# **Supplementary information**

### Nickel Sulfide Cocatalyst-Modified Silicon Nanowire Arrays

## for Efficient Seawater-based Hydrogen Generation

Junjie Wang<sup>1,#</sup>, Bo Wang<sup>1,2,#</sup>, Xinmeng He<sup>1,#</sup>, Jun Lv<sup>1,3,\*</sup>, Zhiyong Bao<sup>1,3</sup>, Jiewu Cui<sup>1,3</sup>,

Guangqing Xu<sup>1,3,\*</sup> and Wangqiang Shen<sup>1,3,4,\*</sup>

<sup>1</sup>School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009,

China

<sup>2</sup>School of Physics, Nanjing University, Nanjing 210093, China

<sup>3</sup>Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China <sup>4</sup>Engineering Research Center of High-Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei, 230009, China <sup>#</sup>These authors contributed equally to this work.

\*Corresponding author.

E-mail addresses: lvjun@hfut.edu.cn (J. L.), gqxu1979@hfut.edu.cn (G. X.) and shenwq@hfut.edu.cn (W. S.)



**Tubular furnace** 

Figure S1. Schematic diagram of the preparation process for NiS<sub>x</sub>/SiNWs.



**Figure S2.** TEM image of Ni/SiNWs (a, b and d), HRTEM image (c), the corresponding elemental maps: (e) Ni and (f) Si.



**Figure S3.** Photoelectrochemical hydrogen evolution performances of Ni/SiNWs: (a) Linear scanning voltammogram, (b) Nyquist impedance spectrogram, (c) PEC stability tests of SiNWs and Ni/SiNWs photocathodes in simulated seawater measured at -0.33 V vs. RHE under 100 mW·cm<sup>-2</sup> illumination and (d) the corresponding H<sub>2</sub> evolution performance of SiNWs and Ni/SiNWs photocathodes in simulated seawater.

The as-fabricated SiNWs and Ni/SiNWs photocathodes were performed under photoelectrochemical test. As Figure S3a shows, the current density of Ni/SiNWs are significantly higher than SiNWs photocathode under the same potential, which illustrates the superior electrocatalytic activity of Ni nanoparticles. The Ni/SiNWs-45 exhibits the optimum performance, while further increasing the deposition time of Ni, the performance of Ni/SiNWs declines, which may be ascribed to the agglomeration of Ni nanoparticles. Figure S3b is the Nyquist spectra of Ni/SiNWs with different deposition times, the decreased radius of Ni/SiNWs compared to SiNWs also indicates the faster carriers transfer property at the solid/electrolyte interface. The long-time photoelectrochemical performance is illustrated in Figure S3c, all Ni/SiNWs photocathodes exhibits higher current density than SiNWs illustrating the electrocatalytic activity of Ni NPs. However, the performance of Ni/SiNWs photocathode gradually decrease, which could be ascribed to the oxidation of Ni NPs during the PEC process. The Ni 2p XPS result of Ni/SiNWs photocathode after PEC process for 4h also convinced that the Ni<sup>2+</sup> peak increases and the Ni<sup>0</sup> peak disappears (Figure S4). The corresponding H<sub>2</sub> evolution amount was obtained in Figure S3d, the optimized Ni/SiNWs-45 photocathode exhibits H<sub>2</sub> yield rate of 62.2  $\mu$ mol·h<sup>-1</sup>·cm<sup>-2</sup>, while the unloaded SiNWs photocathode is only 6.13 µmol·h<sup>-1</sup>·cm<sup>-2</sup>. Thus, the instability of Ni nanoparticles hampers its application on PEC HER process, although it's excellent catalytic activity.



Figure S4. XPS spectrum of Ni 2p in Ni/SiNWs after photoelectrochemical hydrogen evolution process.



**Figure S5.** SEM images of  $NiS_x/SiNWs$ : (a) before photoelectrochemical hydrogen evolution process, (b) after photoelectrochemical hydrogen evolution process.



Figure S6. High resolution XPS spectra of (a) Ni 2p and (b) S 2p in  $NiS_x/SiNWs$  after photoelectrochemical hydrogen evolution process.

