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1. Materials

Zinc acetate dihydrate (Zn(CH3COO)2·2H2O) was obtained from Aladdin Reagent Co. Ltd., 

China. 2-Methylimidazole (98%), cetyltrimethylammonium bromide (CTAB, 99%), 

ruthenium(III) chloride trihydrate (98%), and Nafion solution (5 wt%) were provided by 

Adamas-Beta. Methanol (99.5%, AR) and ethanol (99.7%, AR) were sourced from Chengdu 

Kelong Chemical Reagent. Nickel foam (NF) with a thickness of 1 mm was supplied by Kunshan 

Guangjiayuan New Material Co. Ltd., China. Glassy carbon electrode with a diameter of 3 mm 

was supplied by Gooss Union. Hydrochloric acid (35 wt%, AR) was purchased from Chongqing 

Chuandong Chemical Co. Ltd., China. Potassium hydroxide (KOH, 90%, AR) was acquired from 

General Reagent. The 20 wt% Pt/C catalyst was supplied by Shanghai Hesen Electric Co. Ltd., 

China. Argon (Ar, 99.999%) and hydrogen (H₂, 99.999%) were provided by Chongqing Ruike 

Gas Co., China. The Graphite rod (99.995% purity, 5 mm in diameter, with an ash content of 

50 ppm), Ag/AgCl (3.5 mol L1 KCl), Hg/HgO (1 mol L1 KOH), and Pt plate electrodes (99.99% 

purity) were obtained from Tianjin AIDA Science-Technology Development Co. Ltd., China. 

2. Characterizations

Scanning electron microscopy (SEM) images were acquired using a field-emission scanning 

electron microscope (Hitachi SU8010). Powder X-ray diffraction (XRD) was performed on a 

Bruker AXS D8 Advance X-ray diffractometer, utilizing Ni-filtered Cu K radiation (λ = 0.15418 

nm). The operating conditions were set to 40 kV for the tube voltage and 30 mA for the 

current, with a scanning rate of 2° min1. Inductively coupled plasmaatomic emission 

spectroscopy (ICPAES) was carried out using a Thermo Elemental IRIS Intrepid system. Raman 

spectra were recorded on a HORIBA JY LabRAM HR Evolution Raman spectrometer with 532 

nm laser excitation. Electron paramagnetic resonance (EPR) spectra were collected at room 

temperature using a Bruker E500 spectrometer. Fourier transform infrared (FTIR) spectra 

were conducted with a SHIMADZU FTIR-8400s spectrometer over the range of 4000–400 cm1 

at a resolution of 4 cm1, averaging 32 scans per measurement. N2 physisorption analysis was 
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performed using an Autosorb-IQ physisorption analyzer (Anton Paar), with sample 

pretreatment at 150 °C for 6 h under flowing N2 (99.999%). 

Transmission electron microscopy (TEM) images, high-resolution TEM (HRTEM) images, and 

high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) 

images were obtained using a field-emission transmission electron microscope (FEI Tecnai G2 

S-Twin F20) equipped with an energy-dispersive X-ray analyzer (EDX; Oxford INCA) for 

elemental mapping. 

X-ray photoelectron spectra (XPS) and Auger electron spectra (AES) were collected using a 

Thermo Escalab 250Xi spectrometer with Al K radiation (h = 1486.6 eV) as the excitation 

source. The as-synthesized material was mounted on the sample stage, degassed overnight at 

room temperature in the pretreatment chamber under vacuum, and subsequently transferred 

to the analyzing chamber, where the background pressure was maintained below 1  108 

mbar. The pass energy and step size were set to 100 eV and 1 eV, respectively, for the survey 

spectra, and to 30 eV and 0.1 eV, respectively, for the core-level spectra. All spectra were 

calibrated against the graphite carbon 1s peak at a binding energy (BE) of 284.5 eV.

