Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Two-dimensional covalent organic framework-based hybrid nanosheet for electrochemical detection of 5-fluorouracil and uracil in biofluids

Jia Liu,^{a,b} Zhiyang Wang,^{a,b,c} Xiaowei Wu, *^{a,b} Shanyue Wei,^{b,d} Yiming Xie,^d Jing Chen ^{a,b} and Can-Zhong Lu *^{a,b,c}

^a CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

^b Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China.

^c University of Chinese Academy of Sciences, Beijing 100049, China.

^d Engineering Research Center of Environment-Friendly Function Materials, Ministry of Education, College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China.

Supporting Figures

Fig. S1. UV-vis spectra of COF, CB8, and COF/CB8.

Fig. S2. Potential intermolecular interactions between COF and CB8.

Fig. S3. Solid-state ¹³C CP-MAS NMR spectrum of COF.

Fig. S4. (a) Nitrogen adsorption-desorption isotherms and (b) pore width distribution of COF.

Fig. S5. Experimental and simulated PXRD patterns of COF.

Fig. S6. PXRD patterns of AA and AB stacking of COF.

Fig. S7. (a) Top and (b) side views of AA stacking of COF. (c) Top and (d) side views of AB stacking of COF.

Fig. S8. High resolution XPS spectra of **(a)** C 1s and **(b)** N1s of COF, and **(c)** C 1s and **(d)** N1s of COF/CB8/AuNPs.

Fig. S9. SEM images of (a) COF and (b) COF/CB8/AuNPs.

Fig. S10. Size distribution column of AuNPs in COF/CB8/AuNPs.

Fig. S11. TEM image and corresponding EDS elemental mappings of COF/AuNPs.

Fig. S12. AFM images of **(a)** COF and **(c)** COF/CB8/AuNPs, and corresponding height profiles of **(b)** COF and **(d)** COF/CB8/AuNPs.

Fig. S13. TG-DTA spectra of COF.

Fig. S14. PXRD patterns of pristine COF and after immersing in different solvents for seven days: DMF, billing water, 0.1 M HCl and 0.1 M KOH.

Fig. S15. (a) ¹H NMR and corresponding (b) zoom-in version of 1 mM CB8, 1 mM 5-FU and 1 mM CB8•5-FU in D_2O . (c) ¹H NMR and corresponding (d) zoom-in version of 1 mM CB8, 1 mM U and 1 mM CB8•U in D_2O .

Fig. S16. (a) UV-vis spectra of 40 μ M 5-FU with addition of CB8. **(b)** UV-vis titration fitting for binding constant estimation CB8•5-FU. **(c)** UV-vis spectra of 10 μ M U with addition of CB8. **(d)** UV-vis titration fitting for binding constant estimation CB8•U.

Fig. S17. (a) UV-vis spectra of 40 μ M 5-FU with addition of CB7. **(b)** UV-vis titration fitting for binding constant estimation CB7•5-FU. **(c)** UV-vis spectra of 40 μ M U with addition of CB7. **(d)** UV-vis titration fitting for binding constant estimation CB7•U.

Fig. S18. DFT optimized molecular models (side and top view) of (a) CB7•5-FU and (b) CB7•U.

Fig. S19. Differential pulse voltametric curves of **(a)** 0.4 mM 5-FU and **(b)** U in the absence and presence of 1 mM CB8 and 5 mM of 1-admantylamine (ADA) in 10 mM PBS using bare GCE as working electrode.

Fig. S20. Differential pulse voltametric curves of **(a)** 5-FU and **(b)** U in 0.1 M PBS using COF/GCE and COF/CB8/GCE as working electrode.

Fig. S21. (a) Differential pulse voltammograms of GCE modified by different volume of COF/CB8/AuNPs in 35 μ M 5-FU with 0.1 M PBS as supporting electrolyte. **(b)** Relationship between peak current of 5-FU and the volume of COF/CB8/AuNPs for GCE modification.

Fig. S22. Differential pulse voltammograms of bare GCE for detection towards (a) 5-FU and (b) U in 0.1 M PBS (pH 7.0).

Table S1. The comparison of sensing properties towards 5-FU and U by COF/CB8/AuNPs with previously reported modified electrodes in the literature.

Analyte	Electrode	Method	Linear detection range (µM)	LoD (µM)	Ref.
5-FU	AuNPs/MWCNT/GCE	DPV	0.03 ~ 10.0	0.02	[S1]
5-FU	Au/CS/PMAA/GCE	DPV	0.100 ~ 497	0.03	[S2]
5-FU	AgNPs/ PANINTs/ PGE	DPV	1.00 ~ 300	0.06	[S3]
5-FU	GQDs-PANI/ZnO- NCs/GCE	DPV	0.1 ~ 50	0.023	[S4]
5-FU	COF/CB8/AuNPs/GCE	DPV	0.8 ~ 58.4	0.037	This work
U	AMB MIP nanoarrays /Ag electrode	DPASV	0.01 ~ 2.49	0.0046	[S5]
U	NHSG/MIP/MWCNTs	DPASV	0.02 ~ 0.67	0.012	[S6]
U	PTH/MWCNTs/GCE	DPV	10 ~ 55000	0.2	[S7]
U	COF/CB8/AuNPs/GCE	DPV	0.5 ~ 62.0	0.074	This work

MWCNT: multiwall carbon nanotube. GCE: glassy carbon electrode. CS: chitosan. PMAA: poly(methacrylic acid). PANINTs: polyaniline nanotubes. PGE: pencil graphite electrode. GQDs-PANI/ZnO-NCs: graphene quantum dots-polyaniline/zinc oxide nanocomposites. PTH: poly (thionine). AMB: N-acryloyl-2-mercaptobenzamide. MIP: molecularly imprinted polymers. NHSG: non-hydrolytic sol–gel.

