca-cluster-constructed Deep-Ultraviolet Nonlinear-optical Crystal Na₂Ca₁₇Al₂(PO₄)₁₄ with Strong NLO Response, *J. Alloy. Compd.*, 2022, **896**, 6.
- J.-X. Zhang, Q.-G. Yue, S.-H. Zhou, X.-T. Wu, H. Lin and Q.-L. Zhu, Screening Strategy Identifies an Overlooked Deep-Ultraviolet Transparent Nonlinear Optical Crystal, *Angew. Chem. Int. Ed.*, 2024, 63, 7.
- 4 Z. Bai, L. Liu, L. Zhang, Y. Huang, F. Yuan and Z. Lin, K₂SrP₄O₁₂: a deep-UV Transparent Cyclophosphate as a Nonlinear Optical Crystal, *Chem. Commun.*, 2019, **55**, 8454–8457.
- 5 L. Li, Y. Wang, B.-H. Lei, S. Han, Z. Yang, H. Li and S. Pan, LiRb₂PO₄: a New Deep-ultraviolet Nonlinear Optical Phosphate with a Large SHG Response, *J. Mater. Chem. C*, 2017, **5**, 269–274.
- 6 X. Cheng, M.-H. Whangbo, G.-C. Guo, M. Hong and S. Deng, Large Second-Harmonic Generation of LiCs₂PO₄ is caused by the Metal-Cation-Centered Groups, *Angew. Chem. Int. Ed.*, 2018, **57**, 3933-3937.
- 7 Z. Bai, C.-L. Hu, L. Liu, L. Zhang, Y. Huang, F. Yuan and Z. Lin, KMg(H₂O)PO₄: A Deep-Ultraviolet Transparent Nonlinear Optical Material Derived from KTiO_PO₄, *Chem. Mat.*, 2019, **31**, 9540–9545.
- 8 J. De Yoreo, A. Burnham and P. Whitman, Developing KH₂PO₄ and KD₂PO₄ Crystals for The World's Most Power Laser, *Inter. Mater. Rev.*, 2002, **47**, 113–152.
- H. Yu, J. Young, H. Wu, W. Zhang, J. M. Rondinelli and P. S. Halasyamani, M₄Mg₄(P₂O₇)₃ (M = K, Rb): Structural Engineering of Pyrophosphates for Nonlinear Optical Applications, *Chem. Mat.*, 2017, **29**, 1845–1855.
- 10 X. Yang, S. Zhao, S. Geng, L. Yang, Q. Huang, X. Kuang, J. Luo and X. Xing, Structural Origin of Thermally Induced Second Harmonic Generation Enhancement in RbNaMgP₂O₇, *Chem. Mat.*, 2019, **31**, 9843–9849.
- 11 J. Lv, Y. Qun, Q. Jing, X. Wang, M.-H. Lee and Z. Chen, Two Metal Phosphate Nonlinear Optical Materials Simultaneously Exhibiting Ultraviolet Transparence and a Large Birefringence, *Chem. Mat.*, 2022, 9.
- 12 T. Sun, P. Shan, H. Chen, X. Liu, H. Liu, S. Chen, Y. Cao, Y. Kong and J. Xu, Growth and Properties of a Noncentrosymmetric Polyphosphate CsLa(PO₃)₄ Crystal with Deep-ultraviolet Transparency, *Crystengcomm*, 2014, **16**, 10497–10504.
- 13 S. Zhao, P. Gong, S. Luo, L. Bai, Z. Lin, C. Ji, T. Chen, M. Hong and J. Luo, Deep-Ultraviolet Transparent Phosphates RbBa₂(PO₃)₅ and Rb₂Ba₃(P₂O₇)₂ Show Nonlinear Optical Activity from Condensation of [PO₄]³⁻ Units, *J. Am. Chem. Soc.*, 2014, **136**, 8560–8563.
- 14 P. Shan, T. Sun, H. Chen, H. Liu, S. Chen, X. Liu, Y. Kong and J. Xu, Crystal Growth and Optical Characteristics of Beryllium-free Polyphosphate, KLa(PO₃)₄, a Possible Deep-ultraviolet Nonlinear Optical Crystal, *Sci. Rep.*, 2016, **6**, 25201.
- 15 P. Yu, L.-M. Wu, L.-J. Zhou and L. Chen, Deep-ultraviolet nonlinear optical crystals: Ba₃P₃O₁₀X (X= Cl, Br), *J. Am. Chem. Soc.*, 2014, **136**, 480–487.