3. Electrochemical measurements

The electrocatalytic hydrogen evolution reaction (HER) performances of the as-synthesized 

nanocrystals were evaluated using a CHI760E electrochemical workstation (CH Instrument 

Inc.) with a three-electrode cell. The Hg/HgO (1 mol L1 KOH) electrode and a graphite rod 

were used as the reference and counter electrodes, respectively, while the synthesized 

nanocrystals, cut to a size of 1 cm × 1 cm, served as the working electrodes. Prior to 

electrochemical testing, the electrolyte (1 mol L1 KOH) was saturated by N2, followed by cyclic 

voltammetry (CV) scanning for 30 cycles over a potential window of 0.8 to 1.5 V versus 

Hg/HgO (1 mol L1 KOH) at a scanning rate of 100 mV s−1 to activate the electrode and achieve 

a steady state. Linear sweep voltammetry (LSV) scanning was then conducted under the same 

potential window and N2 atmosphere at room temperature, with a scanning rate of 5 mV s1, 
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to determine the overpotentials (η) at different current densities (j). The Tafel constant (a) 

and the Tafel slope (b) were obtained by fitting the equation  = a + blgj. 

Potential calibrations: To measure the potential difference between the Hg/HgO (1 mol L1 

KOH) reference electrode and the reversible hydrogen electrode (RHE), CV scans were 

conducted in 1 mol L1 KOH at a scan rate of 1 mV s1. A Pt plate (1 cm2 immersed in the 

solution) was used as both the working and counter electrodes. The electrolyte was purged 

with H2 (99.999%) before and during the CV scan process. For the obtained CV curve (Fig. S7), 

the potential at which the current crossed zero was regarded as the thermodynamic potential 

for the hydrogen electrode reactions.1 The average value of these two potentials (0.9295 V) 

was adopted to calibrate the potential. The compensated potential was determined using iRs-

correction (90%),2,3 based on the solution resistance (Rs) derived from electrochemical 

impedance spectroscopy tests. As a result, all measured electrode potentials relative to the 

Hg/HgO reference electrode (Evs. Hg/HgO) were calibrated to RHE using the equation ERHE-corrected 

= Evs. Hg/HgO + 0.9295  0.9iRs. 

Electrochemical impedance spectroscopy (EIS) measurements: The Rs and charge transfer 

resistance (Rct) of the synthesized materials were obtained from EIS measurements conducted 

at an operation potential of 0.1 V versus RHE, across a frequency range of 10 kHz to 0.01 Hz. 

Electrochemical active surface area (ECSA) measurements: The ECSAs of the synthesized 

nanocrystals were estimated based on the double-layer capacitance (Cdl) using the equation:4

2
dl

s s

C jECSA s s
C vC


   

where Cdl was measured by CV tests at different scanning rates (v, 20 to 100 mV s−1) over a 

potential window from 0.10 to 0.20 V relative to RHE. Cs is the average general-specific 

capacitance (0.04 mF cm−2 in 1.0 mol L1 KOH).4 s represents the geometric area of the working 

electrode (1 cm2). j is the difference between anodic and cathodic current densities.

Turnover frequency (TOF) calculations: The intrinsic HER activities of the synthesized 

nanocrystals were expressed by the TOF of H2 generation, calculated based on the assumption 

that all Ru atoms are active sites and accessible to the electrolyte:57 
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where j is the current density (mA cm2).

The total active sites per geometric area were calculated according to the following 

equation:
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where mRu is the Ru mass obtained by ICPAES, MRu is the molar mass of Ru, and NA is 

Avogadro constant (6.022 × 1023 mol1).

For d-Ru-ZnO-880:
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For d-Ru-ZnO-900:
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For d-Ru-ZnO-920:
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Therefore, the TOFs of H2 generation over the electrocatalysts in HER were acquired by 

the following formulas:

For d-Ru-ZnO-880: 
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For d-Ru-ZnO-920:
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Apparent activation energy (Ea) calculations. The Ea values of the synthesized nanocrystals 

in HER were determined by fitting the slope of the Arrhenius plot (lgj01/T) based on the 

Arrhenius relationship:7

0lg
(1 / ) 2.303

aj E
T R


 



where j0 is the exchange current density obtained by extrapolating the abscissa of the ERHE-

corrected–lgj curve to zero ERHE-corrected. R is the ideal gas constant (8.314 J mol1 K1), and T is 

the testing temperature (303, 313, 323, and 333 K). Due to the instability of the Hg/HgO (1 

mol L1 KOH) and graphite rod electrodes at elevated temperature, Ag/AgCl (3.5 mol L1 KCl) 
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and a Pt plate were used as the reference and counter electrodes, respectively, in the Ea 

testing experiments. Similar to the Evs. Hg/HgO potential calibration, the measured Evs. Ag/AgCl 

potentials using the Ag/AgCl (3.5 mol L1 KCl) reference electrode were calibrated to RHE with 

a 0.9iRs-correction using the following equations (Fig. S14):