Fig. S23. Differential pulse voltammograms of COF/CB8/AuNPs/GCE for simultaneous detection of 5-FU and U in 0.1 M PBS.

Fig. S24. Differential pulse voltammograms of COF/CB8/AuNPs/GCE for detection towards 5-FU in in (a) native synthetic urine and (b) fetal bovine serum, and U in (c) native synthetic urine and (d) fetal bovine serum. Insets are calibration plots of U.

Matrix	Analyt e	Regression equation	Linear detection range (µM)	LoD (µM)
PBS	5-FU	/ _p = 0.3125[5-FU] + 3.4115, R ² = 0.9752	10-43	0.041
	U	$l_{\rm p} = 0.8322[U] + 10.6995,$ $R^2 = 0.9788$	5-27	0.076
Native SU	5-FU	/ _p = 0.1732[5-FU] + 7.6756, R ² = 0.9902	16-51	0.074
	U	$l_{\rm p} = 0.4166[U] + 16.7331,$ $R^2 = 0.9363$	8-30	0.15
10x diluted FBS	5-FU	l _p = 0.3127[5-FU] + 2.4379, R ² = 0.9766	17-62	0.041
	U	$I_p = 0.6523[U] + 14.7939,$ $R^2 = 0.9824$	11-41	0.098

Table S2. Summary of sensing properties for simultaneous detection of 5-FU and U in different biofluids.

Space group: P222								
3D orthorhombic; <i>α</i> = 21.3 Å, b = 19.0 Å, c = 7.4016 Å; <i>α</i> = <i>β</i> = γ = 90°								
Atom	x	У	Z					
C1	0.7458	0.14964	0.28937					
C2	0.65335	0.14633	0.51935					
С3	0.68091	0.12889	0.35157					
C4	0.64596	0.08598	0.23327					
C5	0.58692	0.05948	0.28063					
C6	0.55963	0.0747	0.44873					
C7	0.59309	0.11957	0.56719					
N8	0.78411	0.1915	0.36452					
С9	0.82923	0.76877	0.58823					
C10	0.84482	0.7099	0.69456					
C11	0.90151	0.67291	0.66804					
C12	0.94473	0.69284	0.53214					
C13	0.92921	0.75326	0.42852					
C14	0.87249	0.79038	0.45593					
C15	0.9438	0.53699	0.49276					
H17	0.76103	0.12731	0.16204					
H18	0.67873	0.17895	0.61444					
H19	0.66507	0.07131	0.10289					
H20	0.56289	0.02512	0.18641					
H21	0.57381	0.13161	0.69894					
H22	0.81409	0.694	0.80387					
H23	0.9123	0.62958	0.75782					
H24	0.96069	0.77127	0.32337					
H25	0.86327	0.83716	0.37656					
H26	0.8987	0.5623	0.47876					
C27	0	0.57684	0.5					
N28	0	0.6553	0.5					
C29	0.5	0.96379	0.5					

Table S3. Simulated atomic coordinates of COF.

Reference

[S1] Satyanarayana, M.; Goud, K. Y.; Reddy, K. K.; Gobi, K. V. Biopolymer Stabilized Nanogold Particles on Carbon Nanotube Support as Sensing Platform for Electrochemical Detection of 5-Fluorouracil in-vitro. *Electrochim. Acta* **2015**, *178*, 608-616.

[S2] Vishnu S. K, D.; Ranganathan, P.; Rwei, S.-P.; Pattamaprom, C.; Kavitha, T.; Sarojini, P. New reductant-free synthesis of gold nanoparticles-doped chitosan-based semi-IPN nanogel: A robust nanoreactor for exclusively sensitive 5-fluorouracil sensor. *Int. J. Biol. Macromol.* **2020**, *148*, 79-88.

[S3] Zahed, F. M.; Hatamluyi, B.; Lorestani, F.; Es'haghi, Z. Silver nanoparticles decorated polyaniline nanocomposite based electrochemical sensor for the determination of anticancer drug 5-fluorouracil. *J. Pharmaceut. Biomed. Anal.* **2018**, *161*, 12-19.

[S4] Hatamluyi, B.; Es'haghi, Z.; Modarres Zahed, F.; Darroudi, M. A novel electrochemical sensor based on GQDs-PANI/ZnO-NCs modified glassy carbon electrode for simultaneous determination of Irinotecan and 5-Fluorouracil in biological samples. *Sens. Actuators, B* **2019**, *286*, 540-549.

[S5] Prasad, B. B.; Kumar, A. Development of molecularly imprinted polymer nanoarrays of N-acryloyl-2-mercaptobenzamide on a silver electrode for ultratrace sensing of uracil and 5-fluorouracil. *J. Mater. Chem. B* **2015**, *3*, 5864-5876.

[S6] Prasad, B. B.; Kumar, D.; Madhuri, R.; Tiwari, M. P. Nonhydrolytic sol–gel derived imprinted polymer–multiwalled carbon nanotubes composite fiber sensors for electrochemical sensing of uracil and 5-fluorouracil. *Electrochim. Acta* **2012**, *71*, 106-115.

[S7] Liu, H.; Wang, G.; Hu, J.; Chen, D.; Zhang, W.; Fang, B. Electrocatalysis and determination of uracil on polythionine/multiwall carbon nanotubes modified electrode. *J. Appl. Polym. Sci.* **2008**, *107*, 3173-3178.