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1. Experimental Section

1.1 Materials

Cobaltous nitrate hexahydrate (Co(NO3)2·6H2O, 99.9%), Ferrous sulfate 

heptahydrate FeSO4·7H2O, 99.9%, Sodium hypophosphite NaH2PO2, potassium 

hydroxide (KOH), commercial ruthenium dioxide (RuO2), and Nafion (5 wt%) were 

purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. The deionized 

(DI) water used in the solution preparation and washing steps comes from ultrapure 

water (Milli-Q, 18 MΩ·cm) made in the laboratory. Nickel foam (NF, diameter of the 

nickel fiber: 1.6 mm, porosity: 96%) were used as the substrate. All chemicals were 

analytical grade and used as received without further purification.

1.2 Treatment of nickel foam

In order to remove the surface oxide layer, a piece of NF (1×3 cm2) was treated in 

HCl solution (2.0 M) under ultrasonication for 0.5 h, followed by sonicating several 

times with ethanol and DI water successively, and finally dried in an oven at 60 °C for 

6 h.

1.3. General characterizations 



    The microstructure and phase information of catalysts using X-ray diffraction 

(XRD, Rigaku Ultima IV, Cu Kα, λ = 1.54056 Å), field-emission scanning electron 

microscope (FESEM, JSM-7610F, 15 kV), and Transmission electron microscopy 

(TEM, JEOL 2010F) with EDS. The surface characteristics were investigated using X-

ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific K-Alpha, Mg Kα. In-

situ Raman spectroscopy measurements were conducted using a confocal micro-Raman 

spectrometer (Renishaw inVia) coupled with an electrochemical workstation. The 

contents were determined using plasma optical emission spectrometry (ICP-OES, 

Agilent ICPOES730). The contact angle data of liquid and bubbles were recorded using 

a JY-82B instrument. The vacancies were characterized using EPR (BRUKER 

EMXPLUS).

1.4. Electrochemical test 

Electrochemical measurements were conducted using a PARSTAT (P4000) 

workstation with a three-electrode configuration: Hg/HgO as the reference, graphite as 

the counter, and prepared samples as the working electrode. 

The potentials were converted to the reversible hydrogen electrode (RHE) by the 

equation: ERHE = EHg/HgO + 0.098 + 0.0591 × pH. The catalytic performances of samples 

were evaluated using LSV at 5 mV s−1. 

All the LSV curves were derived from multiple tests to ensure data consistency. 

Electrochemical impedance spectroscopy (EIS) was conducted across a frequency from 

105 to 10-2 Hz with 5 mV AC amplitude. The LSV curves were calibrated using a 70% 

solution resistance correction.

The electrochemically active surface area (ECSA) is directly proportional to the 

double-layer capacitance (Cdl) using the equation ECSA = Cdl / Cs, where Cs = 40 μF 

cm−2. Cdl was determined from cyclic voltammograms at various scan rates in the non-

Faradic potential region.The specific activity is the current density per unit real surface 

area of catalyst, which can be calculated by normalizing the current to the ECSA. The 

ECSA-normalized current density for the as-prepared catalysts was calculated 

according to: jECSA-normalized=j/ECSA



The Tafel slope was calculated according to Equation: , 
𝜂 = 𝛼 +

2.3𝑅𝑇
𝛼𝑛𝐹

𝑙𝑜𝑔|𝑗|

where 𝜂 is the overpotential, j is the current density, 𝛼 is the transfer coefficient, n is 

the number of electrons involved in the reaction, F is the Faradaic constant, b = 

2.3RT𝛼nF is the value of Tafel slope.

Turnover frequency (TOF) calculation. TOF (for a heterogeneous catalyst) 

=j/(4*F*m). j: the current density at an overpotential; F: the Faraday constant; m: the 

number of moles of metal on the electrode.

The Faradaic efficiency for OER was tested at room temperature in a H-type cell. 

The oxygen evolution electrolysis was performed at a constant current of 0.3 A m−2 and 

oxygen was collected and measured. Faradaic efficiency (𝜂) was calculated by 

Equation: . The theoretical number of moles ( ) 
𝜂 =

𝜂𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

𝜂𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
× 100%

𝜂𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

of oxygen produced was calculated by Equation: , where i (A) 
𝜂𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =

𝑖 × 𝑡
4 × 𝑒 × 𝑁𝐴

is the current, t (s) is the electrolysis time, e is the elementary charge (1.60 × 10−19 C), 

and NA is the Avogadro’s constant (6.02 × 1023).

1.5. DFT calculation details 

All the calculations were performed within the framework of density functional 

theory (DFT) using the projector augmented plane-wave method, as implemented in 

the Vienna ab initio simulation package (VASP). The generalized gradient 

approximation proposed by Perdew-Burke-Ernzerhof was selected for the calculation 

of exchange-correlation potentials. The cutoff energy for plane waves was set to 400 

eV. The energy criterion was set to be 10−5 eV for obtaining the iterative solution of the 

Kohn-Sham equation. A 3 × 3 × 1 k-mesh was used for the structural optimizations of 

CoFeOOH, CoFeOOH-PO4
3-, CoFeP, and CoFePV. 

A 15 Å vacuum region was set in the z-direction to prevent interactions between 

two adjacent surfaces. The force and convergence thresholds for energy were less than 



0.02 eV Å−1 and 10−5 eV, respectively. During the calculations, the bottom layers of the 

structures were fixed. The reaction Gibbs free energy (ΔG) of the intermediates was 

determined using ΔG = ΔE + ΔZPE − TΔS, where T is the temperature (298.15 K), 

ΔZPE is zero-point energy, ΔE is the reaction energy, and ΔS is the entropy difference 

calculated from the vibration frequency. The entropies of H2 and H2O vapor under 

standard conditions were obtained from the NIST database.

