Chemical Perspectives of Heteroanionic Compounds and their Applications for Superconductors, Photoluminescent response, Nonlinear optical materials, and Thermoelectrics

Karishma Prasad[#], Vivian Nguyen[#], Bingheng Ji[#], Jasmine Quah, Danielle Goodwin, Jian Wang^{*}

Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States

Equally contributed

Corresponding author: Jian Wang jian.wang@wichita.edu

- 1. Table S1. Selected heteroanionic compounds synthesized by hydrothermal/solvothermal reactions
- 2. Table S2. Selected heteroanionic compounds synthesized by high temperature flux methods.
- 3. Table S3. Selected heteroanionic compounds synthesized by high temperature solid state methods
- 4. Table S4. Selected Oxohalides with structural information and physical properties.
- 5. Table S5. Selected Oxysulfides and Oxyselenides with structural information and physical properties.
- 6. Table S6. Selected oxypnictides with structural information and physical properties.
- 7. Table S7. Selected other heteroanionic combinations with structural information and physical properties (N-Cl, S-Cl, Se-Cl, P-Cl, P-Br, etc.).

Compounds	Synthetic conditions	Products	Ref
[O ₂ Pb ₃] ₂ (BO ₃)I	PbI ₂ (0.52 mmol, 0.240 g), LiBO ₂ (5.23 mmol, 0.260 g), and distilled water (6 mL) was sealed in an autoclave equipped with teflon liner (23 mL). The autoclave was heated to 220 °C for 72 h	Crystal size 0.177 mm × 0.160 mm × 0.054 mm	1
Li ₄ (B ₇ O ₁₂)Cl	Heating B ₂ O ₃ /Li ₂ Omixtures in molar ratios at about 900K in an excess of fused LiCl or LiBr.	polycrystalline powder	2
K ₂ Bi ₂ (SeO ₃) ₃ F	KF \cdot 2H ₂ O (2 mmol, 188 mg), SeO ₂ (2 mmol, 222 mg), Bi ₂ O ₃ (0.4 mmol, 187 mg) and 40.0 % solution of HF (25 µL) were put together with 2 mL H ₂ O. then sealed in autoclave equipped with a Teflon liner and gradually heated to 270C, held for 66 hours.	polycrystalline powder	3
Bi ₃ (SeO ₃) ₃ (Se ₂ O ₅)F	$Bi_2O_3(4.00 \times 10-4mol , 0.186 g)$ and SeO_2 (1.60×10-3mol ,0.178 g) loaded in a 23 mL Teflon cup.0.1mL of HF (50%, aq) solution added to the mixture. The Teflon cup loaded in an autoclave. The autoclave was heated to 230°C at a rate of 1°C min-1, dwelled at the temperature for 72 h, and cooled to room temperature at a rate of 0.1°C min-1.	Crystal size (0.034 mm × 0.141 mm × 0.449 mm)	4
Rb ₃ SbF ₃ (NO ₃) ₃	SbF ₃ (1.00 mmol, 0.179 g), RbNO ₃ (4.00 mmol ,0.588 g) were added into 5 mL of deionized water with a few drops of concentrated nitrate acid inhibiting the hydrolysis of SbF ₃ , and the mixture was stirred for 20 minutes while heating at 80 °C.	polycrystalline powder	5

Table S1. Selected heteroanionic compounds synthesized by hydrothermal/solvothermal reactions

Compounds	Synthetic conditions	Products	Ref
Zn ₆ S ₅ Cl ₂	ZnCl ₂ (1 mmol, 136 mg), Zn (5 mmol, 325 mg) and S (5 mmol, 160 mg) the tube was heated to 500 1C in 12 h	polycrystalline powder	6
Eu ₂ B ₅ O ₉ S	Eu_2O_3 , S, B, and B_2O_3 , KI as the flux. The tube heated from room temperature to 1223 K at the speed of 60 K/h, homogenized for 10 days, and finally cooled to 573 K in 5days with the furnace powered off.	polycrystalline powder	7
$Zn_4B_6O_{12}S$	ZnO, B_2O_3 , S, and B were mixed in a molar ratio of 12:8:3:2, KI as flux. The quartz tube was heated to 950 °C in 25 h	polycrystalline powder	8
GdFeAsO	As and Gd mixed with NaI/KI.the ampoules were slowly heated to 1320 K within 24 h. An annealing period of three to six days was applied, followed by slow cooling to 870 K with 1 K/h	polycrystalline powder	9
$\begin{bmatrix} Zn_2NX & (X = CI, \\ Br) \end{bmatrix}$	Zn_3N_2 and $ZnCl_2$ were evenly mixed with a 1:2 molar ratio. The excess of zinc halide as a flux, the mixture was heated to 600 °C within 24 h,	polycrystalline powder	10

Table S2. Selected heteroanionic compounds synthesized by high temperature flux methods.

Table S3. Selec	cted heteroanionic co	mpounds synthesiz	zed by high tempe	rature solid state me	ethods
-----------------	-----------------------	-------------------	-------------------	-----------------------	--------

Compounds	Synthetic conditions	Products	Ref
Pb ₈ B ₉ O ₂₁ F	PbO (0.0375 mol, 8.37 g), PbF_2 (0.0025 mol 0.613 g,) and H_3BO_3 (0.045 mol ,2.78 g,) in air. Then the reaction mixture was elevated to 500 °C and sintered at this temperature for 48 h.	polycrystalline powder	11
$Cs_3B_3O_3F_6$	$CsBF_4$ (3 mmol, 0.370 g), CsF (6 mmol, 0.908 g), and H_3BO_3 (6 mmol, 0.722 g) for $Cs_3B_3O_3F_6$, heated to 350 °C and held at this temperature in air for 10 h.	Crystal size (1×1×0.5 mm ³)	- 12
$ \begin{array}{c} BaTi_{2}Bi2O & or \\ (SrF)_{2}Ti_{2}Bi_{2}O \end{array} $	BaO, SrF_2 , SrO , Ti , Bi heated for 50 h at 850C for $BaTi_2Bi_2O$ and at 900C for $(SrF)_2Ti_2Bi_2O$, followed by controlled cooling at a rate of 25C/h to room temperature	polycrystalline powder	13
SrZnSO:Bi ³⁺	SrCO ₃ , ZnS, Bi_2O_3 and H_3BO_3 here, H_3BO_3 acts as a fluxing agent to lower the sintering temperature, sintered at 1050 °C for 9 h	polycrystalline powder	14
Ba ₂ Ti ₂ Cr ₂ As ₄ O	Ba, Ti, As, Cr and TiO_2 , heated to 1253 K in an evacuated quartz tube, holding for 1500 min.	polycrystalline powder	15

Table S4. Selected Oxohalides with structural information and physical properties.

Formula	Space Group	Structure Type	Structure Units	Properties	Re f
Li(SO ₃ F)	C2/m		[LiO ₄] [SO ₃ F]		16
LiNaCoPO ₄ F	$P2_1/c$	LaNaNiPO ₄ F	$[CoO_4F_2]$ $[PO_4]$	Eg(cal)=4.5 V	17
BaZnBe ₂ (BO ₃) ₂ F ₂	<i>P</i> -3		[BaO ₆ F ₆] [ZnO ₆]	Eg(cal) = 4.55 eV Δ n = 0.063 at 1064 nm	18
Pb ₂ (V ₂ O ₄ F)(VO ₂)(SeO 3) ₃	<i>P</i> 2 ₁ 2 ₁ 2 ₁		[VO ₅ F] [VO ₆] [VO ₅] [SeO ₃]	SHG: $0.3 \times$ (KDP), Eg(exp)= 2.35 eV LDT= $61 \times AgGaS_2$	19
KYb(SO ₄)F ₂	P2 ₁ /m		[YbO ₄ F ₄]	Eg(exp)= 5.36eV, paramagnetic behavior down to 2 K with a dominant antiferromagnetic coupling between spin carriers.	20
$(\mathrm{Ba}_{3}\mathrm{F})(\mathrm{Ta}_{4}\mathrm{O}_{12}\mathrm{F})$	P4 ₂ /mn m		[TaO ₆] [TaO ₅ F]		21
Na ₃ Fe ₂ (PO ₄) ₂ F ₃	P4 ₂ /mn m	Na ₃ V ₂ (PO ₄) ₂ F ₃	[PO ₄] [FeO ₄ F ₂]	Reasonable achievable capacity and stable cycle life for Li- ion batteries with poor Na-ion capacity	22
α-Ba ₃ Zn ₂ (BO ₃) ₃ F	$P2_1/c$	Bi ₂ MoO ₆	$\begin{bmatrix} ZnO_2O_2BO]_2 \\ [Zn_2O_5O_2BO][B \\ O_3] \end{bmatrix}$		23
$(ClOF_2)(NbF_6)$	$Pna2_1$	(ClOF ₂)(AsF ₆)	$[ClOF_2]^+ [NbF_6]^-$		24
$Mg_7Ge_2O_{10}F_2$	Pbam		[MgO ₄ F ₂] [GeO ₄]		25
Lu ₃ F(SeO ₃) ₄	<i>P</i> 6 ₃		[SeO ₃] [LuO ₇ F[SHG:2.5 × KDP, Eg(exp)= 3.57 eV , LDT: $36 \times \text{AgGaS}_2$	26
KMoO ₂ F ₃	P212121		[MoO ₂ F ₄]		27
CsSiP ₂ O ₇ F	P2 ₁		[SiP ₂ O ₁₀ F] made by [SiO ₅ F] and [P ₂ O ₇]	SHG: 0.7 × KDP, Eg(cal) =6.4 eV	28
Li ₃ CaB ₂ O ₅ F	Pnma		[B ₂ O ₅] [LiO ₄ F] [LiO ₂ F ₃]		29
KLa(PO ₂ F ₂) ₄	$P2_{1}/c$		$\frac{[KO_{6}F_{4}]^{15-}}{[PO_{2}F_{2}]^{-}[LaO_{8}]^{13-}}$	Eg(cal) =5.87 eV, $\Delta n = 0.023$ at 1064 nm	30
Bi ₃ (SeO ₃) ₃ (Se ₂ O ₅)F	<i>P</i> 2 ₁		[BiO ₇], BiO ₆ F] [SeO ₃] [Se ₂ O ₅]	SHG: $8 \times \text{KDP}$, Eg(exp)=3.8 eV	4
CsGa ₃ F ₆ (SeO ₃) ₂	P6 ₃ mc		$[GaO_2F_4] [SeO_3]$	SHG: $5.4 \times \text{KDP}$, Eg(exp)= 3.65 eV	31
RbGa ₃ F ₆ (SeO ₃) ₂	P ₆₃ mc		[GaO ₂ F ₄] [SeO ₃]	SHG: $5.6 \times \text{KDP}$, Eg(exp)= 3.57 eV	31
K ₄ (PO ₂ F ₂) ₂ (S ₂ O ₇)	C2/c		[S ₂ O ₇] ²⁻ [PO ₂ F ₂] ⁻	Eg(cal) =5.193 eV, $\Delta n =$ 0.015 at 1064 nm	32
$Ba(MoO_2F)_2(SeO_3)_2$	Aba2		[MoO ₅ F] [SeO ₃]	SHG: 2.8 ×KDP,	33,3

