Supplementary information

Nickel Sulfide Cocatalyst-Modified Silicon Nanowire Arrays

for Efficient Seawater-based Hydrogen Generation

Junjie Wang^{1,#}, Bo Wang^{1,2,#}, Xinmeng He^{1,#}, Jun Lv^{1,3,*}, Zhiyong Bao^{1,3}, Jiewu Cui^{1,3},

Guangqing Xu^{1,3,*} and Wangqiang Shen^{1,3,4,*}

¹*School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009,*

China

²*School of Physics, Nanjing University, Nanjing 210093, China*

³*Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China* ⁴*Engineering Research Center of High-Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei, 230009, China #These authors contributed equally to this work.*

*Corresponding author.

E-mail addresses: lvjun@hfut.edu.cn (J. L.), gqxu1979@hfut.edu.cn (G. X.) and shenwq@hfut.edu.cn (W. S.)

Tubular furnace

Figure S1. Schematic diagram of the preparation process for NiS_x/SiNWs.

Figure S2. TEM image of Ni/SiNWs (a, b and d), HRTEM image (c), the corresponding elemental maps: (e) Ni and (f) Si.

Figure S3. Photoelectrochemical hydrogen evolution performances of Ni/SiNWs: (a) Linear scanning voltammogram, (b) Nyquist impedance spectrogram, (c) PEC stability tests of SiNWs and Ni/SiNWs photocathodes in simulated seawater measured at -0.33 V vs. RHE under 100 mW·cm⁻² illumination and (d) the corresponding H_2 evolution performance of SiNWs and Ni/SiNWs photocathodes in simulated seawater.

The as-fabricated SiNWs and Ni/SiNWs photocathodes were performed under photoelectrochemical test. As Figure S3a shows, the current density of Ni/SiNWs are significantly higher than SiNWs photocathode under the same potential, which illustrates the superior electrocatalytic activity of Ni nanoparticles. The Ni/SiNWs-45 exhibits the optimum performance, while further increasing the deposition time of Ni, the performance of Ni/SiNWs declines, which may be ascribed to the agglomeration of Ni nanoparticles. Figure S3b is the Nyquist spectra of Ni/SiNWs with different deposition times, the decreased radius of Ni/SiNWs compared to SiNWs also indicates the faster carriers transfer property at the solid/electrolyte interface. The long-time photoelectrochemical performance is illustrated in Figure S3c, all Ni/SiNWs photocathodes exhibits higher current density than SiNWs illustrating the electrocatalytic activity of Ni NPs. However, the performance of Ni/SiNWs photocathode gradually decrease, which could be ascribed to the oxidation of Ni NPs during the PEC process. The Ni 2p XPS result of Ni/SiNWs photocathode after PEC process for 4h also convinced that the Ni^{2+} peak increases and the Ni^{0} peak disappears (Figure S4). The corresponding H_2 evolution amount was obtained in Figure S3d, the optimized Ni/SiNWs-45 photocathode exhibits H_2 yield rate of 62.2 μ mol·h⁻¹·cm⁻², while the unloaded SiNWs photocathode is only 6.13μ mol·h⁻¹·cm⁻². Thus, the instability of Ni nanoparticles hampers its application on PEC HER process, although it's excellent catalytic activity.

Figure S4. XPS spectrum of Ni 2p in Ni/SiNWs after photoelectrochemical hydrogen evolution process.

Figure S5. SEM images of NiS_x/SiNWs: (a) before photoelectrochemical hydrogen evolution process, (b) after photoelectrochemical hydrogen evolution process.

Figure S6. High resolution XPS spectra of (a) Ni 2p and (b) S 2p in NiS_x/SiNWs after photoelectrochemical hydrogen evolution process.

Table S2. Comparison with the similar reported works in literature

References

1. X. M. Niu, Q. W. Tang, B. L. He and P. Z. Yang, Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting, *Electrochimica Acta*, 2016, **208**, 180- 187.

2. J. J. Zheng, Seawater splitting for high-efficiency hydrogen evolution by alloyed $PtNi_x$ electrocatalysts, *Applied Surface Science*, 2017, **413**, 360-365.

3. M. Patel, W. H. Park, A. Ray, J. Kim and J. H. Lee, Photoelectrocatalytic sea water splitting using Kirkendall diffusion grown functional Co3O⁴ film, *Solar Energy Materials and Solar Cells*, 2017, **171**, 267-274.

4. F. F. Lin, R. R. Tian, P. Dong, G. F. Jiang, F. T. He, S. J. Wang, R. B. Fu, C. C. Zhao, Y. Y. Gu and S. B. Wang, Defect-rich $MoS₂/NiS₂$ nanosheets loaded on SiNWs for efficient and stable photoelectrochemical hydrogen production, *Journal of Colloid and Interface Science*, 2023, **631**, 133-142.

5. B. Wang, H. N. Wu, G. Q. Xu, X. Y. Zhang, X. Shu, J. Lv and Y. C.Wu, MoS_x quantum dotmodified black silicon for highly efficient photoelectrochemical hydrogen evolution, *ACS Sustainable Chemistry & Engineering*, 2019, **7**, 17598-17605.

6. X. Y. Yuan, Y. Xu, H. Meng, Y. D. Han, J. B. Wu, J. L. Xu and X. Zhang, Fabrication of ternary polyaniline-graphene α ide-TiO₂ hybrid films with enhanced activity for photoelectrocatalytic hydrogen production, *Separation and Purification Technology*, 2018, **193**, 358-367.

7. M. L. Lee, P. H. Liao, G. L. Li, H. W. Chang, C. W. Lee and J. K. Sheu, Enhanced production rates of hydrogen generation and carbon dioxide reduction using aluminum gallium nitride/gallium nitride heteroepitaxial films as photoelectrodes in seawater, *Solar Energy Materials and Solar Cells*, 2019, **202**, 110153.