303 K: ERHE-corrected = Evs. Ag/AgCl + 1.0090  0.9iRs

313 K: ERHE-corrected = Evs. Ag/AgCl + 1.0110  0.9iRs

323 K: ERHE-corrected = Evs. Ag/AgCl + 1.0120  0.9iRs

333 K: ERHE-corrected = Evs. Ag/AgCl + 1.0100  0.9iRs

Stability testing: The durability of the synthesized nanocrystals in HER was evaluated by 

recording currenttime (it) curves at potentials corresponding to current densities of 10 and 

100 mA cm−2 using a single-port electrolytic cell. 

Faraday efficiency (FE) calculation: The FE was calculated using the equation:1

100%ex

th

nFE
n

 

where nex is the experimentally produced moles of H2, and nth is the theoretically produced 

moles of H2. nex is obtained by dividing the measured volume of H2 using a water drainage 

method by 22.4 L mol1. nth is calculated by nth = Q/2F, with Q being calculated by integrating 

the corresponding i-t curve and F being the Faraday constant (96485.3 C mol1).

4. Determination of exposed facets on ZnO, RuO, and RuO2

(1) Hexagonal RuO and ZnO  

For hexagonal crystals, the crystal plane angle () can be calculated using the following 

equation:

 
2
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Ru0 in d-Ru-ZnO-880 and d-Ru-ZnO-920: For hexagonal Ru0, the lattice constants (JCPDS 06-

0663) are a = 2.706 Å, b = 2.706 Å, c = 4.282 Å, a/c = 0.632, α = 90o, β = 90o, γ = 120o. According 
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to HRTEM, Ru0 in d-Ru-ZnO-880 and d-Ru-ZnO-920 was enclosed by the (101), ( ), ( 01), 1̅01̅ 1̅

(10 ), (002), and (00 ) planes, with the zone axis along the [010] direction. Assuming the 1̅ 2̅

exposed crystal plane is (h k l) and is perpendicular to the zone axis, the angles formed by the 

(h k l) plane and the (101), ( 01), and (002) planes are all 90°, i.e.,  = 90°. Thus, we have:1̅

0.5 0.30 0
0.5 0.30 0

0.60 0

h k l
h k l

l

  
   
 

The equation set solution reveals the relationship 2h = k and l = 0, indicating that the 

exposed facets of Ru0 are {1 0}. 2̅

Ru0 in d-Ru-ZnO-900: According to HRTEM, Ru0 in d-Ru-ZnO-900 was enclosed by the (101), 

( ), ( 02), (10 ), (003), and (00 ) planes, with the zone axis along the [010] direction. 1̅01̅ 1̅ 2̅ 3̅

Assuming the exposed crystal plane is (h k l) and is perpendicular to the zone axis, the angles 

formed by the (h k l) plane and the (101), ( 02), and (003) planes are all 90°, i.e.,  = 90°. Thus, 1̅

we have:

0.5 0.30 0
0.5 0.60 0

0.90 0

h k l
h k l

l

  
   
 

The equation set solution reveals the relationship 2h = k and l = 0, indicating that the 

exposed facets of Ru0 are {1 0}.2̅

ZnO in d-Ru-ZnO-880: The lattice constants of hexagonal ZnO (JCPDS 36-1451) are a = 3.250 

Å, b = 3.250 Å, c = 5.207 Å, a/c = 0.624, α = 90o, β = 90o, γ = 120o. According to HRTEM, ZnO in 

d-Ru-ZnO-880 was enclosed by the (101), ( ), ( 03), (10 ), (004), and (00 ) planes, with the 1̅01̅ 1̅ 3̅ 4̅

zone axis along the [010] direction. Assuming the exposed crystal plane is (h k l) and is 

perpendicular to the zone axis, the angles formed by the (h k l) plane and the (101), ( 03), and 1̅

(004) planes are all 90°, i.e.,  = 90°. Thus, we have:

0.5 0.29 0
0.5 0.87 0

1.16 0

h k l
h k l

l

  
   