				Eg(exp)=3.23 eV,	4
				Eg(cal)=2.52 eV	
α -Na ₂ Fe(PO ₄)F	$P2_{1}/c$	Na ₂ Zr(SiO ₄) O	[NaO ₄ F ₂] [PO ₄]	ca. 90 mAh g ⁻¹	35
CsZn ₂ (BO ₃)F ₂	R32H		[BO ₃] [ZnO ₃ F]	Eg(exp)=6.2 eV, SHG: 3.2×KDP	36
K ₂ Sb(P ₂ O ₇)F	P4bm		[P ₂ O ₇] [SbO ₄ F]	Δn = 0.157 at 546 nm, SHG: 4.0× KDP, Eg(exp)=4.74 eV	37
$Li_5VF_4(SO_4)2$	$P2_{1}/c$		$[V^{3+}F_2O_4]$ [SO ₄]	high ionic conductivity of $2.2 \times 10^{-2} \text{ mS cm}^{-1}$	38
$Li(W_2O_2F_9)$	Pbcn		$[W_2O_2F_9]^-$		39
$Pb_2Al_3F_3(Te_6F_2O_{16})$	P4/mbm		$\frac{[Te_{6}F_{2}O_{16}]^{10-}}{[AlO_{4}F_{2}]}$	Eg(exp)=4.1 eV, Eg(cal)=2.13 eV	40
FeNd ₂ (SeO ₃) ₄ Cl	C2/c		[NdO ₁₀] [SeO ₃] [FeO ₄ Cl]	Possible "hidden antiferromagnetic ordering behavior".	41
K ₂ SnOF ₄	Pnma		$[SnO_2F_4]^{4-}$		42
K ₂ WO ₃ F ₂	Pnma		$[WO_4F_2]^{4-}$		42
K ₅ Sn ₂ OF ₁₁	Ama2		$[Sn_2OF_{10}]^{4-}$		43
RbBi(SeO ₃)F ₂	P n m a		[BiO ₃ F ₄] [SeO ₃]	Eg(exp)=4.01eV	44
Na ₃ Cs(MoO ₂ F ₄) ₂	P2 ₁ /c		$ \begin{array}{c} [MoO_2F_4]^{2-} \\ [NaF_6]^{5-} \\ [NaOF_7]^{8-} [IO_3]^{-}, \\ [MoO_4]^{2-} \end{array} $	Eg(cal)=2.7 eV, $\Delta n = 0.210$ at 1064 nm	45
Cs ₃ B ₃ O ₃ F ₆	Pbcn		$\begin{bmatrix} B_3O_3F_6 \end{bmatrix}$ $\begin{bmatrix} BO_2F_2 \end{bmatrix}$	$\Delta n=0.0069 \text{ at } 532 \text{ nm}),$ Eg(cal)=5.772 eV	12
K ₂ Bi ₂ (SeO ₃) ₃ F ₂	Cm		$\begin{bmatrix} Bi(1)O_{6}F_{2} \\ [Bi(2)O_{5}F_{2}] \\ [SeO_{3}] \end{bmatrix}$	Eg(exp)= 3.72 eV , LDT= 81.3 (1) AgGaS ₂ , $\Delta n =$ 0.105(1) at 546.1 nm, KDP: $15 \times$ KDP	3
Rb ₂ Bi ₂ (SeO ₃) ₃ F ₂	Cm		$[Bi(1)O_6F_2] \\ [Bi(2)O_5F_2] \\ [SeO_3]$	Eg(exp)= 3.73 eV , LDTs= $48.8 (2) \times \text{AgGaS}_2$, $\Delta n = 0.088(2) \text{ at } 546.1 \text{ nm}$, SHG: $14.4 \times \text{KDP}$	3
$Al_8(BO_3)_4(B_2O_5)F_8$	$P4_2/nm$ c		$\begin{bmatrix} AlO_4F_2 \end{bmatrix} \begin{bmatrix} BO_3 \end{bmatrix}$ $\begin{bmatrix} B_2O_5 \end{bmatrix}$	Eg(cal)=5.74 eV	46
PbB ₅ O ₇ F ₃	$Cmc2_1$	CaB ₅ O ₇ F ₃	[BO ₃] [BO ₃ F] [PbO ₆ F ₃]	SHG: $6 \times \text{KDP}$, $\Delta n = 0.12$ at 1064 nm	47
La ₃ F ₂ Se ₂ TaO ₄	Pnma	La ₃ NbSe ₂ O ₄ F ₂	[TaO ₅ Se] ^{7–}		48
$(XeF_5)_2(CrF_6)(CrOF_4)_2$	<i>P</i> -1		$\frac{[XeF_5]^+ [Xe_2F_{11}]^+}{[CrOF_5]^{2-}} \\ \frac{[Cr_2O_8F_5]^{2-}}{[Cr_2O_8F_5]^{2-}} $		49
$K(Mo_2O_2F_9)$	P2/c		[Mo ₂ O ₂ F ₉] ⁻		50
Rb ₃ SbF ₃ (NO ₃) ₃	P2 ₁		[SbF ₃ (NO ₃) ₃] ³⁻	SHG: $2.2 \times \text{KDP}$, Eg(exp)= 3.75 eV, Eg(cal)= 3.08 eV	5

$Cs_8Dy_2Ge_{16}O_{38}F_2$	Pnn2		[Ge ₂ O ₇ F]		51
CsB(PO ₄)F	P2 ₁ 3	K ₃ VO ₄ (cP32)	[PO ₄] [BO ₃ F]	SHG: $0.3 \times \text{KDP}$,	52
KYb ₂ F ₅ (SO ₄)	Pbcm	LaV ₂ O ₆ IO ₃	[YbO ₂ F ₆] [SO ₄]	weak magnetic interaction between the neighboring Yb ³⁺ ions	53
RbBi ₂ (SeO ₃)F ₅	<i>P</i> -1		$[BiO_3F_5]$ [SeO ₃]	Eg(exp)=4.18eV	54
Pb ₃ B ₆ O ₁₁ F ₂	<i>P</i> 2 ₁	Ba ₃ B ₆ O ₁₁ F ₂	[$Pb_{3}O_{x}F_{2} (x = 4, 5, 6)$], [FPb_{3}] layer, [BO_{4}] [BO_{3}]	Eg(exp)= $3.02eV$, Eg(cal)= $2.55 eV$, d $\Delta n = 0.071 at 534 nm$, SHG: ~4 × KDP	55
PbB ₅ O ₈ F	Pbca		[B ₅ O ₁₀ F] ⁶⁻	$\Delta n = 0.0685$ at 1064 nm, $\Delta n = 0.0737$ at 400 nm	56
PbB ₂ O ₃ F ₂	$P3_1m$		[BO ₃ F]	SHG:13 × KDP	57
SnB ₂ O ₃ F ₂	$P3_1m$		[BO ₃ F]	SHG:4 \times KDP	58
Pb ₈ (B ₉ O ₂₁)F	R-3cH		$[B_9O_{21}]^{15-}[BO_3]$	cutoff edge is about 276 nm	11
Pb ₂ BO ₃ F	<i>P</i> 6 ₃ / <i>m</i>		[PbO ₃ F ₂] [BO ₃]	melts congruently at 448 °C	59
Pb ₃ O(BO ₃)F	Pbcm		[PbO ₃ F] [PbO ₄] [BO ₃]		60