- 16 B.-L. Wu, C.-L. Hu, F.-F. Mao, R.-L. Tang and J.-G. Mao, Highly Polarizable Hg²⁺ Induced a Strong Second Harmonic Generation Signal and Large Birefringence in LiHgPO₄, *J. Am. Chem. Soc.*, 2019, 141, 10188-10192.

- 17 M. Wen, C. Hu, Z. Yang, X. Wu and S. Pan, K₂TeP₂O₈: a New Telluro-phosphate with a Pentagonal Te-P-O Layer Structure, *Dalton Trans.*, 2018, **47**, 9453–9458.
- 18 Y. Zhou, L. Cao, C. Lin, M. Luo, T. Yan, N. Ye and W. Cheng, AMgPO₄·6H₂O (A= Rb, Cs): Strong SHG Responses Originated from Orderly PO₄ Groups, *J. Mater. Chem. C*, 2016, 4, 9219–9226.
- 19 Y. Li, S. Zhao, P. Shan, X. Li, Q. Ding, S. Liu, Z. Wu, S. Wang, L. Li and J. Luo, Li₈NaRb₃(SO₄)₆·2H₂O as a New Sulfate Deep-ultraviolet Nonlinear Optical Material, *J. Mater. Chem. C*, 2018, **6**, 12240–12244.
- 20 Y. Li, F. Liang, S. Zhao, L. Li, Z. Wu, Q. Ding, S. Liu, Z. Lin, M. Hong and J. Luo, Two Non-πconjugated Deep-UV Nonlinear Optical Sulfates, *J. Am. Chem. Soc.*, 2019, **141**, 3833–3837.
- 21 C. Wu, X. Jiang, Y. Hu, C. Jiang, T. Wu, Z. Lin, Z. Huang, M. G. Humphrey and C. Zhang, A Lanthanum Ammonium Sulfate Double Salt with a Strong SHG Response and Wide Deep-UV Transparency, *Angew. Chem. Int. Ed.*, 2022, **61**, e202115855.
- 22 C. Amirthakumar, B. Valarmathi, P. Pandi and R. M. Kumar, Investigation on Inorganic Potassium Lithium Sulfate Single Crystal Grown by SR Method and Its Characterization for Nonlinear Optical Application, *Chin. J. Phys.*, 2020, **67**, 305–313.
- 23 T. F. T. Fukami and R.-H. C. R.-H. Chen, Crystal Structure and Electrical Conductivity of LiN₂H₅SO₄ at High Temperature, *Jpn. J. Appl. Phys.*, 1998, **37**, 925.
- 24 Y. Zhou, X. Zhang, Z. Xiong, X. Long, Y. Li, Y. Chen, X. Chen, S. Zhao, Z. Lin and J. Luo, Non-π-Conjugated Deep-ultraviolet Nonlinear Optical Crystal K₂Zn₃(SO₄)(HSO₄)₂F₄, *J. Phys. Chem. Lett.*, 2021, **12**, 8280–8284.
- 25 Y. Zhou, X. Liu, Z. Lin, Y. Li, Q. Ding, Y. Liu, Y. Chen, S. Zhao, M. Hong and J. Luo, Pushing KTiOPO₄like Nonlinear Optical Sulfates into the Deep-Ultraviolet Spectral Region, *Inorg. Chem.*, 2021, **60**, 18950–18956.
- 26 A. Poddar, S. Gedam and S. Dhoble, Development of Orange-red Emitting Phosphors and Studies of Thermoluminescence Characteristics of KMgSO₄F Material, *J. Lumin.*, 2014, **149**, 245–250.
- 27 S. Ko, Y. Yamada and A. Yamada, A 62 m K-ion Aqueous Electrolyte, *Electrochem. Commun.*, 2020, 116, 106764.
- 28 L. Hildebrandt, R. Dinnebier and M. Jansen, Crystal Structure and Ionic Conductivity of Three Polymorphic Phases of Rubidium Trifluoromethyl Sulfonate, RbSO₃CF₃, *Inorg. Chem.*, 2006, **45**, 3217–3223.
- 29 B. Xu, P. Gong, F. Liu, X. Zhang, H. Huo and Z. Lin, (SO₃CF₃)⁻: A Non-π-Conjugated Motif for Nonlinear Optical Crystals Transparent into the Deep-Ultraviolet Region, *Adv. Opt. Mater.*, 2024, **12**, 2301725.