 
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The equation set solution reveals the relationship 2h = k and l = 0, indicating that the 

exposed facets of ZnO are {1 0}. 2̅

ZnO in d-Ru-ZnO-900 and d-Ru-ZnO-920: Similarly, according to HRTEM, ZnO in d-Ru-ZnO-

900 and d-Ru-ZnO-920 was enclosed by the (010), ( ), (100), ( 00), (110), and ( 0) planes, 01̅0 1̅ ̅11

with the zone axis along the [001] direction. Assuming the exposed crystal plane is (h k l) and 

is perpendicular to the zone axis, the angles formed by the (h k l) plane and the (010), (100), 

and (110) planes are all 90°, i.e.,  = 90°. Thus, we have:

0.5 0
0.5 0

1.5 1.5 0

k h
h k

h k

 
  
  

The equation set solution reveals the relationship h = k = 0, indicating that the exposed 

facets of ZnO are {001}. 

(2) Tetragonal RuO2

For tetragonal crystals,  can be calculated using the following equation:

1 2 1 2 1 2
2 2

2 2 2 2 2 2
1 1 1 2 2 2

2 2 2 2

  
cos

  

h h k k l l
a c

h k l h k l
a c a c
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
   

   
  

The lattice constants of tetragonal RuO2 (JCPDS 40-1290) are a = 4.499 Å, b = 4.499 Å, c = 

3.107 Å, a/c = 1.448, α = 90o, β = 90o, γ = 90o. According to HRTEM, RuO2 in d-Ru-ZnO-880, d-

Ru-ZnO-900, and d-Ru-ZnO-920 was enclosed by the (110), ( 0), (101), ( ), (211), and ( ) ̅11 1̅01̅ ̅211

planes, with the zone axis along the [ 11] direction. Assuming the exposed crystal plane is (h 1̅

k l) and is perpendicular to the zone axis, the angles formed by the (h k l) plane and the (110), 

(101), and (211) planes are all 90°, i.e.,  = 90°. Thus, we have:

0
20.24

0
20.24 9.65
2 0
20.24 9.65

h k

h l

h k l

 

  


  
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The equation set solution reveals the relationship h = k  2l, indicating that the exposed 

facets of RuO2 are { 21}. 2̅

5. Density functional theory (DFT) calculations 

All DFT calculation were performed using the Vienna Ab initio Simulation Package (VASP).8,9 

The electron exchange and correlation were described using the generalized gradient 

approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional.10 To account for 

strongly correlated effect, the Hubbard U (URu = 3 eV) was applied to the d-orbital.11 Van der 

Waals interactions were incorporated using the DFT-D3 method developed by Grimme et al. 

for dispersion correction.12

For the bulk optimization of Ru and ZnO, the cutoff energies for the plane wave basis sets 

were set to 500 eV and 600 eV, respectively.13,14 Brillouin zone integration was conducted 

using a 12 × 12 × 6 Monkhorst-Pack grid k-points for bulk Ru and a 12 × 12 × 5 grid for ZnO. 

Convergence in electronic self-consistent field cycles was considered achieved when the 

energy change was less than 1 × 10−6 eV. During the geometry optimization of bulk Ru and 

ZnO, the maximum force was limited to 0.01 eV Å1. Fig. S4 and Table S4 detail the structural 

changes of bulk Ru and ZnO before and after the geometry optimization, which served as the 

basis for constructing all slab models.

For all slab surface models (parameters detailed in Table S5), a cutoff energy of 450 eV was 

used for the plane wave basis set. A 2 × 2 × 1 Monkhorst-Pack grid k-points was employed for 

Brillouin zone integration. Electronic self-consistent field cycles were considered convergent 

when the energy change was less than 1 × 10−5 eV. A vacuum region of 15 Å separated the 

repeating slabs, with all atomic layers fully relaxed during geometry optimizations. To obtain 

accurate band structures, convergence criteria were tightened, with electronic self-consistent 

field cycles considered convergent when the energy change was less than 1 × 10−6 eV. The 

detailed band gap scanning path in the Brillouin zone is shown in Table S6.
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Charge density redistribution between Ru and ZnO layers (Δρ(Ru-ZnO)), adsorbed H2O and 

slab (Δρ(H2O)), and adsorbed H*
 and slab (Δρ(H*)) were analyzed using electronic charge 

density difference (CDD), given by:

2 2

* *

2

*

( )
( )

( )

slab Ru ZnO

slab H O slab H O

slabslab H H

Ru-ZnO
H O

H

   
   

   




   
   

   

where ρslab, ρRu, ρZnO, ρslab+H2O, ρH2O, ρslab+H*, and ρH* are the charge densities of the isolated slab, 

the Ru layer in the slab, the ZnO layer in the slab, the slab after adsorbing H2O, the isolated 

H2O fragment, the slab after adsorbing H*, and the isolated H* fragment, respectively. The 

transferred charges of Ru layer and H* were calculated by comparing the corresponding Bader 

charges. 

