Supplementary Material

Multicolor Mechanoluminescence for Integrated Dual-mode Stress and Temperature Sensing

Pengfei Zhang^{a,b}, Ziyi Guo^{a,b}, Zhiting Wei^{a,b}, Wenbo Chen^{a*}, Qinping Qiang^a, Bitao Liu^a, Tianchun Lang^a, Lingling Peng^a, Wenjie Wang^{c*}, Lei Zhao^{b*}

^a Engineering Research Center of New Energy Storage Devices and Applications, Chongqing University of Arts and Sciences, Chongqing 402160, P. R. China
^b School of Physics and Opto-Electronic Technology, Baoji University of Arts and Sciences, Baoji, Shaanxi 721016, P. R. China
^c Gansu Province Research Center for Basic Sciences of Surface and Interface Chemistry, College of Chemical Engineering, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
* Corresponding author' email: qschenbo@sina.com(Wenbo Chen), wangwj@xbmu.edu.cn (Wenjie Wang), zhaoleibjwl@163.com (Lei Zhao).

Fig. S1 a-c. XRD patterns of as-prepared SMCP: xTb^{3+} ($0 \le x \le 0.4$), SMCP: yMn^{2+} ($0.1 \le y \le 0.5$), SMCP: $0.4Tb^{3+}$, yMn^{2+} ($0 \le y \le 0.4$) samples and the standard data of the Sr₉Cr(PO₄)₇ phase (PDF # 53-0176).

Fig. S2 a-b. SEM images of SMCP: 0.4Tb³⁺, 0.4Mn²⁺; c-j. Elemental mappings and EDS for Sr, Mg, Ce, P, O, Tb and Mn.

Fig. S3 PL and PLE spectra of SMCP: $0.4Tb^{3+}$, $0.4Mn^{2+}$.

Fig. S4 a. Dependence of PL spectra of SMCP: $xTb^{3+}(x = 0.04, 0.08, 0.2, 0.3, 0.4)$ excited at 312 nm; b. Decay curves of host emission in SMCP: $xTb^{3+}(x = 0.04, 0.08, 0.2, 0.3, 0.4)$ at 312nm excitation and 373nm monitoring.

Fig. S5 a. Dependence of PL spectra of SMCP: yMn^{2+} (x = 0.1, 0.2, 0.3, 0.4, 0.5) excited at 312 nm; b. Decay curves of host emission in SMCP: yMn^{2+} (x = 0.1, 0.2, 0.3, 0.4, 0.5) at 312 nm excitation and 373 nm monitoring.

Fig. S6 a. Dependence of PL spectra of SMCP: 0.4Tb^{3+} , $y\text{Mn}^{2+}(y = 0.1, 0.2, 0.3, 0.4)$ excited at 312 nm; b. Decay curves of Tb emission in SMCP: 0.4Tb^{3+} , $y\text{Mn}^{2+}(y = 0.1, 0.2, 0.3, 0.4)$ at 327 nm excitation and 542 nm monitoring.

Fig. S7 Dependence of ML spectra of SMCP: xTb³⁺(x = 0.04, 0.08, 0.2, 0.3, 0.4) in the dark under stretching.

Fig. S8 Dependence of ML spectra of SMCP: yMn^{2+} (x = 0.1, 0.2, 0.3, 0.4, 0.5) in the dark under stretching.

Fig. S9 Dependence of ML spectra of SMCP: 0.4Tb^{3+} , $y\text{Mn}^{2+}(y = 0.1, 0.2, 0.3, 0.4)$ in the dark under stretching.

Fig. S10 ML spectra of SMCP: $0.4 Tb^{3+},\,0.4 Mn^{2+}\,at$ different temperature .

Formula	SMCP
Crystal system	Monoclinic
Space group	I2/a (No. 15)
Vol (Å ³)	2542.21
Unit cell dimens (Å)	a = b = 7.896 (4) Å $c = 5.207$ (2) Å
Reliability factors	$R_{wp} = 9.65$ %, $R_p = 7.11$ %

GSAS

Table 1 Final refined structural parameters for SMCP

Program

PL CIE (x,y)	X	у
SMCP	0.1895	0.0606
SMCP: 0.02Tb	0.2249	0.2195
SMCP: 0.08Tb	0.2523	0.3094
SMCP: 0.2Tb	0.2942	0.4485
SMCP: 0.3Tb	0.312	0.5072
SMCP: 0.4Tb	0.3194	0.5309
SMCP: 0.1Mn	0.4433	0.2433
SMCP: 0.2Mn	0.5161	0.2985
SMCP: 0.3Mn	0.5498	0.3191
SMCP: 0.4Mn	0.568	0.3299
SMCP: 0.5Mn	0.5798	0.3338
SMCP: 0.4Tb, 0.1Mn	0.4133	0.4386
SMCP: 0.4Tb, 0.2Mn	0.4441	0.4278
SMCP: 0.4Tb, 0.3Mn	0.4933	0.4048
SMCP: 0.4Tb, 0.4Mn	0.5131	0.3994

Table 3 CIE diagram of ML

ML CIE (x,y)	X	у
SMCP	0.2375	0.1755
SMCP: 0.02Tb	0.2912	0.2907
SMCP: 0.08Tb	0.2917	0. 3371
SMCP: 0.2Tb	0.2924	0.3734
SMCP: 0.3Tb	0.3153	0. 4478
SMCP: 0.4Tb	0.3329	0. 5226
SMCP: 0.1Mn	0.3688	0. 2237
SMCP: 0.2Mn	0.5176	0. 3421
SMCP: 0.3Mn	0.5492	0. 3435
SMCP: 0.4Mn	0.5597	0. 3413
SMCP: 0.5Mn	0.4744	0.3589
SMCP: 0.4Tb, 0.1Mn	0.4115	0. 4633
SMCP: 0.4Tb, 0.2Mn	0.4053	0. 4286
SMCP: 0.4Tb, 0.3Mn	0.4726	0. 4069
SMCP: 0.4Tb, 0.4Mn	0.5143	0. 3919