Formula	Space Group	Structure type	BBU's	Property	Re f
BiAgOSe	P4/nmmZ	CuHfSi ₂	$\frac{[Bi_2O_2]^{2+}}{[Ag_2Se_2]^{2-}}$	$\begin{split} E(g) &= 0.95 \text{ eV.} \\ \text{lower lattice thermal} \\ \text{conductivities (0.61} \\ W \cdot m^{-1} \cdot K^{-1} \text{ at room} \\ \text{temperature and } 0.35 \\ W \cdot m^{-1} \cdot K^{-1} \text{ at } 650 \text{ K} \end{split}$	61
$A_{2}Mn(SeO_{4})F_{3} (A = K, Rb, Cs)$	Pbcn		${}_{\infty}[MnF_{3}O_{2}]^{4-}$ [SeO ₄]		62
$Ti_4O(Se_2)_4Br_6$	P121/c1		$[Ti_4(\mu_4-O)] [Se_2]^{2-}$	Raman band at 224 cm ⁻¹	63
Sr_{3-} $_xCa_xFe_2O_5Cu_2Ch_2$ (Ch= S, Se; x=1, 2)	I4/mmm		[FeO ₅][Cu ₂ Ch ₂]		64
$\begin{array}{l} RETa_{2}MgQB_{8}O_{26} \\ (RE = Sm, Eu, Gd; \\ Q = S, Se), \\ Eu_{6}Ta_{2}MgSB_{8}O_{26} \\ (1) \\ Sm_{6}Ta_{2}MgSeB_{8}O_{26} \\ (2) \\ Eu_{6}Ta_{2}MgSeB_{8}O_{26} \\ (3), \\ Gd_{6}Ta_{2}MgSeB_{8}O_{26} \\ (4) \end{array}$	P-3		$[B_4O_{10}]^{8-}$ $_{\infty}[Mg(TaB_4O_{13})_2]^{16-}$	E(g)= 3.62, 3.73, 3.56, and 3.79 eV (1–4)	65
$\begin{array}{c} A_2F_2Fe_2OQ_2\\ (A=Sr, Ba; Q=S, Se) \end{array}$	I4/mmm	Fe ₂ La ₂ O ₃ Se	$[Sr_2F_2] [Sr_nSe_{n+2}]$	magnetic semiconductors that undergo a long-range antiferromagnetic ordering below 83.6- 106.2 K	66
YSeBO ₂	Cmc21		$[BO_3]^{3-}$ [YO_3Se_4]^{11-}	E(g)=3.45 eV	67
LnCrSe ₂ O (Ln = Ce-Nd)	C12/m1	AgBi ₃ S ₄ Br ₂	[Cr1Se6] ^{9–} [Cr ₂ Se ₄ O ₂] ^{9–}	LnCrSe ₂ O (Ln = Ce–Nd) show antiferromagnetic ordering with $T_N = 125$, 120, and 118 K, respectively. Heat capacity measurement for NdCrSe ₂ O indicates that the Debye temperature is 278.4 K.	68
$Ba_2NiO_2Ag_2Se_2$	<i>I4/mmm</i>		$[NiO_2] [Ag_2Se_2]$	G type spin order at 130 K.	69

Table S5. Selected Oxysulfides and Oxyselenides with structural information and physical properties.

Formula	Space Group	BBU's	Properties	Ref
Cu ₂ (PO ₄)F	C2/c	Cu coordinated by four O and two F		70
$Te_2Se_8(AsF_6)\cdot SO_2$	P2 ₁ /c	$[Te_2Se_8]^{2+}$ bicyclic cluster formed by six-membered ring fused with 8-membered ring.		71,72
Cu ₂ (AsO ₄)Cl	<i>P</i> 2 ₁ / <i>m</i>	Face sharing Cu-containing octahedra create infinite zigzag chains and corner sharing with As tetrahedra		73
Eu ₄ As ₂ O	I4/mmm	La ₂ Sb type with O atoms occupying octahedral holes, closely related to K ₂ NiF ₄ structure		74
LaFeAsO _{1-x} F _x	Cmma P4/nmm	Stacked [FeAs ₄] layers and [La ₄ O] layers F-doped on O sites	ion carrier / superconductivity	75–78
Pb ₅ (AsO ₄) ₃ Cl	$\begin{array}{ c c } P2_1 \\ P2_1/b \\ P6_3/m \end{array}$	[AsO ₄] tetrahedra	monoclinic to hexagonal transformation through temperature	79–84
PrFeAsO	P4/nmm	Pr polyhedra, Fe polyhedra, As polyhedra, O tetrahedra		85,86
(SrF) ₂ Ti ₂ As ₂ O	I4/mmm	[Ti ₂ O] square planar layer alternating with [Sr ₂ F ₂]	resistivity and susceptibility, thermoeletric power, CDW/SDW	87
LaNiOAs	P4/mmm	Alternating [La-O] and [Ni- As] layers	superconductor. Pauli paramagnetism	88
GdFeAsO	P4/nmm Cmme	Alternating [As-Fe] and [Gd- O] layers	Structural transition magnetic transition	9,86
$Ce_9Au_{4.91}As_8O_6$	Pnnm	$[Au_5As_8], [Ce_4O_3]_2$		89
SrOCuSbS ₂	P2 ₁ /m	Infinite $[Cu_2S_6]$ chain linked $[SbS_4O]$ layers separated by Sr	photoelectric properties	90
Sr ₂ Mn ₃ Sb ₂ O ₂	I4/mmm	[Mn ₂ Sb ₂] and [MnO ₂] layers separated by Sr cation	magnetic properties	91
Sm ₉ Sb ₅ O ₅	P4/n	Double layer [SmSb] and [SmO₄] tetrahedra		92
Ho ₈ Sb ₃ O ₈	C2/m	[Ho ₄ O] edge sharing tetrahedra	electrical properties	93
Eu ₅ Cd ₂ Sb ₅ O	Стст	[CdSb ₄] tetrahedra corner sharing, forming pentagonal channels		94
PbSbO ₂ Br	I4/mmm	[O-Pb/Sb ₄] tetrahedra	Eg(cal)=2.67 eV	95
Bi ₂ (BiPb)WO ₈ Cl	<i>P</i> 4	[Bi ₂ O ₂] layers [WO ₆] octahedra [PbO ₄] tetrahedra		96
BiCuOSe	P4/nmm	[Bi ₂ O ₂] layers [Cu ₂ Se ₂] layers		97–100

 Table S6. Selected oxypnictides with structural information and physical properties.

Ca ₄ P ₂ O	I4/mmm	P surrounded by nine Ca		101,102
		atoms (tetragonal antiprism		
		distorted) O atoms fill		
		octahedral holes		
UCuPO	P4/nmm	$[U_2O_2]$ and $[Cu_2P_2]$ layers	electrical resistivity	103-105
	1		magnetic susceptibility	
LaNiOP	P4/nmm	Alternating stack [La-O] and	Superconducting ~3K	106,107
		[Ni-P] tetrahedra		
ROTPn ($R = La$,	P4/nmm	[TPn] and [RO] layers	superconducting	108-110
Nd, Sm, Gd; $T =$				
Mn, Fe, Co, Ni,				
Cu; Pn = P, As,				
Sb)				
REZnPO (RE=Y,	<i>R</i> -3 <i>m</i>	Alternate stacks of [RE-O] and	magnetic, electronic, and	111
La-Nd, Sm, Gd,	P4/nmm	[Zn-P]	optical properties	
Dy, Ho)				
LnRuPO (Ln=La-	P4/nmm	Ln coordinated by four P and		112
Nd, Sm, Gd)		four O making square		
		antiprism, [RuP ₄] tetrahedra		
Sr ₂ CrO ₂ Cr ₂ As ₂	I4/mmm	[CrO ₂] sheets, [CrAs] layers	magnetic properties	113,114
$Sr_2CrO_2Cr_2OAs_2$	P4/mmm	$[CrO_4As_2]$ and $[CrO_2As_4]$	magnetic properties	115
		octahedra, [Sr ₂ CrO ₃] layers		
Sr ₂ M ₃ As2O2	I4/mmm	[CuO ₂] and [Cu/Mn-As] layers	magnetic and electronic	116
$(M_3=Mn_3, Mn_2Cu,$			properties	
MnZn ₂)				
Sr ₂ CrO ₃ FeAs	P4/nmm	[FeAs] layers, perovskite-like [Sr ₂ CrO ₃] block	magnetic and electronic properties	117
Ba ₂ CrO ₃ FeAs	P4/nmm	[FeAs] layers, perovskite-like	magnetic and electronic	117
		[Ba ₂ CrO ₃] block	properties	
$A_2MnZn_2As_2O_2$	I4/mmm	Square planar [MnO ₂]	magnetic	118
(A=Sr, Ba)	P4/nmm	[Zn ₂ As ₂] layers		
Ba ₂ Ti ₂ Cr ₂ As ₄ O	I4/mmm	[Ti ₂ As ₂ O] and [Cr ₂ As ₂] layers	magnetic properties AFM	15
			phase transition	
Ba ₂ Ti ₂ Fe ₂ As ₄ O	I4/mmm	[Ti ₂ O] sheets and [Fe ₂ As ₂]	superconducting	119
LaMnAsO	P4/nmm	[Mn-As] and [La-O] layers	Ca doping,	120
			antiferromagnetic ordering	
NdMnAsO	P4/nmm	[Mn-As] and [Nd-O] layers	Sr doping magnetic	121
			properties	
NdFeAsO	P4/nmm	[Fe-As] and [Nd-O] layers	Pressure phase transition,	122
			superconducting	122
$U_2Cu_2As_3O$	P4/nmm	[Cu-As], [U-O] slab	no properties	123
Ti ₈ BiO ₇	Cmmm	[OTi ₄] tetrahedra, [TiO ₄ Bi ₂] octahedra	electrical resistivity	124
(SrF) ₂ Ti ₂ Bi ₂ O	I4/mmm	[Ti ₂ O] plane, [Ti ₂ Bi ₂ O]	superconductivity	13
Ce ₂ O ₂ Bi	I4/mmm	[Ce-O] layer	transport, magnetic	125–127
			properties	
R ₂ O ₂ Bi (R=La,	I4/mmm	Bi^{2-} square net $[R_2O_2]$ layer	magnetic properties	128
Ce, Pr, Nd, Sm,				
Eu, Gd, Ho, Er,				