The work function, defined as the energy required to remove an electron from the surface 

of a condensed solid into the external vacuum, was calculated using the following equation:15

vacuum FermiWork Function E E  

where Evacuum is the energy level in the vacuum obtained from the electrostatic potential, and 

EFermi is the Fermi energy obtained from the density of states (DOS).

The d-band center (εd) is defined as:16

( )

( )

d
d

d

n d

n d

  


 








 


where  and ε represent the electronic density and energy of the d orbital, respectively.𝑛𝑑(𝜀)

HER that follows the Volmer-Heyrovsky mechanism involves the following processes:17

Volmer process: 

* + H2O → H2O* (1)

H2O* → H* + OH* (2)

H* + OH* + e → H* + OH (3)

Heyrovsky process:

H* + H2O → H* + H2O* (4)

H* + H2O* → 2H* + OH* (5)
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2H* + OH* + e → * + H2 + OH (6)

where the symbol “*” represents an adsorption site, H2O*, H*, and OH* represent adsorbed 

intermediates.

The Gibbs free energy change in each HER step (ΔG) was calculated using the equation:

ΔG = ΔE + ΔZPE – TΔS

where ΔE is the energy change obtained from geometry optimization, and ∆ZPE and ∆S are 

the zero-point energy change and entropy change determined from the computed vibrational 

frequencies at T = 298.15 K.18 As a result, ΔG for the above steps can be calculated by:

∆G1 = E(H2O*)  E(*)  E(H2O) + (∆ZPE  T∆S)1

∆G2 = E(H* + OH*)  E(H2O*) + (∆ZPE  T∆S)2

∆G3 = E(H*) + E(OH)  E(H* + OH*) + (∆ZPE  T∆S)3

∆G4 = E(H* + H2O*)  E(H*)  E(H2O) + (∆ZPE  T∆S)4

∆G5 = E(2H* + OH*)  E(H* + H2O*) + (∆ZPE  T∆S)5

∆G6 = E(*) + E(H2) + E(OH)  E(2H* + OH*) + (∆ZPE  T∆S)6

where E(*), E(H2O*), E(H* + OH*), E(H* + H2O*), E(2H* + OH*) and E(H*) are the computed 

energies of pure surface and the surface after adsorbing H2O*, H* + OH*, H* + H2O*, 2H* + OH*, 

and H*, respectively. E(H2O) and E(H2) are the computed energies of H2O and H2 molecules, 

respectively. E(OH) is the energy of OH obtained from the thermodynamic relation of H2O = 

2H+ + OH.

The adsorption behaviors of H on different computational models were studied by 

comparing the Gibbs free energy change of H* adsorption (ΔGH*), calculated using the 

following equation:19

ΔGH* = Eslab + H  Eslab  1/2EH2 + ∆ZPE  T∆S

where Eslab + H, Eslab, and EH2 are the slab energy after adsorbing H, the slab energy, and the 

energy of a free hydrogen molecule, respectively. The zero-point energy change (∆ZPE) and 

entropy change (∆S) were determined from the computed vibrational frequencies at T = 

298.15 K.18
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Fig. S4 Crystal structure of bulk (a) Ru and (b) ZnO before and after geometric optimization.
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Fig. S6 Top view of differential charge densities of (a) Ru(1 0)-ZnO(1 0), (b) Ru(1 0)-ZnO(001), 2̅ 2̅ 2̅

and (c) de-Ru(1 0)-ZnO(001) models after geometric optimization. Isosurface = ± 0.008 e Å3. 2̅