- 30 Z. Wu, H. Li, X. Hou, Z. Yang and H. Shi, AYSO₄F₂(A= K, Rb):[YO₄F₄] Polyhedra Enhancement of Birefringence in Non-π-Conjugated Sulfate Systems, *Inorg. Chem.*, 2024, **63**, 4783–4789.
- 31 Y. Sun, C. Lin, H. Tian, Y. Zhou, J. Chen, S. Yang, N. Ye and M. Luo, A₂BeS₂O₈ (A = NH₄, K, Rb, Cs) Deep Ultraviolet Nonlinear Optical Crystals, *Chem. Mat.*, 2022, **34**, 3781–3788.
- 32 P. Becker, S. Ahrweiler, P. Held, H. Schneeberger and L. Bohatý, Thermal expansion, Pyroelectricity and Linear Optical Properties of Li₂SeO₄·H₂O and Li₂SO₄·H₂O, *Cryst. Res. Technol.*, 2003, **38**, 881– 889.
- 33 K. Chen, Y. Yang, G. Peng, S. Yang, T. Yan, H. Fan, Z. Lin and N. Ye, A₂Bi₂(SO₄)₂Cl₄ (A=NH₄, K, Rb): Achieving a Subtle Balance of the Large Second Harmonic Generation Effect and Sufficient Birefringence in Sulfate Nonlinear Optical Materials, *J. Mater. Chem. C*, 2019, **7**, 9900–9907.
- 34 Q. Xu, X. Jiang, C. Wu, L. Lin, Z. Huang, Z. Lin, M. G. Humphrey and C. Zhang, Rb₃In(SO₄)₃: a

Defluorinated Mixed Main-group Metal Sulfate for Ultraviolet Transparent Nonlinear Optical Materials with a Large Optical Band Gap, *J. Mater. Chem. C*, 2021, **9**, 5124–5131.

- 35 Q. Wei, C. He, K. Wang, X.-F. Duan, X.-T. An, J.-H. Li and G.-M. Wang, Sb₆O₇(SO₄)₂: A Promising Ultraviolet Nonlinear Optical Material with an Enhanced Second-Harmonic-Generation Response Activated by SbIII Lone-Pair Stereo Activity, *Chem. Eur. J.*, 2021, **27**, 5880–5884.
- 36 Y. Shen, L. Huang, Z. Wang, Y. Zhou, X. Xue, H. Lin, R. Yan, S. Zhao and J. Luo, CsY(SO₄)₂·4H₂O: a Deep-Ultraviolet Birefringent Crystal induced by an Edge-sharing Connection, *Inorg. Chem.*, 2022, 61, 4468-4475.
- 37 Y. Zhao, Y. Song, Y. Li, W. Liu, Y. Zhou, W. Huang, J. Luo, S. Zhao and B. Ahmed, Deep-Ultraviolet Bialkali-Rare Earth Metal Anhydrous Sulfate Birefringent Crystal, *Inorg. Chem.*, 2024.
- 38 S. Cheng, Y. Wu, D. Mei, S. Wen and T. Doert, Synthesis, Crystal Structures, Spectroscopic Characterization, and Thermal Analyses of the New Bismuth Sulfates NaBi(SO₄)₂·H₂O and ABi(SO₄)₂ (A= K, Rb, Cs), *Z. Anorg. Allg. Chem.*, 2020, **646**, 1688–1695.
- 39 C. Wu, C. Jiang, G. Wei, X. Jiang, Z. Wang, Z. Lin, Z. Huang, M. G. Humphrey and C. Zhang, Toward Large Second-harmonic Generation and Deep-UV Transparency in Strongly Electropositive Transition Metal Sulfates, *J. Am. Chem. Soc.*, 2023, **145**, 3040–3046.
- 40 S. Ke, H. Fan, C. Lin, N. Ye and M. Luo, Constructing Ultraviolet Nonlinear Optical Crystals with Large Second Harmonic Generation and Short Absorption Edges by using Polar Tetrahedral S₂O₃ Groups, *Inorg. Chem. Front.*, 2023, **10**, 2811–2817.
- 41 D. Dou, B. Cai, B. Zhang and Y. Wang, M(NH₂SO₃)₂·xH₂O (M= Ca, Pb, x= 0, 1, 4): Effect of Hydrogen Bonding on Structural Transformations and Second Harmonic Generation of Metal Sulfamates, *Inorg. Chem.*, 2022, **61**, 21131–21138.