Yb, Y)				
Eu ₄ Bi ₂ O	I4/mmm	[OEu ₆] octahedra Bi		129
Sm.BioO	IA/mmm	[BiSma] [OSma] octahedra		130
Ba Cd Bi O	14/mmm	[Bishig], [Oshig] octanedra		131
$\frac{\text{Da}_2\text{Cu}_{2.13}\text{DI}_3\text{O}}{\text{Cd}\text{ PiO}}$	$\frac{14}{mm}$	[Da-O] layer [Cd-Di] layer	the ampendation and antica	132
Gd_3BlO_3	C2/m		thermoelectric properties	132
Gd ₈ B ₁₃ O ₈	C2/m	[GdO ₄] tetrahedra	thermoelectric properties	132
A_4X_2O (A=Ca, Sr,	<i>14/mmm</i>	P surrounded by nine Ca	electronic properties	155
Ba; X=Sb, P, As, Bi)		distorted) O atoms fill		
		octahedral holes		
Ba ₃ Sb ₂ O	Pbam	[Sb ₂] and O anions separated by Ba cations		134
Ba ₃ Sb ₄ O	<i>P</i> -21/ <i>c</i>	[Ba-Sb] units and [OBa ₄]		135
KBa Bi O	IA/mcm	[Ri-] units		136,137
$C_0 Z_p D Q$		[Di ₂] units	phase transition	138
	P_{1}	[Dr O] and [Zr D] largers		138
	K-5///	[Pr-O] and [Zn-P] layers		139
$Ln_3Cu_4P_4O_2$ (Ln=La Ca Nd)	14/mmm	$[Cu_2P_2]$ layers $[Ln_2O_2]$ sheets	properties	137
$Sr_aVFe \Delta sO_a$	PΔ/nmm	[FeAs] and [SraVOa] layers	superconductor	140,141
Sr Sc Fe As O	IA/mmm	$\begin{bmatrix} FeAs \end{bmatrix} and \begin{bmatrix} Sr_2 \vee S_3 \end{bmatrix} a yers$	electric and magnetic	142
513502102A5205	14/11/11	blocks	properties	
Na ₂ Ti ₂ As ₂ O	I4/mmm	[ONa ₂ Ti ₄] octahedra		143
Sc ₄ Yb ₄ Sb ₄ O	I4/mmm	[YbSb] double layer		144
BaTi ₂ Pn ₂ O (Pn=As, Sb, Bi)	P4/mmm	[Ti ₂ Pn ₂ O] layers and Ba layers	electronic and magnetic properties	145–147
Ba ₅ Cd ₂ Sb ₄ O ₂	C2/m	[CdSb ₄] tetrahedra and [Ba-O] slabs		148
Nd ₁₀ Au ₃ As ₈ O ₁₀	I4/m	[NdO] layers and [Au ₃ (As ₂) ₄]	magnetic and electronic	149
Sm ₁₀ Au ₃ As ₈ O ₁₀	I4/m	[SmO] layers and [Au ₃ (As ₂) ₄] units	magnetic and electronic properties	149
HT/LT-	I4/m	[NdO] layers and $[Pd_3(As_2)_4]$	magnetic and electronic	150
$Nd_{10}Pd_3As_8O_{10}$		units	properties	
$Sm_{10}Pd_3As_8O_{10}$	C2/c	[SmO] layers and [Pd ₃ (As ₂) ₄]	magnetic and electronic	150
		units	properties	
RE_2AuP_2O	C2/m	[La ₂ O] chains [AuP ₂] units		151,152
(RE=La, Ce, Pr)				

Tabl	e S7. Selected	other heteroanionic	c combinations wit	h structural inf	ormation and p	hysical properties
(N-C	l, S-Cl, Se-Cl,	P-Cl, P-Br, etc.).				

Compound	Space	BBU	Property	Ref
	group			
TiNCl	Pmmn		Eg(cal) = 0.63 eV	153
LiTiNC	Pmmn		$T_c = 16.5$, fraction=0.5%	153

Na _{0.22} TiNCl _{0.98}	Bmmb	A _x TiNCl also became	153
0.22 0.70		superconductors with	
		much higher $T_c s$ of ~	
		16.3 K. Fraction = 13.3%	
K _{0.22} TiNCl _{0.90}	Immm	A _x TiNCl also became	153
		superconductors with	
		much higher T_cs of ~	
		16.3 K. Fraction = 31.0%	
Rb _{0.19} TiNCl _{0.75}	Immm	A _x TiNCl also became	153
		superconductors with	
		much higher T_cs of ~	
		16.3 K. Fraction = 4.3%	
Li _x ZrNCl	R-3mH	Black crystal. The	154
		structural transformation	
		by Li intercalation is	
		interpreted as the sliding	
		of $[ZrNCl]_2$ slabs due to	
		an electrostatic force. T _c	
		= 12.5 K	
β-ZrNCl	R3m	pale yellow-green; Eg ~3	155,156
		eV	
ThNCl	P4/nmm	Eg (exp) = 3.79 eV	157
β-HfNCl	R-3mH	T _c =25.5K	158
MoNCl ₃	<i>P</i> -1		159
Zn ₂ NCl	Pna21	mid-IR NLO, Eg =3.21	10
		$eV, LDT = 20.7 \times AGS,$	
		SHG = 0.9×AGS	
Ba ₁₅ Ta ₁₅ N _{33.66} Cl ₄	<i>P</i> -62 <i>c</i>	TaN ₄ tetrahedra	160
$Zn_7(P_{12}N_{24})Cl_2$	I-43m	PN ₄ tetrahedra $[P_{12}N_{24}]$ -Gerust ist aus	161
		$[P_4N_4]$ - und $[P_6N_6]$ -	
		Ringen	
W_6PCl_{17}	Imm2	phosphorus-centered	162
		hexanuclear tungsten	
		cluster,	
		$(W_6PCl_{11})Cl_4{}^aCl_{4/2}{}^{a-a}$	
		chains form a hexagonal	
		stick packing structure	
$W_4(PCl)Cl_{10}$	C12/m1	Jahn–Teller distorted	162
		tetranuclear tungsten	
		cluster that is	
		interconnected into a	
		layered [$W_4(\mu_4$ -	
		$PCl)Cl_6^{1}Cl_{8/2}^{a-a}$ structure	
		containing a chloro-	
	-	phosphinidene ligand.	162
$Sr_3P_5N_{10}CI$	Pnma	Excitation with UV to	102
		blue light (λ_{exc} =420 nm)	
		induces natural-white	

			$(Ba_2P_5N_{10}Br:Eu^{2+})$	
			orange	
			(Ba P N $C1 \cdot Eu^{2+}$) and	
			d_{22} and d_{22} and d_{22}	
			$(C P N X F^{2+})$	
			$(Sr_3P_5N_{10}X:Eu^2)$	1(2
$Sr_3P_5N_{10}Br$			Excitation with UV to	162
			blue light (λ_{exc} =420 nm)	
			induces natural-white	
			$(Ba_3P_5N_{10}Br:Eu^{2+}),$	
			orange	
			$(Ba_2P_5N_{10}C1:Eu^{2+})$, and	
			deen-red emission	
			$(\mathbf{Sr}_{\mathbf{P}} \mathbf{P}_{\mathbf{N}} \mathbf{N}_{\mathbf{V}} \mathbf{Y} \cdot \mathbf{F} \mathbf{u}^{2+})$	
D ₂ D N Cl			Eucitation mith LIV to	162
$Ba_3P_5N_{10}CI$			Excitation with UV to	102
			blue light (λ_{exc} =420 nm)	
			induces natural-white	
			$(Ba_{3}P_{5}N_{10}Br:Eu^{2+}),$	
			orange	
			$(Ba_3P_5N_{10}C1:Eu^{2+})$, and	
			deep-red emission	
			$(Sr_{2}P_{5}N_{10}X;Eu^{2+})$	
BapPcNigBr			Excitation with UV to	162
Da31 51 (10D1			blue light $(\lambda = 420 \text{ pm})$	
			blue light (λ_{exc} -420 lill)	
			induces natural-white	
			$(Ba_{3}P_{5}N_{10}Br:Eu^{2+}),$	
			orange	
			$(Ba_3P_5N_{10}Cl:Eu^{2+})$, and	
			deep-red emission	
			$(Sr_3P_5N_{10}X:Eu^{2+})$	
Sr ₂ P ₇ Cl	C12/c1	heptaphosphanortricyclane P_7^{3-}	all electron-balanced	163
2 /		clusters	wide band gap	
			semiconductors $Eg =$	
			1 QeV	
Sr D Dr	D21/2		$E_{g} = 2.1 \text{ eV}$	163
	121/3		Eg = 2.1 ev	164
$P_6N_7Cl_9$	C12/c1	a non-planar condensed ring		164
		structure		
$P_2B_4Cl_4$	Pbna			165
	P 1	tetrahedral cations PC1 + and		166
r C151 aC15	1 -1	catale dual cations FCI4, and $catale dual anisons NIbCI = and dual catale dual catale and the catale dual cat$		
		octanedral anions $NbCl_6$ and		
	D 1	I aCl ₆		166
PCI ₅ NbCI ₅	<i>P</i> -1			100
PCl ₄ TeCl ₅	I2mb		tetrahedral [PCI ₄] ⁺	167
			cations and polymeric	
			infinite chain anions	
			[TeCl_l_n-	
PC1 ₄ SnC1 ₅	Cmma			168
	E 42		S^2 = s^2 = s^2 = 1 = 1 = 1	169 170
L16PS5CI	F-43m		S^{-} anions in half of the	107,170
			tetrahedral voids and	
			PS_4^{3-} tetrahedra on the	
	1		1	1