Yellow and green regions represent electron accumulation and depletion, respectively.
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Fig. S12 (a) LSV curves, (b) Tafel plots, (c) exchange current densities, and (d) Nyquist plots of 
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Fig. S14 RHE calibration results of the Ag/AgCl (3.5 mol L1 KCl) refence electrode in 1 mol L1 
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Fig. S17 Optimized differential charge density of adsorbed H2O on (a) Ru(1 0)-ZnO(1 0), (b) 2̅ 2̅

Ru(1 0)-ZnO(001), and (c) de-Ru(1 0)-ZnO(001) models. Isosurface = ± 0.005 e Å3. Yellow and 2̅ 2̅

green regions represent electron accumulation and depletion, respectively.
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Fig. S18 Optimized adsorption configurations of HER intermediates in the Volmer-Heyrovsky 

process on Ru(1 0)-ZnO(1 0) and Ru(1 0)-ZnO(001) models (Top view).2̅ 2̅ 2̅
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Fig. S19 Top view of optimized adsorption configuration of H* (left panel), band gap after H* 

adsorption (middle panel), and projected electronic density of states after H* adsorption (right 

panel) on (a) Ru(1 0)-ZnO(1 0), (b) Ru(1 0)-ZnO(001), and (c) de-Ru(1 0)-ZnO(001) models.2̅ 2̅ 2̅ 2̅
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Fig. S20 Optimized differential charge densities of adsorbed H* on (a) Ru(1 0)-ZnO(1 0), (b) 2̅ 2̅
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Fig. S21 (a) SEM images of spent d-Ru-ZnO-880, spent d-Ru-ZnO-900, and spent d-Ru-ZnO-920; 

(b) EDX mapping images of Ru, O, Zn, C, and N of spent d-Ru-ZnO-900; (c) Ru 3p, (d) Zn 2p, (e) 

O 1s, (f) C 1s and K 2p, and (g) N 1s XPS spectra of spent d-Ru-ZnO-880; (h) Powder XRD 

patterns of spent d-Ru-ZnO-880, spent d-Ru-ZnO-900, and spent d-Ru-ZnO-920.
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Fig. S22 SEM and corresponding EDX mapping images of Ru, O, Zn, C, and N of spent d-Ru-

ZnO-920.
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ZnO-900 catalyst after a 50-hour durability test. 
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Table S1. Physicochemical parameters of d-Ru-ZIF-8, d-Ru-ZnO-880, d-Ru-ZnO-900, and d-Ru-ZnO-920.

Material
Material loading on 

NF (mg cm−2)a

Ru content 

(wt%)b

Zn content 

(wt%)b

Ru: Zn bulk 

molar ratiob

SBET

(m2 g1)

dpore

(nm)

Vpore

(cm3 g1)

Ru-ZIF-8 n.m.c n.m. n.m. n.m. 161 9.8 0.39

d-Ru-ZnO-880 1.0 8.8 33.7 0.17 24 5.4 0.03

d-Ru-ZnO-900 1.0 11.5 38.6 0.19 42 5.6 0.06

d-Ru-ZnO-920 1.0 8.2 38.0 0.14 44 4.8 0.05

a Determined by a weighing method.

b Determined by ICPAES.

c n.m.: not measured.
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Table S2. Fitting results of Zn 2p and Ru 3p spectra of d-Ru-ZnO-880, d-Ru-ZnO-900, and d-Ru-ZnO-920.

ZnO (eV) Ru0 (eV) RuO2 (eV)
Sample

2p3/2 2p1/2

ZnO Auger line (eV)
3p3/2 3p1/2 3p3/2 3p1/2

d-Ru-ZnO-880 1021.3 1044.4 474.8 461.5 483.5 463.4 485.4

d-Ru-ZnO-900 1021.3 1044.4 474.8 461.6 483.6 463.4 485.4

d-Ru-ZnO-920 1021.3 1044.4 474.8 461.7 486.7 463.4 485.4
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Table S3. Fitting results of Ru 3d and C 1s spectra of d-Ru-ZnO-880, d-Ru-ZnO-900, and d-Ru-ZnO-920. 

Ru0 (eV) RuO2 (eV)
Sample

3d5/2 3d3/2 3d5/2 3d3/2

Graphite C

(eV)

CO

(eV)

d-Ru-ZnO-880 280.2 284.4 281.6 285.8 284.5 287.5

d-Ru-ZnO-900 280.3 284.5 281.6 285.8 284.5 287.5

d-Ru-ZnO-920 280.4 284.6 281.6 285.8 284.5 287.5
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Table S4. Crystal parameters of Ru and ZnO. 