Table S1. Fitting results of EIS curves for SiNWs and  $NiS_x/SiNWs$  samples

| Samples                 | Rs    | Rct   | CPE-T                  | CPE-P |
|-------------------------|-------|-------|------------------------|-------|
| SiNWs                   | 45.22 | 21072 | 1.407×10 <sup>-5</sup> | 0.995 |
| NiS <sub>x</sub> /SiNWs | 22.58 | 4994  | 6.607×10 <sup>-5</sup> | 0.802 |

| Photocathode                                 | Electrolyte                                             | Hydrogen<br>evolution potential<br>at -10 mA·cm <sup>-2</sup> (V<br>vs. RHE) | V vs. RHE/ H <sub>2</sub><br>evolution<br>rate(µmol·h <sup>-1</sup> ·cm <sup>-2</sup> ) | Refs      |
|----------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------|
| NiS <sub>x</sub> /SiNWs                      | simulated seawater                                      | -0.316                                                                       | -0.33/189.15                                                                            | This work |
| RuCo@Ti                                      | simulated seawater                                      | -0.387                                                                       | ~                                                                                       | 1         |
| PtNi <sub>x</sub>                            | natural seawater                                        | -0.38                                                                        | ~                                                                                       | 2         |
| Co <sub>3</sub> O <sub>4</sub>               | natural seawater                                        | -0.950                                                                       | ~                                                                                       | 3         |
| SiNWs@Mo<br>S <sub>2</sub> /NiS <sub>2</sub> | 0.5 mol·L <sup>-1</sup> Na <sub>2</sub> SO <sub>4</sub> | -0.560                                                                       | -0.50/183                                                                               | 4         |
| MoS <sub>2</sub> /SiNWs                      | $0.5 \text{ mol}\cdot L^{-1} \text{ H}_2 \text{SO}_4$   | -0.300                                                                       | 0/226.5                                                                                 | 5         |
| PANI/GO/<br>TiO <sub>2</sub>                 | simulated seawater                                      | ~                                                                            | 0.07/72.5                                                                               | 6         |
| AlGaN/ GaN<br>heteroepitaxia<br>l films      | natural seawater                                        | ~                                                                            | -0. 4/95                                                                                | 7         |

#### Table S2. Comparison with the similar reported works in literature

#### References

1. X. M. Niu, Q. W. Tang, B. L. He and P. Z. Yang, Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting, *Electrochimica Acta*, 2016, **208**, 180-187.

2. J. J. Zheng, Seawater splitting for high-efficiency hydrogen evolution by alloyed  $PtNi_x$  electrocatalysts, *Applied Surface Science*, 2017, **413**, 360-365.

3. M. Patel, W. H. Park, A. Ray, J. Kim and J. H. Lee, Photoelectrocatalytic sea water splitting using Kirkendall diffusion grown functional Co<sub>3</sub>O<sub>4</sub> film, *Solar Energy Materials and Solar Cells*, 2017, **171**, 267-274.

4. F. F. Lin, R. R. Tian, P. Dong, G. F. Jiang, F. T. He, S. J. Wang, R. B. Fu, C. C. Zhao, Y. Y. Gu and S. B. Wang, Defect-rich MoS<sub>2</sub>/NiS<sub>2</sub> nanosheets loaded on SiNWs for efficient and stable photoelectrochemical hydrogen production, *Journal of Colloid and Interface Science*, 2023, **631**, 133-142.

5. B. Wang, H. N. Wu, G. Q. Xu, X. Y. Zhang, X. Shu, J. Lv and Y. C.Wu, MoS<sub>x</sub> quantum dotmodified black silicon for highly efficient photoelectrochemical hydrogen evolution, *ACS Sustainable Chemistry & Engineering*, 2019, **7**, 17598-17605.

6. X. Y. Yuan, Y. Xu, H. Meng, Y. D. Han, J. B. Wu, J. L. Xu and X. Zhang, Fabrication of ternary polyaniline-graphene oxide-TiO<sub>2</sub> hybrid films with enhanced activity for photoelectrocatalytic hydrogen production, *Separation and Purification Technology*, 2018, **193**, 358-367.

7. M. L. Lee, P. H. Liao, G. L. Li, H. W. Chang, C. W. Lee and J. K. Sheu, Enhanced production rates of hydrogen generation and carbon dioxide reduction using aluminum gallium nitride/gallium nitride heteroepitaxial films as photoelectrodes in seawater, *Solar Energy Materials and Solar Cells*, 2019, **202**, 110153.