			octahedral sites the effect of lattice polarizability on the ionic conductivity	
Hg ₂ PCl ₂	I12/m1	(P ₂ Hg ₆) Octahedron	Hg6 octahedron centered with a P_2^{4-} dumbbell	171
La ₃ Zn ₄ P ₆ Cl	Стст	two-dimensional ${}^{\infty}_2[Zn_4P_6]^{8-}$ layers separated by one- dimensional ${}^{\infty}_1[Cl_2La_3]^{8+}$ chains	Semiconductors, Eg = 0.45 eV	172
Hg ₆ SnP ₄ Cl ₆	P213	$[Hg_6P_4Cl_3]^+(SnCl_3)^-$	Supramolecular inorganic compound	173
(NPBr ₂) ₃	Pcmn			174
Ge ₃₈ P ₈ Br ₈	<i>P</i> -43 <i>n</i>			175
La ₂ Br ₂ P	<i>P</i> -3 <i>m</i> 1		Phosphide Halides; Structure X-M-Z-M-X in M ₂ X ₂ Z	176
Sn ₂₄ P _{19.60} Br ₈	Pm-3 n		cationic clathrate. The Sn(1) is tetrahedrally coordinated by three phosphorus atoms and one tin atom, Sn(2). The halogen atoms are trapped in the cavities of the clathrate framework. Two types of the cavities: the pentagonal dodecahedral and the tetrakaidecahedral, which occur in a 2:6 ratio in the unit cell	177
Zn ₆ S ₅ Cl ₂	Стст	1-D tunnel-like structure	Ten zinc atoms and ten sulfur atoms interconnect to each other to form a cubane-like structure. Eg (exp) = 2.71 eV	6
Hg ₃ ZnS ₂ Cl ₄	P63mc		2-D layered structure which contains interconnected 12- membered Hg6S3Cl3 rings with chair-like conformation, and the layers sandwich the ZnSCl ₃ tetrahedra. Eg (exp) = 2.65 eV	6
WSCl ₄	P121/c1		The arrangement of the five ligands around the tungsten atom may be regarded as a regular square pyramid, with	178,179

			sulfur atom in the unique position.	
Pb ₃ S ₂ Cl ₂	I-43d		Narrow size distribution and size tunability over the range 7 to ~30 nm, Eg(cal) =2.02 eV	180
Li ₁₅ P ₄ S ₁₆ Cl ₃	I-43d	PS4, LiS4, and Li(S ₃ Cl)	Solid-State Ionic Conductor	181
Ta ₃ SBr ₇	<i>C</i> 1 <i>m</i> 1			182
Ge ₄ S ₆ Br ₄	<i>P</i> -1			183
Ag ₃ SBr	Pm-3m		The directions of Ag motion with large amplitude are nearly toward four face centers of a distorted S and Br tetrahedron. Phase transition beta-gamma. Superionic conductor	184
K ₂ Ba ₃ Ge ₃ S ₉ Cl ₂	P63	distorted [GeS4] ^{4–} tetrahedra	Eg = 3.69 eV LIDT intensity ($28.8 \times \text{AGS}$) SHG response ($0.34 \times \text{AGS}$)	185
Ag ₆ SnS ₄ Br ₂	Pnma			186
As ₄ S ₃ (CuCl)	Pbcm		Supramolecular	187
Ba ₃ GaS ₄ Cl	Pnma	BaX pseudolayers and isolated GaQ ₄ tetrahedra	Eg =2.14 eV	188
Ba ₃ KSb ₄ S ₉ Cl	Pnnm		Eg = 1.99 eV	189

References:

1 K. Li, A. Yalikun and Z. Su, *Dalton Trans.*, 2020, **49**, 8985–8990.

2 W. Jeitschko, T. A. Bither and P. E. Bierstedt, Acta Crystallogr. B, 1977, 33, 2767–2775.

3 S. Shi, C. Lin, G. Yang, L. Cao, B. Li, T. Yan, M. Luo and N. Ye, *Chem. Mater.*, 2020, **32**, 7958–7964.

4 J. Y. Chung, H. Jo, S. Yeon, H. R. Byun, T.-S. You, J. I. Jang and K. M. Ok, *Chem. Mater.*, 2020, **32**, 7318–7326.

5 L. Wang, F. Yang, X. Zhao, L. Huang, D. Gao, J. Bi, X. Wang and G. Zou, *Dalton Trans.*, 2019, **48**, 15144–15150.

6 W.-T. Chen, H.-M. Kuang and H.-L. Chen, J. Solid State Chem., 2010, 183, 2411–2415.

10 X. Zhao, C. Lin, J. Chen, M. Luo, F. Xu, S. Yang, S. Shi, B. Li and N. Ye, *Chem. Mater.*, 2021, **33**, 1462–1470.

11 W. Zhao, S. Pan, J. Han, Z. Zhou, X. Tian and J. Li, *Inorg. Chem. Commun.*, 2011, 14, 566–568.

12 M. Cheng, W. Jin, Z. Yang and S. Pan, *Inorg. Chem.*, 2020, **59**, 13014–13018.

13 T. Yajima, K. Nakano, F. Takeiri, J. Hester, T. Yamamoto, Y. Kobayashi, N. Tsuji, J. Kim, A. Fujiwara and H. Kageyama, *J. Phys. Soc. Jpn.*, 2013, **82**, 013703.

14 Q. Dong, P. Xiong, J. Yang, Y. Fu, W. Chen, F. Yang, Z. Ma and M. Peng, *J. Alloys Compd.*, 2021, **885**, 160960.

15 A. Ablimit, Y.-L. Sun, H. Jiang, J.-K. Bao, H.-F. Zhai, Z.-T. Tang, Y. Liu, Z.-C. Wang, C.-M. Feng and G.-H. Cao, *J. Alloys Compd.*, 2017, **694**, 1149–1153.

16 Z. Žák and M. Kosička, *Acta Crystallogr. B*, 1978, **34**, 38–40.

17 H. B. Yahia, M. Shikano, S. Koike, K. Tatsumi, H. Kobayashi, H. Kawaji, M. Avdeev, W. Miiller, C. D. Ling, J. Liu and M.-H. Whangbo, *Inorg. Chem.*, 2012, **51**, 8729–8738.

18 R. Guo, X. Liu, C. Tao, C. Tang, M. Xia, L. Liu, Z. Lin and X. Wang, *Dalton Trans.*, 2021, **50**, 2138–2142.

19 L. Lin, X. Jiang, C. Wu, Z. Lin, Z. Huang, M. G. Humphrey and C. Zhang, *Dalton Trans.*, 2021, **50**, 7238–7245.

20 X. Huang, M. Zhang, J. Li, Z. Zhao and Z. He, J. Solid State Chem., 2021, 294, 121822.

21 C. Kutahyali Aslani, V. V. Klepov and H.-C. zur Loye, J. Solid State Chem., 2021, 294, 121833.

22 S. C. Manna, P. Sandineni and A. Choudhury, J. Solid State Chem., 2021, 295, 121922.

23 Y. Chen, W. Zhang, D. An, M. Abudoureheman, Z. Chen and H. Mi, *Eur. J. Inorg. Chem.*, 2021, **2021**, 1117–1121.

24 B. Scheibe, A. J. Karttunen, F. Weigend and F. Kraus, *Chem. – Eur. J.*, 2021, 27, 2381–2392.

S. Novikov, R. Bagum, Z. B. Yan, J. P. Clancy and Y. Mozharivskyj, *J. Solid State Chem.*, 2021, **293**, 121741.

26 C. Wu, L. Li, L. Lin, Z. Huang, M. G. Humphrey and C. Zhang, *Chem. Mater.*, 2020, **32**, 3043–3053.

27 J. C. Hancock, M. L. Nisbet, W. Zhang, P. S. Halasyamani and K. R. Poeppelmeier, *J. Am. Chem. Soc.*, 2020, **142**, 6375–6380.

28 Q. Ding, X. Liu, S. Zhao, Y. Wang, Y. Li, L. Li, S. Liu, Z. Lin, M. Hong and J. Luo, *J. Am. Chem. Soc.*, 2020, **142**, 6472–6476.

⁷ Y. Chi, H.-G. Xue and S.-P. Guo, *Inorg. Chem.*, 2020, **59**, 1547–1555.

⁸ W. Zhou, W.-D. Yao, R.-L. Tang, H. Xue and S.-P. Guo, J. Alloys Compd., 2021, 867, 158879.