Ru ZnO

Experimental 

value13
Computed value Deviation Experimental value14 Computed value Deviation

a (Å) 2.724 2.717 0.3% 3.254 3.288 1.0%

b (Å) 2.724 2.717 0.3% 3.254 3.288 1.0%

c (Å) 4.317 4.303 0.3% 5.238 5.305 1.3%

α (°) 90 90 0 90 90 0

β (°) 90 90 0 90 90 0

γ (°) 120 120 0 120 120 0
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Table S5. Model parameters in DFT calculations.

Ru(1 0)-ZnO(1 0)2̅ 2̅ Ru(1 0)-ZnO(001)2̅ de-Ru(1 0)-ZnO(001) 2̅

a (Å) 12.148 12.149 12.149

b (Å) 10.012 9.638 9.638

c (Å)a 22.506 22.382 22.382

Number of valence electrons 768 768 767

Number of atoms 72

(Ru: 24, Zn: 24, O: 24)

72

(Ru: 24, Zn: 24, O: 24)

72

(Ru: 24, Zn: 24, O: 24)

a c-direction contains a 15 Å-thick vacuum layer. 



41

Table S6. Band gap scanning path in the Brillouin zone (the Γ-spot is the center, fractional coordinates).20

Label k1 k2 k3

Γ 0 0 0

A 0 0 0.5

X 0.5 0 0

S 0.5 0.5 0

Y 0 0.5 0
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Table S7. EIS fitting results of c-Ru-ZnO-900, o-Ru-ZnO-900, d-Ru-ZnO-880, d-Ru-ZnO-900, d-Ru-ZnO-920, and Pt/C benchmark in HER.

c-Ru-ZnO-900 o-Ru-ZnO-900 d-Ru-ZnO-880 d-Ru-ZnO-900 d-Ru-ZnO-920 Pt/C
Resistance (Ω)

Value Error Value Error Value Error Value Error Value Error Value Error 

Rs 1.7 2.0% 1.1 1.2% 1.3 2.4%    1.2   0.3% 1.2 0.4% 1.5 0.6%

Rct 129.0 1.0% 92.2 1.7% 101.3 1.7%   1.6  0.6% 4.5 0.5% 0.7 5.8%

CPE-T 0.003 1.1% 0.005 1.9% 0.005 1.6%    0.005  3.3% 0.004 2.1% 0.2 12.7%

CPE-P 0.8 0.4% 0.8 0.5% 0.8 0.6%   0.8  0.7% 0.8 0.4% 0.5 5.3%
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Table S8. ECSA of c-Ru-ZnO-900, o-Ru-ZnO-900, d-Ru-ZnO-880, d-Ru-ZnO-900, and d-Ru-ZnO-920.

Sample c-Ru-ZnO-900 o-Ru-ZnO-900 d-Ru-ZnO-880 d-Ru-ZnO-900 d-Ru-ZnO-920

Cdl (mF cm2) 2.5 2.7 1.7 9.2 3.8

ECSA (cm2) 62.5 67.5 42.5 230 95
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Table S9. Comparison of overpotentials (η10 and η50) and charge transfer resistances (Rct) of d-Ru-ZnO-880, d-Ru-ZnO-900, and d-Ru-ZnO-920 coated 

on nickel foam and glassy carbon electrodes.

NFa (mV) GCb (mV)
Catalysts

η10 η50

Rct
a

 (Ω)
η10 η50

Rct
b

 (Ω)

d-Ru-ZnO-880 230.4 343.2 101.3 512.9 n.m.c 3269.0

d-Ru-ZnO-900 25.0 96.9 1.6 44.2 140.7 36.3

d-Ru-ZnO-920 97.5 197.9 4.5 141.9 430.9 370.4

a Results of catalysts coated on nickel foam substrate.

b Results of catalysts coated on glassy carbon electrode.

c n.m.: too large to measure.
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Table S10. Comparison of d-Ru-ZnO-900 constituents before and after durability test determined by ICPAES.

Catalyst Ru content (wt%) Zn content (wt%) Ru: Zn molar ratio

Fresh d-Ru-ZnO-900 11.5 38.6 0.19

d-Ru-ZnO-900 after 50 h 24.7 20.2 0.79
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