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Figure S1. Schematic diagram of the preparation process for NiSx/SiNWs.

Figure S2. TEM image of Ni/SiNWs (a, b and d), HRTEM image (c), the corresponding elemental 
maps: (e) Ni and (f) Si.
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Figure S3. Photoelectrochemical hydrogen evolution performances of Ni/SiNWs: (a) Linear 
scanning voltammogram, (b) Nyquist impedance spectrogram, (c) PEC stability tests of SiNWs and 
Ni/SiNWs photocathodes in simulated seawater measured at -0.33 V vs. RHE under 100 mW‧cm-2 
illumination and (d) the corresponding H2 evolution performance of SiNWs and Ni/SiNWs 
photocathodes in simulated seawater.

The as-fabricated SiNWs and Ni/SiNWs photocathodes were performed under 
photoelectrochemical test. As Figure S3a shows, the current density of Ni/SiNWs are 
significantly higher than SiNWs photocathode under the same potential, which 
illustrates the superior electrocatalytic activity of Ni nanoparticles. The Ni/SiNWs-45 
exhibits the optimum performance, while further increasing the deposition time of Ni, 
the performance of Ni/SiNWs declines, which may be ascribed to the agglomeration of 
Ni nanoparticles. Figure S3b is the Nyquist spectra of Ni/SiNWs with different 
deposition times, the decreased radius of Ni/SiNWs compared to SiNWs also indicates 
the faster carriers transfer property at the solid/electrolyte interface. The long-time 
photoelectrochemical performance is illustrated in Figure S3c, all Ni/SiNWs 
photocathodes exhibits higher current density than SiNWs illustrating the 
electrocatalytic activity of Ni NPs. However, the performance of Ni/SiNWs 
photocathode gradually decrease, which could be ascribed to the oxidation of Ni NPs 
during the PEC process. The Ni 2p XPS result of Ni/SiNWs photocathode after PEC 
process for 4h also convinced that the Ni2+ peak increases and the Ni0 peak disappears 
(Figure S4). The corresponding H2 evolution amount was obtained in Figure S3d, the 
optimized Ni/SiNWs-45 photocathode exhibits H2 yield rate of 62.2 μmol·h-1·cm-2, 
while the unloaded SiNWs photocathode is only 6.13 μmol·h-1·cm-2. Thus, the 
instability of Ni nanoparticles hampers its application on PEC HER process, although 
it’s excellent catalytic activity.
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Figure S4. XPS spectrum of Ni 2p in Ni/SiNWs after photoelectrochemical hydrogen evolution 
process.

Figure S5. SEM images of NiSx/SiNWs: (a) before photoelectrochemical hydrogen evolution 
process, (b) after photoelectrochemical hydrogen evolution process.
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Figure S6. High resolution XPS spectra of (a) Ni 2p and (b) S 2p in NiSx/SiNWs after 
photoelectrochemical hydrogen evolution process.

Table S1. Fitting results of EIS curves for SiNWs and NiSx/SiNWs samples

Samples Rs Rct CPE-T CPE-P
SiNWs 45.22 21072 1.407×10-5 0.995
NiSx/SiNWs 22.58 4994 6.607×10-5 0.802
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Table S2. Comparison with the similar reported works in literature

Photocathode Electrolyte

Hydrogen 
evolution potential 
at -10 mAcm-2 (V 

vs. RHE)

V vs. RHE/ H2 

evolution 

rate(µmolh-1cm-2)

Refs

NiSx/SiNWs simulated seawater -0.316 -0.33/189.15 This work

RuCo@Ti simulated seawater -0.387 ~ 1

PtNix natural seawater -0.38 ~ 2

Co3O4 natural seawater -0.950 ~ 3

SiNWs@Mo
S2/NiS2

0.5 molL-1 Na2SO4 -0.560 -0.50/183 4

MoS2/SiNWs 0.5 molL-1 H2SO4 -0.300 0/226.5 5

PANI/GO/ 

TiO2
simulated seawater ~ 0.07/72.5 6

AlGaN/ GaN 

heteroepitaxia

l films

natural seawater ~ -0. 4/95 7
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