⁹ F. Nitsche, Th. Doert and M. Ruck, *Solid State Sci.*, 2013, **19**, 162–166.

29 M. Ding, J. Xu, H. Wu, H. Yu, Z. Hu, J. Wang and Y. Wu, *Dalton Trans.*, 2020, **49**, 12184–12188.

30 W. Zhang, Z. Wei, Z. Yang and S. Pan, *Dalton Trans.*, 2020, **49**, 11591–11596.

31 C. Wu, X. Jiang, L. Lin, Z. Lin, Z. Huang, M. G. Humphrey and C. Zhang, *Chem. Mater.*, 2020, **32**, 6906–6915.

32 W. Zhang, W. Jin, Z. Yang and S. Pan, *Dalton Trans.*, 2020, 49, 17658–17664.

33 M.-L. Liang, Y.-X. Ma, C.-L. Hu, F. Kong and J.-G. Mao, *Chem. Mater.*, 2020, **32**, 9688–9695.

L. Lin, X. Jiang, C. Wu, L. Li, Z. Lin, Z. Huang, M. G. Humphrey and C. Zhang, *ACS Appl. Mater. Interfaces*, 2020, **12**, 49812–49821.

35 M. A. Kirsanova, A. S. Akmaev, D. A. Aksyonov, S. V. Ryazantsev, V. A. Nikitina, D. S. Filimonov, M. Avdeev and A. M. Abakumov, *Inorg. Chem.*, 2020, **59**, 16225–16237.

36 J. Zhou, Y. Liu, H. Wu, H. Yu, Z. Lin, Z. Hu, J. Wang and Y. Wu, *Angew. Chem. Int. Ed.*, 2020, **59**, 19006–19010.

37 Y. Deng, L. Huang, X. Dong, L. Wang, K. M. Ok, H. Zeng, Z. Lin and G. Zou, *Angew. Chem. Int. Ed.*, 2020, **59**, 21151–21156.

38 R. C. Vincent, P. Vishnoi, M. B. Preefer, J.-X. Shen, F. Seeler, K. A. Persson and R. Seshadri, *ACS Appl. Mater. Interfaces*, 2020, **12**, 48662–48668.

39 R. E. Stene, B. Scheibe, A. J. Karttunen, W. Petry and F. Kraus, *Eur. J. Inorg. Chem.*, 2020, 2020, 2260–2269.

40 P.-F. Li, F. Kong and J.-G. Mao, J. Solid State Chem., 2020, 286, 121288.

41 Y. Xie, Z. He, W. Zhang, Z. Zhao, M. Zhang and X. Huang, *J. Solid State Chem.*, 2020, **286**, 121315.

42 C. Stoll, M. Seibald, D. Baumann and H. Huppertz, Z. Für Naturforschung B, 2020, 75, 833–841.

43 C. Stoll, M. Seibald and H. Huppertz, Z. Für Naturforschung B, 2020, 75, 83–90.

44 M. Shang and P. S. Halasyamani, J. Solid State Chem., 2020, 282, 121121.

45 T. Shi, F. Zhang, Y. Li, L. Gao, Z. Yang and S. Pan, *Inorg. Chem.*, 2020, **59**, 3034–3041.

46 Y. Wang, J. Han, J. Huang, Z. Yang and S. Pan, *Inorg. Chem.*, 2020, **59**, 810–817.

47 S. Han, M. Mutailipu, A. Tudi, Z. Yang and S. Pan, *Chem. Mater.*, 2020, **32**, 2172–2179.

48 H. Grossholz, C. Buyer, S. M. A. Lotter, S. Wolf and T. Schleid, *Z. Für Anorg. Allg. Chem.*, 2020, **646**, 1588–1594.

49 J. T. Goettel, M. R. Bortolus, D. G. Stuart, H. P. A. Mercier and G. J. Schrobilgen, *Chem. – Eur. J.*, 2019, **25**, 15815–15829.

50 R. E. Stene, B. Scheibe, A. J. Karttunen, W. Petry and F. Kraus, *Eur. J. Inorg. Chem.*, 2019, 2019, 3672–3682.

51 G. Morrison, B. O. Wilkins, N. R. Spagnuolo, M. D. Smith and H.-C. zur Loye, *J. Solid State Chem.*, 2019, **269**, 51–55.

52 Q. Ding, S. Zhao, L. Li, Y. Shen, P. Shan, Z. Wu, X. Li, Y. Li, S. Liu and J. Luo, *Inorg. Chem.*, 2019, **58**, 1733–1737.

53 N. Jiang and H. S. La Pierre, *Inorg. Chem.*, 2019, **58**, 12152–12156.

54 S. Shi, M. Luo, C. Lin and N. Ye, *Dalton Trans.*, 2018, 47, 6598–6604.

55 H. Li, H. Wu, X. Su, H. Yu, S. Pan, Z. Yang, Y. Lu, J. Han and K. R. Poeppelmeier, *J. Mater. Chem. C*, 2014, **2**, 1704–1710.

56 M. Mutailipu, M. Zhang, B. Zhang, Z. Yang and S. Pan, *Chem. Commun.*, 2018, 54, 6308–6311.

57 M. Luo, F. Liang, Y. Song, D. Zhao, N. Ye and Z. Lin, *J. Am. Chem. Soc.*, 2018, **140**, 6814–6817.

58 S. G. Jantz, M. Dialer, L. Bayarjargal, B. Winkler, L. van Wüllen, F. Pielnhofer, J. Brgoch, R. Weihrich and H. A. Höppe, *Adv. Opt. Mater.*, 2018, **6**, 1800497.

59 W. Zhao, S. Pan, J. Han, J. Yao, Y. Yang, J. Li, M. Zhang, L. H. Zhang and Y. Hang, *J. Solid State Chem.*, 2011, **184**, 2849–2853.

60 W. Zhao, S. Pan, X. Dong, J. Li, X. Tian, X. Fan, Z. Chen and F. Zhang, *Mater. Res. Bull.*, 2012, 47, 947–951.

61 C. Zhang, J. He, R. McClain, H. Xie, S. Cai, L. N. Walters, J. Shen, F. Ding, X. Zhou, C. D. Malliakas, J. M. Rondinelli, M. G. Kanatzidis, C. Wolverton, V. P. Dravid and K. R. Poeppelmeier, *J. Am. Chem. Soc.*, 2022, **144**, 2569–2579.

62 T. Zhu, S. Lee, X. Zhang, H. Yang, Y. Jin, Y. Jin, K.-Y. Choi and M. Lü, *Inorg. Chem.*, 2021, **60**, 13707–13717.

63 P. Poltarak, V. Komarov, Y. Gayfulin, S. Artemkina and V. Fedorov, Z. Für Anorg. Allg. Chem., 2021, 647, 1729–1734.

64 B. C. Sheath, S. J. Cassidy and S. J. Clarke, J. Solid State Chem., 2021, 293, 121761.

65 Z.-H. Shi, Y. Chi, M. Yang, W. Liu and S.-P. Guo, *Inorg. Chem.*, 2020, **59**, 3532–3536.

66 H. Kabbour, E. Janod, B. Corraze, M. Danot, C. Lee, M.-H. Whangbo and L. Cario, *J. Am. Chem. Soc.*, 2008, **130**, 8261–8270.

67 Z.-T. Lu, W.-J. Fan, Z.-Q. Wang, N. Gu, Z.-H. Yue, H.-G. Xue and S.-P. Guo, *Inorg. Chem.*, 2020, **59**, 7905–7909.

68 X. Zhang, Y. Xiao, R. Wang, He, D. Wang, K. Bu, G. Mu and F. Huang. *Inorg. Chem.* 2019, **58**, 14, 9482–9489

69 Y. Matsumoto, T. Yamamoto, K. Nakano, H. Takatsu, T. Murakami, K. Hongo, R. Maezono, H. Ogino, D. Song, C. M. Brown, C. Tassel and H. Kageyama, *Angew. Chem. Int. Ed.*, 2019, **58**, 756–759.

70 J. R. Rea and E. Kostiner, *Acta Crystallogr. B*, 1976, **32**, 1944–1947.

71 M. J. Collins, R. J. Gillespie and J. F. Sawyer, *Inorg. Chem.*, 1987, 26, 1476–1481.

P. Boldrini, I. D. Brown, R. J. Gillespie, P. R. Ireland, W. Luk, D. R. Slim and J. E. Vekris, *Inorg. Chem.*, 1976, **15**, 765–770.

J. R. Rea, J. B. Anderson and E. Kostiner, *Acta Crystallogr. B*, 1977, **33**, 975–979.

74 Y. Wang, L. D. Calvert, E. J. Gabe and J. B. Taylor, *Acta Crystallogr. B*, 1977, **33**, 3122–3125.

R. Frankovsky, A. Marchuk, R. Pobel and D. Johrendt, *Solid State Commun.*, 2012, **152**, 632–634.

J. Karpinski, N. D. Zhigadlo, S. Katrych, Z. Bukowski, P. Moll, S. Weyeneth, H. Keller, R. Puzniak, M. Tortello, D. Daghero, R. Gonnelli, I. Maggio-Aprile, Y. Fasano, Ø. Fischer, K. Rogacki and B. Batlogg, *Phys. C Supercond.*, 2009, **469**, 370–380.

N. Qureshi, Y. Drees, J. Werner, S. Wurmehl, C. Hess, R. Klingeler, B. Büchner, M. T. Fernández-Díaz and M. Braden, *Phys. Rev. B*, 2010, **82**, 184521.