- 42 X. Wang, X. Leng, Y. Kuk, J. Lee, Q. Jing and K. M. Ok, Deep-Ultraviolet Transparent Mixed Metal Sulfamates with Enhanced Nonlinear Optical Properties and Birefringence, *Angew. Chem. Int. Ed.*, 2024, **63**, e202315434.
- 43 X. Wang, J. Lee, Y. Li, Y. Kuk and K. M. Ok, Cd(NH₂SO₃)₂·xH₂O (x= 0, 2): New Sulfamates with a Unique Coordination Environment and Reversible Phase Transitions, *Inorg. Chem. Front.*, 2023, **10**, 1411–1420.
- 44 H. Fan, N. Ye and M. Luo, New Functional Groups Design toward High Performance Ultraviolet Nonlinear Optical Materials, *Acc. Chem. Res.*, 2023, **56**, 3099–3109.
- 45 Y. Zhou, N. He, Z. Lin, X. Shang, X. Chen, Y. Li, W. Huang, M. Hong, S. Zhao and J. Luo, A Non-π-Conjugated Molecular Crystal with Balanced Second-Harmonic Generation, Bandgap, and Birefringence, *Small*, 2024, **20**, 2305473.
- 46 K. Matsumoto, T. Oka, T. Nohira and R. Hagiwara, Polymorphism of Alkali Bis (fluorosulfonyl) Amides (M[N(SO₂F)₂], M= Na, K, and Cs), *Inorg. Chem.*, 2013, **52**, 568–576.
- 47 L. Xiong, J. Chen, J. Lu, C.-Y. Pan and L.-M. Wu, Monofluorophosphates: a New Source of Deepultraviolet Nonlinear Optical Materials, *Chem. Mat.*, 2018, **30**, 7823–7830.
- 48 Q. Ding, X. Zhang, Z. Lin, Z. Xiong, Y. Wang, X. Long, S. Zhao, M. Hong and J. Luo, Designing a Deep-UV Nonlinear Optical Monofluorophosphate, *Sci. China Chem.*, 2022, **65**, 1710–1714.
- 49 W. Jin, C. Xie, X. Hou, M. Cheng, E. Tikhonov, M. Wu, S. Pan and Z. Yang, From Monofluorophosphates A₂PO₃F to Difluorophosphates APO₂F₂ (A= alkali metal): Design of a Potential Deep-ultraviolet Nonlinear Optical Materials System with a Shortened Phase-matching Wavelength, *Chem. Mat.*, 2023, **35**, 5281–5290.
- 50 H. A. Prescott, S. I. Troyanov and E. Kemnitz, The Crystal Structures of the Potassium Hydrogen

Monofluorophosphates, KHPO₃F and K₃[H(PO₃F)₂], and the α Modification of RbHPO₃F, *Z. Kristallogr. Cryst. Mater.*, 2003, **218**, 604–611.

- 51 L. Wu, H. Tian, C. Lin, X. Zhao, H. Fan, P. Dong, S. Yang, N. Ye and M. Luo, Optimized Arrangement of Non-π-conjugated PO₃NH₃ Units Leads to Enhanced Ultraviolet Optical Nonlinearity in NaPO₃NH₃, *Inorg. Chem. Front.*, 2024, **11**, 1145–1152.
- 52 H. Tian, C. Lin, X. Zhao, F. Xu, C. Wang, N. Ye and M. Luo, Ba(SO₃CH₃)₂: A Deep-Ultraviolet Transparent Crystal with Excellent Optical Nonlinearity Based on a New Polar Non-π-Conjugated NLO Building Unit SO₃CH₃⁻, *CCS Chem.*, 2023, **5**, 2497–2505.
- 53 H. Sha, Y. Shang, Z. Wang, R. Su, C. He, X. Yang and X. Long, A Sharp Improvement of Sulfate's Birefringence Induced by the Synergistic Effect of Heteroleptic and Dimeric Strategies, *Small*, 2024, 20, 2309776.
- 54 T. Huang, Y. Xiao, J. Gu, Y. Wang, K. Wu and B. Zhang, K₂S₄O₆: Improving Birefringence and Nonlinear Optical Properties with the [O₃S-S-S-SO₃]²⁻ Group, *J. Mater. Chem. C*, 2022, **10**, 17190– 17195.