Electronic Supporting Information

Design of Cr³⁺-activated broadband NIR phosphors with tunable and

abnormal thermal quenching behavior for NIR pc-LEDs

Qijian Zhu,^{†ab} Jiansheng Huo,^{†a} Quwei Ni,^{ab} Qiuhong Zhang,^a Junhao Li,^a Haiyong Ni^a and Jianbang Zhou^{*a}

^a Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510651, P.R. China.

^b School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, P.R. China.

† Q.J. Zhu and J.S. Huo contributed equally to this work.

Corresponding Author.

* *E-mail:* zhoujb4079@foxmail.com

Chemical formula	Space group	Cell parameters	Volume (Å ³)	$R_p\%$	$R_{wp}\%$
$Lu_{2.7}Ca_{0.3}Ga_{4.7}Si_{0.3}O_{12}$	Ia ³ d	a = b = c = 12.18 (Å) $\alpha = \beta = \gamma = 90 (°)$	1807.42	6.00	10.23

Table S1 Main parameters of $Lu_{2.7}Ca_{0.3}Ga_{4.7}Si_{0.3}O_{12}$ refinement.

Fig. S1. SEM and elemental mapping images of Lu_{2.7}Ca_{0.3}Ga_{4.7}Si_{0.3}O₁₂:Cr³⁺ phosphor.

Fig. S2. FWHM of $Lu_{3-x}Ca_xGa_{5-x}Si_xO_{12}$:0.01 Cr^{3+} (x = 0-0.5).

Fig. S3. PLE spectra of $Lu_{3-x}Ca_xGa_{5-x}Si_xO_{12}:0.01Cr^{3+}$ (x = 0-0.5).

Fig. S4. PL decay curves of $Lu_{3-x}Ca_xGa_{5-x}Si_xO_{12}:0.01Cr^{3+}$ (x = 0-0.4).

Fig. S5. PL spectra of $Lu_{3-x}Ca_xGa_{5-x}Si_xO_{12}$:0.01Cr³⁺ (x = 0-0.3) as a function of temperature (300-475 K).

Fig. S6. Decay curves of (a) ${}^{2}E \rightarrow {}^{4}A_{2}$ ($\lambda_{em} = 705 \text{ nm}$) and (b) ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ ($\lambda_{em} = 785 \text{ nm}$) transitions of Lu_{2.7}Ca_{0.3}Ga_{4.7}Si_{0.3}O₁₂:Cr³⁺ as a function of temperature. Normalized lifetime (the lifetime at 300 K is set as 1) of (c) ${}^{2}E \rightarrow {}^{4}A_{2}$ ($\lambda_{em} = 705 \text{ nm}$) and (d) ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ ($\lambda_{em} = 785 \text{ nm}$) transitions of Lu_{2.7}Ca_{0.3}Ga_{4.7}Si_{0.3}O₁₂:Cr³⁺ as a function of temperature.

It can be seen from **Fig. S6** that the lifetime of both ${}^{2}E \rightarrow {}^{4}A_{2}$ and ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ transitions decreases with temperature from 300 to 475 K due to enhanced nonradiative transitions. Furthermore, it should be noted that the decrease rate of the lifetime of ${}^{2}E \rightarrow {}^{4}A_{2}$ transition is much higher than that of ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$, which means that the efficiency of electron migration from ${}^{2}E$ to ${}^{4}T_{2}$ states is much higher than the nonradiative ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ transition, indicating that the radiative ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ broadband emission can be possibly strengthened at high temperatures.

Fig. S7. PL intensity of $Lu_{2.6}Ca_{0.4}Ga_{4.6}Si_{0.4}O_{12}:0.01Cr^{3+}$ (x = 0.40) as a function of temperature (300-475 K).

Fig. S8. PL intensity of $Lu_{3-x}Ca_xGa_{5-x}Si_xO_{12}:0.01Cr^{3+}$ (x = 0-0.5).

Fig. S9. XRD patterns of $Lu_{2.7}Ca_{0.3}Ga_{4.7-x}Si_{0.3}O_{12}$:xCr³⁺ (x = 0.005-0.040).

Fig. S10. PL intensity of $Lu_{2.7}Ca_{0.3}Ga_{4.7-x}Si_{0.3}O_{12}:xCr^{3+}$ (x = 0.005-0.040).

Fig. S11. PLE spectra of $Lu_{2.7}Ca_{0.3}Ga_{4.7-x}Si_{0.3}O_{12}:xCr^{3+}$ (x = 0.005-0.040).

Fig. S12. PL spectra of $Lu_{2.7}Ca_{0.3}Ga_{4.7-x}Si_{0.3}O_{12}:xCr^{3+}$ (x = 0.005-0.040) as a function of temperature (300-425 K).

Fig. S13. Electroluminescence spectrum of the fabricated NIR-LED device (300 mA).