J. Kim, A. Fujiwara, T. Sawada, Y. Kim, K. Sugimoto, K. Kato, H. Tanaka, M. Ishikado, S. Shamoto and M. Takata, *IUCrJ*, 2014, **1**, 155–159.

79 G. Cametti, M. Nagashima and S. V. Churakov, *Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater.*, 2022, **78**, 618–626.

80 H. Okudera, Am. Mineral., 2013, 98, 1573–1579.

J. Sejkora, J. Plasil, I. Cisarova, R. Skoda, J. Hlousek, F. Veselovsky and I. Jebava, *J. Geosci.*, 2011, **56**, 257–271.

J. Flis, O. Borkiewicz, T. Bajda, M. Manecki and J. Klasa, *J. Synchrotron Radiat.*, 2010, **17**, 207–214.

Z. Yang, K. Ding, J. de Fourestier and H. Li, Neues Jahrb. Für Mineral. - Abh., 2013, 229–235.

H. Effenberger and F. Pertlik, *Mineral. Petrol.*, 1979, **26**, 95–107.

P. Quebe, L. J. Terbüchte and W. Jeitschko, J. Alloys Compd., 2000, 302, 70–74.

86 F. Nitsche, A. Jesche, E. Hieckmann, Th. Doert and M. Ruck, *Phys. Rev. B*, 2010, **82**, 134514.

87 R. H. Liu, Y. A. Song, Q. J. Li, J. J. Ying, Y. J. Yan, Y. He and X. H. Chen, *Chem. Mater.*, 2010, **22**, 1503–1508.

T. Watanabe, H. Yanagi, Y. Kamihara, T. Kamiya, M. Hirano and H. Hosono, *J. Solid State Chem.*, 2008, **181**, 2117–2120.

T. Bartsch, R.-D. Hoffmann and R. Pöttgen, Z. Für Naturforschung B, 2016, 71, 1245–1252.

90 K. Bu, M. Luo, R. Wang, X. Zhang, J. He, D. Wang, W. Zhao and F. Huang, *Inorg. Chem.*, 2019, **58**, 69–72.

91 S. L. Brock, N. P. Raju, J. E. Greedan and S. M. Kauzlarich, J. Alloys Compd., 1996, 237, 9–19.

92 J. Nuss and M. Jansen, Acta Crystallogr. B, 2007, 63, 843–849.

93 P. Wang, S. Forbes, T. Kolodiazhnyi, K. Kosuda and Y. Mozharivskyj, *J. Am. Chem. Soc.*, 2010, **132**, 8795–8803.

B. Saparov and S. Bobev, Acta Crystallogr. Sect. E Struct. Rep. Online, 2011, 67, i11–i11.

95 A. Pfitzner and P. Pohla, Z. Für Anorg. Allg. Chem., 2009, 635, 1157–1159.

96 J. F. Ackerman, J. Solid State Chem., 1986, 62, 92–104.

97 L. N. Kholodkovskaya, L. G. Akselrud, A. M. Kusainova, V. A. Dolgikh and B. A. Popovkin, *Mater. Sci. Forum*, 1993, **133–136**, 693–696.

A. P. Richard, J. A. Russell, A. Zakutayev, L. N. Zakharov, D. A. Keszler and J. Tate, *J. Solid State Chem.*, 2012, **187**, 15–19.

H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, *Chem. Mater.*, 2008, 20, 326–334.

100 A. M. Kusainova, P. S. Berdonosov, L. G. Akselrud, L. N. Kholodkovskaya, V. A. Dolgikh and B. A. Popovkin, *J. Solid State Chem.*, 1994, **112**, 189–191.

101 R. H. C. Gil, J. Nuss, Y. Grin, W. Hönle and H. G. von Schnering, Z. Für Krist. - New Cryst. Struct., 1998, **213**, 14–14.

102 C. Hadenfeldt and H. O. Vollert, J. Common Met., 1988, 144, 143–151.

103 D. Kaczorowski, J. H. Albering, H. Noël and W. Jeitschko, *J. Alloys Compd.*, 1994, **216**, 117–121.

104 H. Sakai, N. Tateiwa, T. D. Matsuda, T. Sugai, E. Yamamoto and Y. Haga, J. Phys. Soc. Jpn., 2010, **79**, 074721.

105 D. M. Wells, E. Ringe, D. Kaczorowski, D. Gnida, G. André, R. G. Haire, D. E. Ellis and J. A. Ibers, *Inorg. Chem.*, 2011, **50**, 576–589.

106 T. Watanabe, H. Yanagi, T. Kamiya, Y. Kamihara, H. Hiramatsu, M. Hirano and H. Hosono, *Inorg. Chem.*, 2007, **46**, 7719–7721.

107 M. Tegel, D. Bichler and D. Johrendt, *Solid State Sci.*, 2008, **10**, 193–197.

108 B. Lorenz, K. Sasmal, R. P. Chaudhury, X. H. Chen, R. H. Liu, T. Wu and C. W. Chu, 2008.

109 I. Schellenberg, T. Nilges and R. Pöttgen, Z. Für Naturforschung B, 2008, 63, 834–840.

110 Q. Zhang, C. M. N. Kumar, W. Tian, K. W. Dennis, A. I. Goldman and D. Vaknin, *Phys. Rev. B*, 2016, **93**, 094413.

111 H. Lincke, R. Glaum, V. Dittrich, M. Tegel, D. Johrendt, W. Hermes, M. H. Möller, T. Nilges and R. Pöttgen, *Z. Für Anorg. Allg. Chem.*, 2008, **634**, 1339–1348.

112 B. I. Zimmer, W. Jeitschko, J. H. Albering, R. Glaum and M. Reehuis, *J. Alloys Compd.*, 1995, **229**, 238–242.

113 X. Xu, M. A. Jones, S. J. Cassidy, P. Manuel, F. Orlandi, M. Batuk, J. Hadermann and S. J. Clarke, *Inorg. Chem.*, 2020, **59**, 15898–15912.

114 H. Jiang, J.-K. Bao, H.-F. Zhai, Z.-T. Tang, Y.-L. Sun, Y. Liu, Z.-C. Wang, H. Bai, Z.-A. Xu and G.-H. Cao, *Phys. Rev. B*, 2015, **92**, 205107.

115 B. C. Sheath, X. Xu, P. Manuel, J. Hadermann, M. Batuk, J. O'Sullivan, R. S. Bonilla and S. J. Clarke, *Inorg. Chem.*, 2022, **61**, 12373–12385.

116 R. Nath, V. O. Garlea, A. I. Goldman and D. C. Johnston, *Phys. Rev. B*, 2010, **81**, 224513.

117 M. Tegel, F. Hummel, S. Lackner, I. Schellenberg, R. Pöttgen and D. Johrendt, Z. Für Anorg. Allg. Chem., 2009, 635, 2242–2248.

118 T. Ozawa, M. M. Olmstead, S. L. Brock, S. M. Kauzlarich and D. M. Young, *Chem. Mater.*, 1998, **10**, 392–396.

119 Y.-L. Sun, H. Jiang, H.-F. Zhai, J.-K. Bao, W.-H. Jiao, Q. Tao, C.-Y. Shen, Y.-W. Zeng, Z.-A. Xu and G.-H. Cao, *J. Am. Chem. Soc.*, 2012, **134**, 12893–12896.

120 Y. Liu, W. E. Straszheim, P. Das, F. Islam, T. W. Heitmann, R. J. McQueeney and D. Vaknin, *Phys. Rev. Mater.*, 2018, **2**, 054410.

121 E. J. Wildman, N. Emery and A. C. Mclaughlin, *Phys. Rev. B*, 2014, **90**, 224413.

122 A. Marcinkova, E. Suard, A. N. Fitch, S. Margadonna and J. W. G. Bos, *Chem. Mater.*, 2009, **21**, 2967–2972.

123 D. Kaczorowski, M. Potel and H. Noël, J. Solid State Chem., 1994, 112, 228–231.

124 S. Amano and H. Yamane, J. Alloys Compd., 2016, 675, 377–380.

125 L. Qiao, J. Chen, B. Lv, X. Yang, J. Wu, Y. Cui, H. Bai, M. Li, Y. Li, Z. Ren, J. Dai and Z. Xu, J. Alloys Compd., 2020, **836**, 155229.

126 J. Nuss and M. Jansen, J. Alloys Compd., 2009, 480, 57–59.

127 R. Benz, Acta Crystallogr. B, 1971, 27, 853–854.

128 H. Mizoguchi and H. Hosono, J. Am. Chem. Soc., 2011, 133, 2394–2397.

129 S. Saha, S. Chanda, A. Dutta, U. Kumar, R. Ranjan and T. P. Sinha, *J. Magn. Magn. Mater.*, 2014, **360**, 80–86.

130 J. Nuss, U. Wedig and M. Jansen, Z. Für Anorg. Allg. Chem., 2011, 637, 1975–1981.

131 S.-Q. Xia and S. Bobev, Acta Crystallogr. Sect. E Struct. Rep. Online, 2010, 66, i81–i81.

132 S. Forbes, F. Yuan, K. Kosuda, T. Kolodiazhnyi and Y. Mozharivskyj, *J. Solid State Chem.*, 2016, **233**, 252–258.

133 M. Markov, L. Alaerts, H. P. C. Miranda, G. Petretto, W. Chen, J. George, E. Bousquet, P. Ghosez, G.-M. Rignanese and G. Hautier, *Proc. Natl. Acad. Sci.*, 2021, **118**, e2026020118.

