Supporting Information

Core-Shell FAPbBr₃@GA₂PbBr₄ Quantum Dots: One Step Fabrication and Potantial Applications for Light-Emitting Diodes

Jiaqi Liu,[†] Feng Zhang,^{*,‡} Cuihe Fan,[†] Zhengwei Cao,[†] Yuying Hao^{*†}

[†] Key Laboratory of Advanced Transducers and Intelligent Control System (Ministry of Education), Taiyuan University of Technology, Taiyuan 030024, China.

‡ Department of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China

* Email: <u>fengzhang@bjut.edu.cn</u>; <u>haoyuying@tyut.edu.cn</u>

Figure S1. (a) Photographs of sample x = 0.85, x = 0.9, and x = 0.95 under UV radiation. (b) PL spectra of corresponding samples shown in Figure S1a.

Figure S2. Analysis of size distribution for sample x = 0 (a), x = 0.2 (b), x = 0.4 (c), x = 0.6 (d) and x = 0.8 (e). (f) The average size variation of as fabricated QDs with addition amount of GABr.

Figure S3. High resolution TEM image of sample x = 0.8.

Figure S4. Enlarged XRD patterns (from 7.5° to 13.5°) for x = 0, x = 0.2, x = 0.4, x = 0.6, x = 0.8 and x = 1.0.

Figure S5. XPS results for sample x = 0, x = 0.4 and x = 0.8. (a) XPS full spectra. (b) XPS Br-3d spectra.

Figure S6. Time resolved PL spectra of QDs in solid state with x ranging from 0 to 1.

Figure S7. Plots of FWHM as a function of temperature for sample x = 0 and x = 0.4.

Figure S8. Photostability and moisture stability test for as fabricated FAPbBr₃ QDs and FAPbBr₃/GA₂PbBr₄ QDs. (a) PL intensity variation of FAPbBr₃ QDs and FAPbBr₃/GA₂PbBr₄ QDs under UV radiation (365 nm). (b, c) Corresponding PL spectra of FAPbBr₃ QDs and FAPbBr₃/GA₂PbBr₄ QDs under UV radiation, respectively. (d) PL intensity variation of FAPbBr₃ QDs and FAPbBr₃/GA₂PbBr₄ QDs after water exposure. (e ,f) Corresponding PL spectra of FAPbBr₃ QDs and FAPbBr₃/GA₂PbBr₄ QDs and FAPbBr₃/GA₂PbBr₄ QDs and FAPbBr₃/GA₂PbBr₄ QDs and FAPbBr₃/GA₂PbBr₄ QDs after water exposure at different time periods.

Sample	FABr	GABr	PbBr ₂
$\mathbf{x} = 0$	0.0125 g	0 g	0.0365 g
x = 0.2	0.01 g	0.0028 g	0.0365 g
$\mathbf{x} = 0.4$	0.0075 g	0.0056 g	0.0365 g
x = 0.6	0.005 g	0.0084 g	0.0365 g
x = 0.8	0.0025 g	0.0112 g	0.0365 g
x = 1.0	0 g	0.0140 g	0.0365 g

Table S1 Detailed addition amount of FABr, GABr, and PbBr₂ for sample x = 0, x = 0.2, x = 0.4, x = 0.6, x = 0.8 and x = 1.0.

Table S2. Fitting results of average PL lifetime for sample x = 0, x = 0.2, x = 0.4, x = 0.6, x = 0.8 and x = 1.0.

Sample	Average PL lifetime
x = 0	29.92 ns
x = 0.2	70.66 ns
$\mathbf{x} = 0.4$	170.38 ns
x = 0.6	117.56 ns
x = 0.8	40.25 ns
x = 1.0	11.76 ns