2. Supplementary figures

Fig S1. SEM image of CoFe@NF

Fig S2. SEM images of CoFePv@NF with different plasma-assisted phosphating time 

(a) 3 min, (b) 6 min, (c) 9 min,  

Fig S3. SEM image of CoFeP@NF



Fig S4. Photos of prepared electrodes

Fig S5. Full XPS spectrum of CoFePv@NF and CoFeP@NF

Fig. S6. Catalytic performance of CoFePv@NF with different plasma-assisted 

phosphating time (a) HER, (b) OER performance 



Fig S7. Tafel slopes of electrodes (a) OER, (b) HER

Fig S8. Nyquist plots of electrodes (a) OER, (b) HER

Fig S9. CVs in non-Farradic region at different scan rate for HER: (a) CoFePv@NF, 

(b) CoFeP@NF, (c) CoFe@NF, (d) Pt/C@NF, (e) NF, and (f) Corresponding Cdl by 

calculated



Fig S10. CVs in non-Farradic region at different scan rate for OER (a) CoFePv@NF, 

(b) CoFeP@NF, (c) CoFe@NF, (d) RuO2@NF, (e) NF, and (f) Corresponding Cdl by 

calculated

Fig S11. ECSA-normalized polarization curves 

Fig S12. TOF of electrodes at the overpotential of 300 mV: (a) OER, (b) HER



Fig S13.XRD patterns of CoFePv@NF after HER and OER stability test 

Fig S14. SEM images of CoFePv@NF after stability test: (a) HER, (b) OER

Fig S15. TEM images of CoFePv@NF after HER stability test 



Fig. S16. TEM images of CoFePv@NF after OER stability test 

Fig. S17. XPS spectra of CoFePv@NF after HER and OER stability test:(a) Full 

spectrum, (b) Co 2p, (c) P 2p, (d) Fe 2p



Fig. S18. In situ Nyquist plots of electrodes during OER (a) CoFePv@NF, (b) 

CoFeP@NF, (c) CoFe@NF

Fig.S19. The photo of drainage method

Fig. S20. OER mechanism of CoFeOOH-PO4
3- at Fe sites 



Fig. S21. OER mechanism of CoFeOOH at Fe sites 

Fig. S22. HER mechanism of CoFePv at Fe sites

Fig. S23. HER mechanism of CoFeP at Fe sites 



Fig. S24. HER pathway of CoFePv and CoFeP under alkaline conditions

Table S1 Mass ratios of CoFeP and CoFePv characterized by ICP-OES

Sample Element

Mass-

ratio

(%)

Elements

Mass-

ratio

(%)

Elements

Mass-

ratio

(%)

Sum

(%)

CoFeP Co 72.23 Fe 26.64 P 1.13 100

CoFePv Co 72.82 Fe 26.43 P 0.74 100

Table S2 Compared with other recent reported phosphate HER electrodes 

Electrocatalysts η10 (mV) Tafel slope (mV dec-1) References

CoFePv@NF 99 74.9 This work

CoPO@C/NF 93 111.4 [1]

CoP/CoMoP2 93.6 89.9 [2]

1T′/1T Co,P-SnS2@CC 94 75.2 [3]

Fe2P-Co2P-Ni2P 105 86.09 [4]

NiSe2/Fe-P 113 73.1 [5]

CoP@PNC@NF 148 59.6 [6]

H-Fe3O4@FeP@NC 165 155.6 [7]

P-MoO2@CoNiP 174 95.2 [8]

CoO/CoP-NC 178 90 [9]

Ni2P-Fe2P/NF 225 107 [10]

FeNiP-CoP@NC 254 24.9 [11]

Ni-FeP-B-0.02 337 74 [12]



Table S3 Compared with other recent reported phosphate OER electrodes 

Electrocatalysts
η10 

(mV)
Tafel slope (mV dec-1) References

CoFePv@NF 243 45.8 This work

Co2P-CoxOy 246 69 [13]

CoP-FeP/NC 254 50.9 [14]

H-Fe3O4@FeP@NC 258 41.3 [7]

Cu-Co-P/NF 259 57.99 [15]

FeCoP/C 282 53 [16]

Mn1-Ni1-Co1-P/NF 289 85 [17]

Ni-CoP 290 66 [18]

Rh-Co2Fe-P 303 63 [19]

CoNiFeP@NF 333 69 [20]

Co2P/CoP@NPGC-1 340 116 [21]

CoP/CoP2@NC 369 99 [22]

Fe-CoxP 440 49 [23]

Table S4 Compared with other recent reported phosphates OWS electrodes

electrodes Voltage (V) Ref.

CoFePv@NF(+, -) 1.9 This work

NiMoB||NiMoB(+, -) 2.11 [24]

FeIr/NF||FeIr/NF(+, -) 1.93 [25]

FeCoNiCu-PE(+, -) 1.931 [26]

FeCo/Ni(OH)2||Ni mesh(+, -) 1.91 [27]

CoMoO4-Co(OH)2/NF(+)||CoMoP-

CoP/NF(−)

2.0 [28]

(Ni3Fe−FeV2O4)@C/NF(+, -) 1.9 [29]



Fe-NiFe LDH(+, -) 2.0 [30]

Ru-Ni2P/NiO/NF(+, -) 2.02 [31]

(NiCoRu)OH/S(+, -) 1.92 [32]

(NiFe)C2O4/NF||PtC 2.1 [33]

NiCo@C-NiCoMoO(+, -) 1.9 [34]

Co4N-CeO2(+, -) 1.97 [35]

Ru-CoOx/NF(+, -) 1.92 [36]

NiFe/Ni/Ni(+, -) 1.96 [37]

Ni3FeN/NF (+, -) 1.91 [38]
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