134 M. Boss, F. Pickhard, M. Zumdick and C. Röhr, *Acta Crystallogr. C*, 2001, **57**, 503–504.

135 M. Boss, D. Petri, F. Pickhard, P. Zönnchen and C. Röhr, *Z. Für Anorg. Allg. Chem.*, 2005, **631**, 1181–1190.

136 G. Derrien, M. Tillard, L. Monconduit and C. Belin, *Acta Crystallogr. C*, 2000, **56**, iuc0000138e232.

137 B. Eisenmann and U. Rössler, Z. Für Krist. - New Cryst. Struct., 2000, 215, 349–350.

138 H. Lincke, T. Nilges and R. Pöttgen, Z. Für Anorg. Allg. Chem., 2006, 632, 1804–1808.

139 R. J. Cava, H. W. Zandbergen, J. J. Krajewski, T. Siegrist, H. Y. Hwang and B. Batlogg, *J. Solid State Chem.*, 1997, **129**, 250–256.

140 H. Kotegawa, T. Kawazoe, H. Tou, K. Murata, H. Ogino, K. Kishio and J. Shimoyama, *J. Phys. Soc. Jpn.*, 2009, **78**, 123707.

141 Y. Tojo, T. Shibuya, T. Nakamura, K. Shoji, H. Fujioka, M. Matoba, S. Yasui, M. Itoh, S. Iimura, H. Hiramatsu, H. Hosono, S. Hirai, W. Mao, S. Kitao, M. Seto and Y. Kamihara, *J. Phys. Condens. Matter*, 2019, **31**, 115801.

142 M. Tegela, I. Schellenberg, F. Hummel, R. Pöttgen and D. Jorendt, *Z. Für Naturforschung B*, 2009, **64**, 815–820.

143 D. Chen, T.-T. Zhang, Z.-D. Song, H. Li, W.-L. Zhang, T. Qian, J.-L. Luo, Y.-G. Shi, Z. Fang, P. Richard and H. Ding, *Phys. Rev. B*, 2016, **93**, 140501.

144 J. Nuss and M. Jansen, Z. Für Anorg. Allg. Chem., 2014, 640, 713–718.

145 T. Yajima, K. Nakano, Y. Nozaki and H. Kageyama, *Phys. C Supercond. Its Appl.*, 2014, **504**, 36–38.

146 T. Yamamoto, T. Yajima, Z. Li, T. Kawakami, K. Nakano, T. Tohyama, T. Yagi, Y. Kobayashi and H. Kageyama, *Inorg. Chem.*, 2021, **60**, 2228–2233.

147 K. Nakano, K. Hongo and R. Maezono, *Sci. Rep.*, 2016, 6, 29661.

148 G. M. Darone and S. Bobev, *Crystals*, 2011, 1, 206–214.

149 T. Bartsch, O. Niehaus, D. Johrendt, Y. Kobayashi, M. Seto, P. M. Abdala, M. Bartsch, H. Zacharias, R.-D. Hoffmann, B. Gerke, U. C. Rodewald and R. Pöttgen, *Dalton Trans.*, 2015, **44**, 5854–5866.

150 T. Bartsch, O. Niehaus, R.-D. Hoffmann, M. Bartsch, H. Zacharias, D. Johrendt and R. Pöttgen, *J. Mater. Chem. C*, 2016, **4**, 6727–6741.

151 T. Bartsch, T. Wiegand, J. Ren, H. Eckert, D. Johrendt, O. Niehaus, M. Eul and R. Pöttgen, *Inorg. Chem.*, 2013, **52**, 2094–2102.

152 M. Eul, M. H. Möller, R.-D. Hoffmann, W. Jeitschko and R. Pöttgen, Z. Für Anorg. Allg. Chem., 2012, 638, 331–335.

153 S. Yamanaka, T. Yasunaga, K. Yamaguchi and M. Tagawa, *J. Mater. Chem.*, 2009, **19**, 2573–2582.

154 S. Yamanaka, H. Kawaji, K. Hotehama and M. Ohashi, Adv. Mater., 1996, 8, 771–774.

155 R. Juzatr and H. Friedrichsen, Z. Für Anorg. Allg. Chem., 1964, 332, 173–178.

- 156 R. Juza and J. Heners, Z. Für Anorg. Allg. Chem., 1964, 332, 159–172.
- 157 X. Liu, D.-Y. Liu, T.-T. Li, D.-M. Chen and L.-J. Zou, RSC Adv., 2021, 11, 28698–28703.
- 158 S. Yamanaka, K. Hotehama and H. Kawaji, *Nature*, 1998, **392**, 580–582.
- 159 J. Strähle, Z. Für Anorg. Allg. Chem., 1970, 375, 238–254.
- 160 A. J. D. Barnes, T. J. Prior and M. G. Francesconi, Chem. Commun., 2007, 4638–4640.
- 161 W. Schnick and J. Lücke, Angew. Chem., 1992, 104, 208–209.
- 162 M. Ströbele, K. Eichele and H.-J. Meyer, *Eur. J. Inorg. Chem.*, 2011, 2011, 4063–4068.
- 163 J.-A. Dolyniuk, N. Tran, K. Lee and K. Kovnir, *Z. Für Anorg. Allg. Chem.*, 2015, **641**, 1422–1427.
- 164 W. Harrison and J. Trotter, J. Chem. Soc. Dalton Trans., 1972, 623–626.
- 165 W. Haubold, W. Keller and G. Sawitzki, *Angew. Chem.*, 1988, **100**, 958–959.
- 166 H. Preiss, Z. Für Anorg. Allg. Chem., 1971, 380, 56–64.
- 167 P. H. Collins and M. Webster, *Acta Crystallogr. B*, 1972, **28**, 1260–1264.
- 168 J. Shamir, S. Luski, A. Bino, S. Cohen and D. Gibson, *Inorg. Chem.*, 1985, 24, 2301–2309.

169 M. A. Kraft, S. P. Culver, M. Calderon, F. Böcher, T. Krauskopf, A. Senyshyn, C. Dietrich, A. Zevalkink, J. Janek and W. G. Zeier, *J. Am. Chem. Soc.*, 2017, **139**, 10909–10918.

170 H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiß and M. Schlosser, *Angew. Chem. Int. Ed.*, 2008, **47**, 755–758.

- 171 A. V. Olenev, A. V. Shevelkov and B. A. Popovkin, J. Solid State Chem., 1999, 142, 14–18.
- 172 J. Wang, D. Kaseman, K. Lee, S. Sen and K. Kovnir, *Chem. Mater.*, 2016, 28, 4741–4750.

173 A. V. Olenev, A. I. Baranov, A. V. Shevelkov and B. A. Popovkin, *Eur. J. Inorg. Chem.*, 2002, 2002, 547–553.

P. de Santis, E. Giglio and A. Ripamonti, J. Inorg. Nucl. Chem., 1962, 24, 469–474.

175 H. Menke and H. G. von Schnering, Z. Für Anorg. Allg. Chem., 1973, 395, 223–238.

176 O. Oeckler, H. Mattausch and A. Simon, Z. Für Naturforschung B, 2007, 62, 1377–1382.

177 K. A. Kovnir, J. V. Zaikina, L. N. Reshetova, A. V. Olenev, E. V. Dikarev and A. V. Shevelkov, *Inorg. Chem.*, 2004, **43**, 3230–3236.

178 M. G. B. Drew and R. Mandyczewsky, J. Chem. Soc. Inorg. Phys. Theor., 1970, 2815–2818.

179 M. F. Groh, U. Müller, E. Ahmed, A. Rothenberger and M. Ruck, *Z. Für Naturforschung B*, 2013, **68**, 1108–1122.

180 S. Toso, Q. A. Akkerman, B. Martín-García, M. Prato, J. Zito, I. Infante, Z. Dang, A. Moliterni, C. Giannini, E. Bladt, I. Lobato, J. Ramade, S. Bals, J. Buha, D. Spirito, E. Mugnaioli, M. Gemmi and L. Manna, *J. Am. Chem. Soc.*, 2020, **142**, 10198–10211.

181 Z. Liu, T. Zinkevich, S. Indris, X. He, J. Liu, W. Xu, J. Bai, S. Xiong, Y. Mo and H. Chen, *Inorg. Chem.*, 2020, **59**, 226–234.

- 182 M. Smith and G. J. Miller, J. Solid State Chem., 1998, 140, 226–232.
- 183 S. Pohl, Angew. Chem., 1976, 88, 162–163.
- 184 T. Sakuma and S. Hoshino, J. Phys. Soc. Jpn., 1980, 49, 678–683.
- 185 W. Zhou, Z.-H. Shi, W. Liu and S.-P. Guo, J. Alloys Compd., 2022, 895, 162602.
- 186 A. G. Mikolaĭchuk, N. V. Moroz and P. Yu. Demchenko, *Phys. Solid State*, 2010, **52**, 237–240.
- 187 P. Schwarz, J. Wachter and M. Zabel, *Eur. J. Inorg. Chem.*, 2008, **2008**, 5460–5463.
- 188 K. Feng, W. Yin, Z. Lin, J. Yao and Y. Wu, *Inorg. Chem.*, 2013, **52**, 11503–11508.
- 189 H.-J. Zhao and P.-F. Liu, J. Solid State Chem., 2015, 232, 37–41.